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In Nature, there exist a variety of cardiovascular circulation networks in

which the energetic ventricular load has both steady and pulsatile components.

Steady load is related to the mean cardiac output (CO) and the haemo-

dynamic resistance of the peripheral vascular system. On the other hand,

the pulsatile load is determined by the simultaneous pressure and flow wave-

forms at the ventricular outlet, which in turn are governed through arterial

wave dynamics (transmission) and pulse decay characteristics (windkessel

effect). Both the steady and pulsatile contributions of the haemodynamic

power load are critical for characterizing/comparing disease states and for

predicting the performance of cardiovascular devices. However, haemo-

dynamic performance parameters vary significantly from subject to subject

because of body size, heart rate and subject-specific CO. Therefore, a ‘normali-

zed’ energy dissipation index, as a function of the ‘non-dimensional’ physical

parameters that govern the circulation networks, is needed for comparative/

integrative biological studies and clinical decision-making. In this paper, a

complete network-independent non-dimensional formulation that incorpor-

ates pulsatile flow regimes is developed. Mechanical design variables of

cardiovascular flow systems are identified and the Buckingham Pi theorem

is formally applied to obtain the corresponding non-dimensional scaling par-

ameter sets. Two scaling approaches are considered to address both the

lumped parameter networks and the distributed circulation components.

The validity of these non-dimensional number sets is tested extensively

through the existing empirical allometric scaling laws of circulation systems.

Additional validation studies are performed using a parametric numerical

arterial model that represents the transmission and windkessel characteristics,

which are adjusted to represent different body sizes and non-dimensional

haemodynamic states. Simulations demonstrate that the proposed non-

dimensional indices are independent of body size for healthy conditions,

but are sensitive to deviations caused by off-design disease states that alter

the energetic load. Sensitivity simulations are used to identify the relation-

ship between pulsatile power loss and non-dimensional characteristics, and

optimal operational states are computed.
1. Introduction
The human circulation system, with its four-chambered heart, has been rigor-

ously studied; however, it is not the only possible working configuration

present in Nature. There are a great variety of circulation systems that exhibit

peculiar haemodynamics and diverse energetic performance, because of the

arbitrary numbers and orientation of ventricles [1,2], auto-regulated shunts

[3–5] and exotic cardiovascular valve designs [6–9] that address oxygen and

nutrition transport [10–12]. For improved cardiac filling, even at ultra-low

venous pressures, special mechanisms are employed, such as booster pumps

[13] in the hagfish heart and stiff pericardium translating the ventricular
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Figure 1. (a) A general three-dimensional one inlet – one outlet pulsatile
vascular component is described by its physical parameters: fluidic density
r, viscosity m, wall elastic modulus E, characteristic length l and the flow
rate Q(t). (b) The same vascular segment described in the lumped element
domain. Elastic, inertial and viscous properties are represented by compliance
C, inertance L and resistance R. The characteristic length, l, is related to the
body surface area of the species, as described in the text.
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contraction to venous suction in the auricles of bivalve mol-

luscs [14] and insects [15]. Both of these examples have

‘open’ circulation systems.

Despite numerous biological reports on the circula-

tion systems of various species, major variations in their

cardiovascular parameters, such as organism size, network

arrangement, flow pulsatility, vascular material properties

and cardiac output (CO) level, significantly challenge an ele-

gant comparative analysis across the phylogenetic spectrum.

This poses a barrier to the translation of ideas from Nature

to technology, and hinders our fundamental and clinical

comprehension of cardiovascular systems. Therefore, in

this paper, a general unifying engineering framework is

developed to compare haemodynamics, functional com-

ponent designs (i.e. valves, shunts and junctions) and the

energy cascades encountered in these alternative circulation

system networks.

A formal hydrodynamic non-dimensionalization [16,17]

of cardiovascular circuits has yet to be performed. Thus, start-

ing with a systematic application of similitude principles, we

proposed alternative non-dimensionalization schemes that

address the intra- and inter-species variations of cardiovascu-

lar parameters. The present approach is based on a recent

methodology, developed by our group, which covers the

non-dimensional analysis of steady energy dissipation (i.e.

power scaling) in any component (vessels and ventricles) of

the circulatory system, and formulates the full energy

budget for venous and arterial circulations [18,19]. This

approach allowed disease-specific subject-to-subject compari-

sons and disease-to-disease evaluations by quantifying the

haemodynamic severity of one vascular disease type versus

another, or at different time points for the same disease

[20]. In this paper, for the first time, we have formulated

additional non-dimensional indices that govern vascular

compliance, heart rate, wave reflections and the cardiac-

cycle pulsatility. Furthermore, this complete non-dimensional

parameter set is integrated in the reduced-order lumped

parameter network models (LPMs) of general circula-

tion systems, making our approach independent of the

cardiovascular system network.

We hypothesize that establishing the similitude con-

ditions of the pulsatile cardiovascular flow networks will

advance our understanding of cardiovascular disease states

[21–23], and will influence the haemodynamic design of

blood-wetted devices. For example, during cardiopulmonary

bypass (CPB), the haemodynamic energy delivered to the

peripheral organs can be modulated by manipulating the

pulsatile flow waveform while delivering the same net per-

fusion flow rate through the aortic CPB cannula [24].

However, appropriate energy efficiency indices, which incor-

porate patient size and circulation network parameters, are

not available to improve such device systems. The need for

similar indices that can quantify and compare the pulsatile

energetic load in cardiovascular disease [21], in the exercise

performance of a patient with a single ventricle [25], in CPB

[26,27], in heart valves [28,29] as well as in total cavo-

pulmonary connection surgery [30,31], prompted the present

detailed investigation. Likewise, to address clinical needs,

various pulsatile flow indices have been proposed. For

example, Shepard et al. [32] defined the energy equivalent

pressure (EEP ¼ total haemodynamic work/net flow rate)

to quantify the energetic cost of pulsatile haemodynamic

flow that differed from the steady load. Even though EEP is
useful to assess the relative cost of pulsatile flow, it does

not explain the physical factors that determine the pulsatile

load, nor the relation of energetic cost to patient size.

As the haemodynamic energy dissipation is a body size-

dependent quantity, and varies significantly from patient to

patient, scaling and normalization of energetic dissipation is

essential for comparative clinical analysis [33].

In summary, through application of the present frame-

work, we provide physics-based scaling indices and conduct

characterization studies of the circulatory function and its

associated energetic cost based on the proposed dimensionless

numbers that govern pulsatile haemodynamics.
2. Methodology
2.1. Steady and pulsatile energy dissipation
The mean pulsatile energy dissipation rate (�1p) is the difference

between the mean total energy dissipation rate (�1T) and the

energy dissipation rate of the steady component of the flow (�1s),

�1p ¼ �1T � �1s ¼
1

T

þ
pðtÞqðtÞdt� 1

T2

þ
pðtÞ dt

þ
qðtÞ dt, ð2:1Þ

where p(t) and q(t) are instantaneous pressure and flow rate at

the junction of the aorta and ventricle, respectively, and T is

the duration of the cardiac cycle. The vascular structural proper-

ties and network configuration determine the pressure-flow

waveforms in each vascular segment through pulse wave

propagation and damping, which consequently determine the

energetic load.

2.2. Similitude of pulsatile flow in compliant vessels
A theoretical analysis of haemodynamic power loss under non-

pulsatile flow conditions has recently been provided by Dasi

et al. [18,19]. Expanding this formulation to pulsatile flow

regimes, we start by describing a vascular ‘compartment’ as a

physical model of an isolated segment of the flow system in

which the flow is governed by the physical properties and geo-

metry of the flow domain, in addition to the physical

conditions imposed at its boundaries (figure 1). In §2.2.1, the

non-dimensional formulation of the flow dynamics in a distribu-

ted model of the vascular compartment is presented (figure 1a).

In addition, an equivalent non-dimensional number set, which is

motivated by the circulatory lumped parameter networks, is

developed in §2.2.2 (figure 1b). In §2.2.3, we define a power
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loss index (PLI), which weighs the power loss in a vascular

segment against a subject-specific power scale.

2.2.1. Non-dimensionalization of distributed vascular component
models

The physical parameters defining a vascular compartment are:

blood density r, dynamic viscosity m, vascular elastic modulus

E, characteristic length l and its geometry, which is represented

by a dimensionless form vector S containing ratios of lengths, as

shown in figure 1a. At the inlet boundary, a pulsatile flow Q(t)
is imposed, which is characterized by its mean �Q, fundamental

frequency (i.e. heart rate (HR)—in units of frequency) and wave-

form shape (spectral components of the waveform are included

in a dimensionless vector Qv; electronic supplementary material,

appendix A). Outlet boundary conditions (BCs) can range from

simple constant pressure outlets to more complex windkessel

(WK) outlets, one-dimensional distributed distal flow models or

three-dimensional models. In the present formulation, all par-

ameters related to outlet BCs are contained in a dimensionless

‘b’ vector (e.g. b ¼ Po=ðr�Q2
=l4Þ for a constant pressure outlet).

The functional dependence of local pulsatile haemodynamic

power loss (�1p) on these physical independent variables can be

re-posed as a relationship between seven non-dimensional

groups using the Buckingham Pi theorem (electronic supplemen-

tary material, appendix B):

�1p

rð�Q3
=l4Þ
¼ f ðRe, Ca, St, Qv, S, bÞ, ð2:2aÞ

where

Re ¼ r�Q=l
m

, Ca ¼ E

r�Q2
=l4

and St ¼ HR
�Q=l3

, ð2:2bÞ

and where Re is the Reynolds number, Ca is the Cauchy number

and St is the Strouhal number. Ca is the ratio of characteristic

elastic force due to wall distension to the characteristic dynamic

forces inside the flow. St is the ratio of oscillatory time to charac-

teristic flow time. The left-hand side of equation (2.2a) is the ratio

of pulsatile power loss to a characteristic inertial power that is

flowing into the compartment. For ‘compliant’ arteries, veins

and pulmonary microcirculation, the effect of gravity can be sig-

nificant; the inclusion of gravity (g) in the analysis would require

the Froude number (Fr ¼ �Q=
ffiffiffi
g
p

l5=2) to be included in equation

(2.2) and the vascular orientation (or posture) to be considered

in the shape parameter vector S.

2.2.2. Non-dimensionalization of lumped vascular component
models

While the previous non-dimensional number set governs the pul-

satile flow physics for a compartment, completely, an alternative

similitude set would be more amenable for circulation network

analysis. Particularly for complex vascular systems consisting of

many vessels and vascular components, it may not be practical

to individually consider the contribution of each element to

the vascular function. Instead, the lumped haemodynamic

parameters, resistance (R), compliance (C) and inertance (L), incor-

porate the effect of material properties (viscous, elastic and

inertial, respectively) and the prevailing geometry in a single par-

ameter that represents the haemodynamic function of the specific

vascular segment that is under consideration (figure 1b). Our

intention here is to develop ‘non-dimensional’ circulation net-

works and to be able to compare them through numerical

LPMs. While higher-order analysis methods of cardiovascular sys-

tems do exist, we find LPMs to be the most practical approach,

leading to a system-level understanding [34].

For a lumped compartment, the functional dependence of the

mean pulsatile energy dissipation on the independent lumped
variables is represented by �1p ¼ f ðR, C, L, HR, �Q, Qv, S, bÞ. Fol-

lowing non-dimensionalization (electronic supplementary

material, appendix C), the functional dependence of �1p can be

re-posed as a function of six dimensionless quantities:

�1p

R �Q2
¼ f ðd, c, Qv, S, bÞ, ð2:3aÞ

where

d ¼ 1

HR� RC
, c ¼ HR

ffiffiffiffiffiffi
LC
p

: ð2:3bÞ

Equation (2.3a) gives the ratio of pulsatile power loss to the steady

power loss (¼ R �Q2
), as a function of d, the pulse decay number,

and c, the wave propagation number. d is based on the elastic

and viscous components of a vascular segment, and governs the

rise and decay characteristics of pressure in RC circuits, similarly

to the WK model of circulation. c is based on the elastic and iner-

tial components of a vascular segment, and governs the

transmission of pulse waves across a given vascular segment

that is characteristic of the transmission line model of the arterial

system. Although the geometry is intrinsic to lumped parameters,

S is kept in the formulation to relate the local geometrical infor-

mation (e.g. the constriction in a stenotic artery) to the changes

in R, L and C, if this relation is available.

2.2.3. Pulsatile power loss index: scaling with body size and
cardiac output

Scaling of power loss with the body surface area (BSA) is critical

for understanding the relation of energetics to body size and

metabolism, which is imperative in biological and clinical con-

texts. In general, human and mammalian circulation exhibit

geometrical similarity, and it has been shown that l �
ffiffiffiffiffiffiffiffiffiffi
BSA
p

is

an acceptable approximation for all major vessels [35,36]; thus,

the characteristic length for the circulation is chosen as
ffiffiffiffiffiffiffiffiffiffi
BSA
p

.

Similarly, the characteristic flow rate for the whole circulation

is the CO. We define the PLI in any vascular compartment as

the ratio of �1p to the characteristic inertial power available in

the circulation system, which is based on
ffiffiffiffiffiffiffiffiffiffi
BSA
p

and CO, by

manipulating equations (2.2a) and (2.3a), respectively, giving

PLI ¼
�1p

rCO3=BSA2
¼ a3 BSA2

l4

 !
f ðRe, Ca, St, Qv, S, bÞ ð2:4aÞ

and PLI ¼ a2RIgðd, c, Qv, S, bÞ, ð2:4bÞ

where a ¼ �Q=CO is the fraction of local flow to the total available

flow and RI ¼ R=ðrCO/BSA2Þ is the resistance index. In this

report, the PLI is used as the measure of pulsatile energetic per-

formance. In our earlier study, a ‘steady flow’ version of the PLI,

where �1s replaces �1p, has been used to assess total cavo-pulmon-

ary conduit performance [19,25]. For presentation purposes, and

in order to obtain practical clinically relevant value ranges, the

PLI and RI are multiplied by 1029 in this paper [18].

2.3. Arterial model
To experiment with these new non-dimensional indices,

we developed a numerical model of the systemic arterial circula-

tion. Figure 2 depicts the model of systemic arterial circulation

that was used in parametric simulations to determine the

changes in PLI with respect to the cardiovascular non-dimen-

sional parameters. The model consists of a one-dimensional

transmission line model of the aorta that terminates with a

three-element windkessel (WK3) model of the peripheral micro-

vasculature. Ca and La are the aortic compliance and inertance,

Cp and Rp are the peripheral compliance and resistance,

and Zc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
La=Ca

p
is the characteristic impedance of the WK3.

Arterial model parameters match the characteristics of adult
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Figure 2. A sketch of the computational arterial model in the lumped element domain (b) and simulated arterial pressure and flow waveforms at the baseline model
specifications representative of an adult with a body surface area of 1.5 m2 (a). The model consists of a one-dimensional (1D) large arterial segment, similar to an aorta,
which is terminated with a three-element windkessel (WK3), representing the peripheral microcirculation. X is the normalized distance ([ ð0, 1Þ) from the inlet of the aorta
to the major reflection site at the end of the aorta. Normalized time¼ tHR; in this particular simulation HR ¼ 80 bpm. t, time; HR, heart rate; La, arterial inertance; Ca,
arterial compliance; ZC, arterial characteristic impedance (¼

ffiffiffiffiffiffiffiffiffi
La=Ca

p
); Cp, peripheral compliance; Rp, peripheral resistance. (Online version in colour.)

Table 1. Baseline systemic arterial model parameters and their units.

La 0.002 mmHg l21 min2 Rp 18.75 mmHg l21 min

Ca 0.00042 mmHg21 l HR 80 min21

ZC 2.2 mmHg l21 min CO 5 l min21

CT 0.001 mmHg21 l BSA 1.5 m2
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human circulation (table 1) [37]. The arterial segment is uniform;

therefore, wave reflections occur only at the intersection of the

arterial segment and the WK3. This is a simplification of the

actual system, which contains spatially distributed wave reflec-

tions; however, the focal point of combined wave reflections can

be approximated as a single site [38]. To represent a healthy physi-

ology, the characteristic impedance of the WK was matched to the

characteristic impedance of the aorta (ZC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
La=Ca

p
) in order to

minimize wave reflections at high frequencies [37,39,40]. The

inlet BC is prescribed as a half sine pulsatile flow waveform,

with �Q ¼ 5 l min21 and a systolic fraction of tsys ¼ 0.3/HR. The

outlet BC is prescribed as zero pressure. Details of the compu-

tational model are discussed in the electronic supplementary

material, appendix D. Figure 2 shows arterial pressure and flow

waveforms sampled along different sites in the model, which

showed realistic patterns such as the amplification of the pressure

pulse in the direction of flow, a dicrotic notch and backwards flow

in the aorta at the end of the ventricular ejection [39].

The complete arterial system (either systemic or pulmonary)

can be considered as a single cardiovascular compartment

based on the model presented above. Based on our numerical

experiments, WK properties are governed by Rp, total arterial

compliance (CT ¼ Ca þ Cp), and HR, which gives the non-

dimensional d number of the arterial system: d ¼ ðHRCTRpÞ�1.

Similarly, pulse transmission characteristics are governed

by the propagation number of the arterial compartment:
c ¼ HR
ffiffiffiffiffiffiffiffiffiffi
LaCa

p
. RI is calculated as Rp=ðrCO/BSA2Þ. As such,

the PLI is calculated from the pulsatile power loss, CO and the

BSA. The a term is dropped for one-compartment systems

because �Q ¼ CO.

Characteristic impedance ZC does not show up in the non-

dimensional numbers set, as it is not an independent parameter

for the model under consideration at this time. Waveform shape

is held constant across simulations; therefore, Qv does not

change, and this term is subsequently dropped from the power

loss function. Similarly, shape-related parameters (e.g. Ca/Cp)

are held constant and S is excluded from the power loss function

for simplicity, thereby assuming that the geometrical effects on

energy loss, such as curvatures [41] and angles at branching junc-

tions [42], are not drastically different between subjects.

Geometrical effects introduced by stenoses, aneurysms and con-

genital defects are significant for haemodynamic losses in many

cardiovascular diseases [21] and surgical reconstructions [20];

however, their investigation is outside the scope of the present

study. Considering the above, the functional dependence of the

PLI on non-dimensional parameters is given in

PLI ¼ RIf ðd, cÞ: ð2:5Þ

As illustrated in this section, the proposed framework can be

applied to any chosen cardiovascular compartment subset in a

similar fashion.



Table 2. Allometric exponential coefficients of cardiovascular systems.

surface-area scaling quarter-power scaling

human [35]a mammals [43,47] mammals [46]

aortic pressure 0 0 0

cardiac output 2/3 3/4 3/4

heart rate 21/3 21/4 21/4

stroke volume 1 1 1

characteristic velocity 0 0 1/12

vascular dimensions 1/3 3/8 1/3

blood volume 1 1 1

total vascular resistanceb 22/3 23/4 23/4

total vascular complianceb 1 1 1

total arterial inertanceb 21/3 21/2 21/2
aNote that allometric functions based on body surface area (BSA) are converted to body volume relations by multiplying the allometric exponent for BSA by
two-thirds under the observation that BSA scales with two-thirds of the body weight.
bThe exponential coefficients for lumped parameters are estimated from the allometric relations reported in [35,43,46].

rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20151019

5

3. Results
3.1. Validation of pulsatile similitude via allometric

relations
Allometric relations are statistically obtained power-law

relations of the form Y ¼ aBb that relate the value of a phys-

iological parameter (Y ) to body size (B) with a scaling

exponent b and a normalization constant a. Allometric

relations do not explain the variation of a variable for subjects

with the same body sizes, but as it represents the statistical

average of a large population, an allometrical trend can be

interpreted as a ‘normal’ ball-park value for a physiological

measure as a function of body size [33].

It is widely accepted that the relation between the size and

form of efficient transportation networks dictates the allo-

metric scaling of physiological variables with body mass M
(i.e. Y � Mb), as shown through analytical models [43–46]

and supported by empirical studies [35,47]. Observed values

of b generally appear as multiples of 1/4 and 1/3, and are,

respectively, attributed to the fractal and Euclidean scaling of

geometry in biological organisms [48–50].

In this section, we propose that non-dimensionalized

circulatory systems should yield scale-invariant character-

istics, if their design is governed by a common optimality

principle. For this purpose, we tested the proposed non-

dimensional parameters for similitude (scale invariance) by

the application of allometric relations for mammals (table 2)

[35,43,45–47]. Two scaling schemes are considered in this

study: quarter-power and surface-area scaling schemes,

which are based on the empirically observed scaling of

basal metabolic rate with body mass increased to the power

of three-quarters and two-thirds; the former is commonly

accepted in biological sciences, whereas the latter is accepted

in the clinical field. Parameters not included in table 2 are the

haemorheological properties (viscosity and density) and wall

elastic modulus, which do not show a significant association

with body size [48–50]. Normalized flow waveform shape,

given by Qv, is considered to be independent of body size,
as normalized ventricular contraction patterns and arterial

flow waveforms are closely similar in mammals [51].

Allometric equations for similitude parameters governing

local flow dynamics in a single conduit vessel component can

be computed as

Re/M1=3, Ca/M0 and St/M0 ðsurface - areascalingÞ

Re/M5=12, Ca/M�1=6 and St/M0 ðquarter - powerscalingÞ:

Although there is geometrical similarity in the large vessels of

an animal (i.e. S/M0), as expected, only the dynamic simi-

larity is not conserved, as inertial forces become dominant

over viscous forces as the subject size increases.

Scaling of a single vessel gives an incomplete picture for

the scaling of circulation as a system. To explore similitude

in the entire circulation network, we refer to the scaling of

the arterial system as a whole. We direct our attention to

the most important aspects of pulsatile flow: frequency-

dependent pulse propagation, damping and reflection,

which can be adequately captured by the arterial model

explained in §2.3. Allometric scaling of resistance, compliance

and inertance can be determined empirically, or can be

derived from the models of the underlying vascular struc-

tures (table 2). The body size proportionality of biological

flow indices is determined from the above-mentioned

allometric relations as:

RI/M0, d/M0 and c/M0 ðsurface-area scalingÞ

RI/M�1=6, d/M0 and c/M0 ðquarter-power scalingÞ:

The exponential coefficients for d andc are zero, indicating that

the non-dimensional parameters governing the pulsatile

system are size invariant. It should be noted that the exponen-

tial scaling of the RI in the quarter-power scaling case does not

break the generality of this finding, as it is not essentially a simi-

litude parameter, but rather adjusts the proportionality of the

PLI. As such, the exponential coefficient for the PLI is expected

to be less than 0 (surface-area scaling), and greater than or equal

to 21/6 (quarter-power scaling).
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Therefore, the presented results confirm the validity of

system-level similitude of the mammalian circulatory

system when, regardless of the empirical scaling law options,

non-dimensional parameters are formed with appropriately

chosen length and time scales. The size-invariance property

of non-dimensional characteristics enables the direct com-

parisons of cardiovascular operational and performance

states to be made between different subjects.

3.2. Generalized pulsatile flow characteristics of the
arterial system

In the present section, the variability in energetic character-

istics that may accompany deviations from normal states is

inspected as a function of similitude parameters using the

parametric numerical model of the arterial system, as

described in the Methodology (§2.3).

3.2.1. Pulsatile power loss index as a function of propagation
and decay numbers

In this section, we inspect the impact of variations in propa-

gation and damping characteristics governed by c and d on

the PLI, while isolating these effects from the mean resistive

effects by fixing the value of the RI during simulations. The

functional dependence of the PLI on d and c, while the RI

is held constant at 3.85, is displayed as a surface graph in

figure 3. The ‘baseline state’ is defined as the arterial model

for a healthy adult human, as described in §2.3. At this base-

line state of the circulatory system, d and c are 0.7 and 0.074,

respectively, and the resulting PLI is 0.6. d and c are both

varied between 25% and 400% of their baseline values, and

changes in the PLI are plotted on the state surface of

figure 3. The PLI increases monotonically with both d and
c. Alternately doubling and then halving d, while keeping

the other non-dimensional parameters constant, resulted in

a PLI of 1.4 (þ127% change) and 0.3 (254%), respectively.

The same changes in c resulted in a PLI of 1.8 (þ200%)

and 0.3 (250%), respectively. Simultaneously increasing or

decreasing d and c amplified the change in the PLI. No

local extrema were observed in the power loss function.

The effects of changes in a single parameter (HR, R, L or

C ) are also plotted in figure 3. It was found that PLI increased

with an increase in stiffness or inertance. PLI also increased

with either a decrease or an increase in HR, indicating that

a minimal PLI exists at an intermediate HR. An increase in

R led to a decrease in PLI due to increased WK performance,

even when the RI is allowed to increase. However, the total

power loss significantly increased because of the steady com-

ponent. The impact of changes in individual vascular

properties over the PLI is further discussed in §4.1 and

summarized in table 3.

One case that is worthy of investigation is the dependence

of the PLI on the variability of the heart rate while the par-

ameters depending on vascular properties (R, L, C) are held

constant. This case is clinically interesting because the heart

rate is a typical, acutely controlled system parameter, as

opposed to the vascular geometry and material properties,

which can be altered through long-term remodelling and

growth processes. This observation leads to the constraint of

acutely fixed vascular states, where only changes in heart rate

are allowed. These iso-contours are displayed in figure 3, on

curves defined as d� c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ðL=CÞ

p
=R ¼ k, where k is a constant.

The PLI is observed to increase with k, when RI is unchanged.

Under the constraint of fixed vascular state, an optimal (d, c)

pair exists for each ‘k’, at which point the PLI reaches a local

minimum. As observed, the simulated baseline (i.e. healthy) cir-

culatory model was very close to the optimal condition,
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implying that human arterio-ventricular coupling is maintained

close to an optimal state for a normal subject.

Figure 4a,b shows the pulsatile power loss as a fraction of the

total power loss, which is 13% at the baseline, and increases with

both d and c. We observed that pulsatile power loss might sur-

pass steady power loss under extreme cases. In figure 4b, a

‘normal resting condition’ region is enclosed by an approximate

formulacþ 0:12d , 0:18, inside which the pulsatile power loss

as a fraction of the total power loss is below 20%, which is

expected for normal resting subjects [52].

We have also investigated the changes in heart rate and vas-

cular properties during exercise based on previously published

data [53,54] (electronic supplementary material, appendix E,

tables S1 and S2). During exercise, arterio-ventricular coupling

is maintained at optimal (d, c) states through balanced haemo-

dynamic changes in HR, CT and Rp (electronic supplementary

material, figure S1). From rest to mild exercise, the PLI decreases

by approximately 30%, but remains unchanged from mild to

heavy exercise. However, the pulsatile power loss as a fraction

of the total power loss increases from 13% at rest to approxi-

mately 30% during mild exercise and up to approximately

50% during heavy exercise.

3.2.2. Arterial pressure waveform as a function of propagation
and decay numbers

Figure 5 shows the change in the normalized pulsatile pressure

waveform at the inlet with respect to changes in d and c. An

increase in d is reflected in the separation of systolic and diastolic

pressures, indicating that the damping factor of the WK property

is diminished (figure 5a). The slope of the diastolic pressure

decay strongly correlates with the d number. The arrival time

of backwards travelling waves, originating from the arterial–

peripheral boundary, increases in relation to the propagation

numberc, but not to d. Increasing c, while keeping d and RI con-

stant, led to the observation that early arterial pulse pressure

increases in relation to aortic impedance (¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
La=Ca

p
), which

relates the instantaneous pressure and flow rate of the arterial

pulse wave, thereby increasing the power requirement by the

ventricle (figure 5b). It is also observed that the arterial model

increasingly behaves as a classical RC-WK as c decreases [55].

The occurrence of an optimal state at an intermediate (d, c)

pair value, when the vascular state is fixed and either c or d is

varied, is also evident in figure 5c: at a high c (low d), WK press-

ures are low but high pressures are required for generating

the forward travelling pulse; on the contrary, WK losses are

significant at low c (high d).

3.3. Compartmentalization and non-dimensionalization
of a general circulatory network

While the dimensionless relations shown in equations (2.2)–(2.4)

are general, their physical role in a multi-component circulatory

network system needs to be clarified. In our approach,

any circulatory network can be divided into imaginary compart-

ments and the connection map among these compartments

can be determined. For example, figure 6 showcases the

‘compartmentalization’ scheme of sample complex circulation

networks: crocodile and octopus [56–58]. Individually, each of

these compartments may consist of one or more lumped

elements, hierarchical, multi-scale, one-dimensional or three-

dimensional distributed models. There is no restriction on the

model being open or closed. In open models, BCs, and in
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closed models, activation functions (e.g. ventricular time-

varying elastance function), should be given as inputs to the

non-dimensionalization function. The final step is the non-

dimensionalization of the parameters using the conventions

presented in §2.2. Alternatively, for an N compartment

circulation network, there are at least N coupled differential

equations to solve, after which non-dimensionalization of each

equation will lead to the same compartmental non-dimensional

number set (not shown here for brevity).

The total ventricular load (�EV) can be obtained from the

sum of the cycle-averaged integral of the pressure–volume
loop of each ventricle,

�EV ¼
X 1

T

þ
pi dVi, ð3:1Þ

where V is the ventricular volume and summation is over all

ventricles, as labelled by i. All the power produced by the

ventricles is eventually dissipated as heat at the components

of the circulatory system, which can be determined individu-

ally for each compartment using equations (2.4a,b).

Application of the energy conservation principle, combined

with equations (2.4a,b), determines the energy budget for
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the entire cardiovascular system as:

PLIV ¼
X

all compartments

PLIi

¼
X

lumped

a2
i RIi: fiðdi, ci, Qv,i, Si, biÞ

þ
X

distributed

a3
i

liffiffiffiffiffiffiffiffiffiffi
BSA
p
� ��4

giðRei, Cai, Sti, Qv,i, Si, biÞ,

ð3:2Þ

where each compartment is labelled by subscript i. ‘lumped’

and ‘distributed’ indicate that the compartments are defined

by the corresponding dimensionless number sets, given by

equations (2.2) and (2.3).

In equation (3.2), BCs are assumed individually for all

compartments. In fact, if the network connectivity map is

known, such as for the circulations in figure 6, with all com-

partmental information present, then it is sufficient to know

the BCs at open boundaries only (there would be no open

boundaries for closed networks). For connected compart-

ments, BCs at junctions with neighbouring compartments

(i.e. b) and the distribution of flow (i.e. a) will be deter-

mined by the properties of the rest of the compartmental

network, to which the compartment under investigation is

connected, and by the BCs imposed from the open bound-

aries of the largest connected subgraph. A definitive

implication is that local changes in compartmental proper-

ties will have global effects. As an example, supposing a

network has two compartments, such as arterial and periph-

eral as shown in §3.1, an increase in stiffness in the arterial

compartments would affect power loss in the periphery by

altering the flow–pressure waveforms imposed on the

microvasculature.
As the number of compartments increases along with

increasing model complexity, the quantity of non-dimensional

numbers that are required to represent the entire network also

increases, because of a larger number of degrees of freedom.

Therefore, determining the least number of parameters that

can sufficiently define the compartment models, through

model reduction and importance analysis, is critical for

non-dimensional network analysis [59,60].
4. Discussion
4.1. Energetic implications of non-dimensional

parameters
In our earlier studies, it has not been possible to validate the

steady non-dimensional energy dissipation scheme of Dasi

et al. [18] against the empirical allometric relations because

of the incomplete non-dimensional number set. This study

completed the governing number set by providing a unified

picture of the transmission and WK effects on the pulsatile

energetic load, and showed that the present generalized

non-dimensional set is valid for both steady and pulsatile

flow regimes, providing an indirect physical explanation for

the cardiovascular allometric observations through physical

similitude for the first time in the published literature.

Pulse propagation and reflection characteristics in mam-

mals have been investigated empirically using allometric

relations and non-dimensional parameters and have been

found to be independent of animal size; however, an expla-

nation for this observation was not previously provided

[61]. In a series of papers, Pahlevan & Gharib [62,63] investi-

gated the impact of arterial stiffness, heart rate and wave

reflections on the pulsatile power loss. Their study found
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optimality criteria for mammals based on matching the

heart rate with the travel time of pulse waves along the

aorta to minimize ventricular load [64]. They proposed an

invariant wave condition number, which is equal to the pro-

duct of the heart rate and the effective length of the aorta

divided by the pulse wave velocity (PWV), which in turn is

equal to 0.1 when the heart rate is optimized. If the effective

length is close to the aortic length, as is the case for healthy

subjects [65], then the invariant number from Pahlevan and

Gharib corresponds directly to the c number, as 1=
ffiffiffiffiffiffi
LC
p

is

the natural frequency of the aorta and is equal to PWV

divided by the aortic length. To account for cases in

which the effective length of the aorta differs from its ana-

tomical length, the ratio of the effective length to the

anatomical length can be incorporated into S; this allows

Pahlevan and Gharib’s wave condition number to be

obtained by combining S and c. Unlike these previous

studies, which neglected the damping characteristics of the

peripheral circulation, our analysis demonstrated that the c

number alone does not guarantee optimal cardiac perform-

ance, unless the vascular state is fixed. We found that, for

each vascular state, the optimal c value changes, as well as

the corresponding d value, although the former varies less

than the latter.

It is well known that an increase in vascular stiffness

impairs pulse buffering by the WK effect and increases the

pulse pressure faced by the ventricle [66]. Westerhof &

Elzinga [67] reported their observations on the invariance

of the product of the heart rate and the arterial pulse decay

time of WK3 based on empirical measurements in mammals;

their data suggest that 0.2 , d , 0.5. Our study demonstrates

that the arterial system operates more efficiently when d , 1,

which suggests that the mammalian peripheral vascular
system is adjusted to minimize the pulsatile workload of

the ventricle.

Physically, a constant c indicates that the spatial and tem-

poral distribution of forward and reflected waves is similar

across species, and the constancy of d implies that the

pressure decay during a cardiac cycle is identical. In sum, it

is implicitly assumed that the pressure wave faced by the

heart during the ejection period is similar for all mammals.

This is generally true for most mammals; one exception

that is frequently mentioned is the kangaroo, which has an

unusual pressure waveform [68]. An inspection of pressure

and flow tracings from non-mammalian species showed

waveform similarities between tuna [69], turtle [70], alligator

[56] and mammals. Through a WK2 parametric estimation,

we calculated a d ¼ 0.34+0.12 across vertebrate species,

where d � 0.45 for active species such as mammals and

tuna and d � 0.25 for the less active turtle and alligator.

Past experiments on lower vertebrates (toad, lizard and

snake) have shown that pulse propagation plays a minor

role compared with its role in active animals, as the pulse

transit time-to-cardiac cycle duration ratio is significantly

lower (5–10 times lower c than in mammals, according to

[71]) and their arterial system acts mainly as a WK [71]. We

suggest that the observed invariance of d could be valid for

lower vertebrates and mammals.

4.2. Implications for achieving optimized states beyond
the baseline

From figure 3, it is observed that an additional reduction of

pulsatile power loss from the baseline state is possible

by decreasing L or increasing C, but these states may not

be achieved because of mechanical or physiological design
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constraints, such as the limitation on allowed vascular volume

or nonlinear dynamic effects. Therefore, in table 3, we summar-

ize the impact of different vascular properties on the power-loss

mechanisms governed by linear flow effects through the main

findings of this paper, and discuss nonlinear effects that are

not included in the linear model, such as steep wavefronts

and turbulence. Considering that r and m are relatively con-

stant, increasing aortic luminal area (A0) or decreasing

vascular elastic modulus represent the available options to

decrease power loss by obtaining a smaller R, L and a larger

C, as traced in figure 3. However, increasing A0 requires a

larger blood volume; while, on the other hand, decreasing E
might lead to a low PWV, resulting in the occurrence of non-

linear steep wavefronts, if the flow velocity approaches PWV.

Therefore, these two factors may impose a lower limit to the

reduction of pulsatile energetic load. Strain-stiffening elasticity

is another nonlinear effect, but it only contributes to a higher

power loss when blood pressure is high, which necessitates

an already high power loss. Thus, it is not expected to constitute

a limiting factor in the low-power design.

4.3. Relation between lumped and distributed non-
dimensional parameters

Equations (2.2) and (2.3) are applicable in both steady and

pulsatile flow regimes. Under steady flow, d and c as well

as Qv vanish, and the PLI becomes a function of RI and S
alone (pulsatile power loss is replaced by steady power

loss). The framework proposed in Dasi et al. [18] and ours,

proposed here, can be linked using the Darcy–Weisbach

equation for pressure loss, which is a function of the Darcy

friction factor fD, pipe length l and diameter d, mean flow vel-

ocity u and fluid density r: DP ¼ fD � L
D�

ru2

2 . As resistance

is the ratio of mean pressure drop to the mean flow rate, its

functional dependence is identical to the Darcy–Weisbach

equation for pressure loss: DP=Q ¼ R ¼ f ð fD, L, D, u, rÞ.
Non-dimensionalization of this expression returns RI and its

functional dependence on fD and L/D as R=ðrQ=D4Þ ¼
f ð fD, L=DÞ. Considering pipe flow, fD can be determined

empirically from the Moody chart, if the Reynolds number

and the surface roughness are known. Thus, the definition of

PLI as a function of RI is identical to its definition based on

Re: PLI ¼ f ðRI, SÞ ; f ðRe, SÞ.
As explained in §4.1, c is equivalent to the ratio of arterial

length to the distance travelled by a pulse wave in the

duration of a cardiac cycle

HR
ffiffiffiffiffiffi
LC
p

¼ HRl
PWV

:

PWV can be estimated with the Moens–Korteweg formula:

PWV ¼ pðEh=rdÞ, where h and d are wall thickness and

internal diameter [39], respectively. Thus, the c number is

identical to

HRlffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh=rd

p ¼ Stffiffiffiffiffiffi
Ca
p ffiffiffiffiffiffiffiffi

h=d
p ,

with characteristic length chosen as the longitudinal vascular

length and h/d is the shape number. The d number governs

the frequency-dependent interaction of viscous fluid and

elastic wall forces. Combining Re, Ca, St and S numbers

gives an identical relation:

d ;
E

HR:m
, S

� �
¼ Re:Ca

St
, S

� �
:

This emphasizes the compatibility of the proposed

lumped parameter description of power loss to its distributed

parameter description that was derived in §2.2.
4.4. Inertial and viscous scaling
From equations (2.4a,b), it is observed that mean power loss

should be proportional to the cube of the flow rate in order

for PLI to remain insensitive to variations in the mean flow

rate. This relation is valid for cardiovascular segments

where energy dissipation is dominated by inertial losses

under high-Re conditions. However, under laminar flow

regimes (Re , 2000–3000), viscous forces dominate energy

dissipation and the power-loss dependency on flow rate

becomes a quadratic function of the flow rate (1/Q2). It is

important to make this distinction, as most power loss in

the cardiovascular system occurs at the level of the microcir-

culation, where viscous forces are dominant. Equations

(2.4a,b) can be adjusted to a suitable form for flow regimes

that are dominated by viscous forces by simply multiplying

the left-hand side by the Reynolds number as:

1p

mð�Q2
=BSA3=2Þ

¼ RIm f ðd, c, Qv, S, bÞ

¼ RegðRe, Ca, St, Qv, S, bÞ, ð4:1Þ

where RIm ¼ R=mBSA�3=2 is the viscosity-scaled resistance index.
4.5. Non-dimensional numbers in the clinical setting
Flow pulsatility has been shown to be beneficial for organ

perfusion [27] as well as healthy vascular gene expression

and remodelling; however, the energetic cost of delivering a

constant CO is higher in pulsatile flow than in non-pulsatile

flow [26,72]. In the healthy circulatory system, the pulsatile

component of ventricular load operates optimally and consti-

tutes a small fraction of the total power requirement of the

ventricle (approx. 10%). However, many diseases, including

congestive heart failure, ventricular hypertrophies, adverse

vascular remodelling and congenital heart disease, as well

as cardiovascular device performance (neonatal CPB, ventri-

cle assist devices), are closely associated with increased

pulsatile workload on the ventricle. Changes in the cardio-

vascular system that accompany such diseases were

displayed as parametric variations in figure 3.

From the clinical perspective, surface-area scaling is com-

monly adopted for human physiology [35]; therefore, the PLI

can be established as a size-invariant measure of cardiovascu-

lar performance. If quarter-power scaling is considered for

humans, then a 10-fold variation in size (e.g. 10–100 kg)

introduces a 30% variation in PLI between the two extremes

of human size, which is still smaller than the variations in

PLI introduced by disease conditions [18]. Therefore, the

PLI/M21/6 relation that occurs in quarter-power scaling

would only cause a weak body-size dependence of PLI

when used as a performance index.

As discussed above, decay and propagation numbers cor-

respond directly to the physical properties of the arterial

system. Arterial pressure decay time is commonly associated

with WK properties, which are determined by total arterial

compliance and peripheral resistance. Characteristic arterial

decay time (t ¼ RC) is calculated by estimating the negative

of the slope of the diastolic pressure decay curve [73]. We
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Figure 7. Correlation of non-dimensional parameters with the physical measures estimated from the resulting arterial pressure waveforms as explained in §4.5.
(a) The decay number correlates well with the normalized decay time of windkessel (¼HRt). Decay time of windkessel is estimated from the slope of the diastolic
arterial pressure waveform. (b) Propagation number correlates with the normalized arterial pulse transit time (¼HR � PTT). PTT is the time it takes for a pulse
wave to travel from the aortic inlet to the end of the aorta (reflection site), and is estimated with the foot-to-foot method. Markers (open circles) are the estimated
measures (y-axis) at each known non-dimensional number value in simulations (x-axis). Dashed lines represent a linear relation between measured indices and
non-dimensional parameters. HR, heart rate; t, windkessel decay time; PTT, pulse transit time. (Online version in colour.)
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note that d is different from the RC time used in the esti-

mation of total arterial compliance [73]. The value of RC
time varies with the size of the subject, whereas d is a

scale-invariant index that indicates the WK performance, as

it reflects the synchronization of heart rate with the decay

properties of the vascular system. Similarly, c is shown to

be proportional to the normalized transit time of pulse

waves from the aortic inlet to the microcirculation boundary,

where transit time was estimated using the foot-to-foot

method [74].

Figure 7a,b shows that there is a strong one-to-one associ-

ation between the normalized decay time and normalized

transit time, estimated from the simulated pressure wave-

forms and the non-dimensional d and c numbers given as

inputs to the system. Estimated measures can be used directly

to determine the state of the cardiovascular system, the

ventricular–arterial coupling and the arterial pressure wave-

forms by referring to figures 3–5, without having to

determine individual values of compliance and inertance.

4.6. Further limitations
The numerical model presented in this paper is the minimum

model that is able to capture the transmission and WK prop-

erties of the circulation system. In the future, a distributed

model of the circulation system may be tested against the pre-

sent results. Linear models sufficiently capture the dynamics

of circulation, however several advanced features may be

included in future investigations. For example, nonlinear elas-

ticity and viscoelasticity of the vessels, and inertial power

losses, were not incorporated in the present model. Possible

impacts of nonlinear effects are discussed in §4.2. Another

limitation was that CO and flow waveforms were fixed. For

advanced analysis of arterio-ventricular coupling, ventricular

time-varying elastance or multi-physics models could be

added [75–77].

At present, our model focused on a one inlet–one outlet

transmission-WK model. However, vascular systems feature

more complex branches with multiple inlets and outlets

(e.g. carotid bifurcation (one inlet, two outlets), aortic arch

(one inlet, four outlets), venous confluence (two inlets, one

outlet) and hepatic confluence (three inlets, one outlet)),
with fixed flow and pressure BCs as well as more complex

BCs, which are determined by upstream and downstream

vascular structures. For a more general power loss estimation,

improved impedance calculations using the reduced-order,

variable morphometric and fractal approaches [78–80] will

be considered.
5. Conclusion
A complete set of non-dimensional numbers that govern both

the steady and the pulsatile physics of cardiovascular systems

are formulated. Non-dimensionalization of both lumped

and distributed models of circulation is studied, covering the

individual cardiovascular components as well as entire

networks. Non-dimensional parameters obtained from a

lumped arterial circulation model yield invariant character-

istics, which were derived from common design principles

of the circulatory systems of animals. We used the non-

dimensionalization framework to elucidate the determinants

of pulsatile load in the arterial system with a reduced

number of variables. For the first time in the published litera-

ture, the complete optimal state maps of arterial circulation

systems are calculated and the relative importance of pulsatile

versus steady cardiovascular energy is quantified. The deter-

minant non-dimensional variables governing decay and

propagation characteristics can be acquired from the subject-

specific routine clinical measurements, and would allow

comparative assessment of optimal cardiovascular states.

Extension of the presented framework towards the scaling

of complex circulatory networks was also considered. Simili-

tude of cardiovascular function across species will be useful

in network optimization, as the only variable among the

circuit candidates will be their ‘network topology’, allowing

unbiased comparison of non-dimensional energetics and

efficiency parameters.
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