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Abstract

In this paper, we introduce a new type of tree-based method, reinforcement learning trees (RLT), 

which exhibits significantly improved performance over traditional methods such as random 

forests (Breiman, 2001) under high-dimensional settings. The innovations are three-fold. First, the 

new method implements reinforcement learning at each selection of a splitting variable during the 

tree construction processes. By splitting on the variable that brings the greatest future 

improvement in later splits, rather than choosing the one with largest marginal effect from the 

immediate split, the constructed tree utilizes the available samples in a more efficient way. 

Moreover, such an approach enables linear combination cuts at little extra computational cost. 

Second, we propose a variable muting procedure that progressively eliminates noise variables 

during the construction of each individual tree. The muting procedure also takes advantage of 

reinforcement learning and prevents noise variables from being considered in the search for 

splitting rules, so that towards terminal nodes, where the sample size is small, the splitting rules 

are still constructed from only strong variables. Last, we investigate asymptotic properties of the 

proposed method under basic assumptions and discuss rationale in general settings.
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1. INTRODUCTION

In high-dimensional settings, the concept of sparsity—that there is a relatively small set of 

variables which completely convey the true signal—is both intuitive and useful. Many 

methods have been proposed to identify this set of true signal variables. Penalized 

estimation for linear models (Tibshirani, 1996) and its variations are among the most 

popular methods for this purpose. Machine learning tools such as tree-based approaches 

(Breiman et al., 1984; Breiman, 1996, 2001) have also drawn much attention in the literature 

due to their flexible non-parametric structure and the capacity for handling high-dimensional 

data. However, there is little attention on sparsity for tree-based methods, both theoretically 

and practically. In this paper, we propose to use reinforcement learning in combination with 

a variable muting strategy to pursue nonparametric signals in a sparse setting by forcing a 
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certain level of sparsity in the constructed trees. Before giving details of the proposed 

method, we briefly review previous work to lay the needed foundation.

A series of works including (Breiman, 1996; Amit and Geman, 1997; Dietterich, 2000; 

Breiman, 2000) led to the introduction of random forests (Breiman, 2001), a state-of-the-art 

machine learning tool. A Random forest is essentially an ensemble unpruned classification 

and regression tree model (CART, Breiman et al. (1984)) with random feature selection. 

Many versions of random forests have been proposed since, such as perfect random forests 

by Cutler and Zhao (2001), which have exactly one observation in each terminal node; 

extremely randomized trees (ET) by Geurts et al. (2006), which use random cut points rather 

than searching for the best cut point; and Bayesian additive regression trees (BART) by 

Chipman et al. (2010), which integrate tree-based methods into a Bayesian framework. 

Ishwaran et al. (2008) and Zhu and Kosorok (2012) further extend random forests to right 

censored survival data.

The asymptotic behavior of random forests has also drawn significant interest. Lin and Jeon 

(2006) established the connection between random forests and nearest neighborhood 

estimation. Biau et al. (2008) proved consistency for a variety of types of random forests, 

including purely random forests (PRF). However, they also provide an example which 

demonstrates inconsistency of trees under certain greedy construction rules. One important 

fact to point out is that consistency and convergence rates for random forests (including but 

not limited to the original version proposed by Breiman (2001)) rely heavily on the 

particular implemented splitting rule. For example, purely random forests, where splitting 

rules are random and independent from training samples, provide a much more friendly 

framework for analysis. However, such a model is extremely inefficient because most of the 

splits are likely to select noise variables, especially when the underlying model is sparse. Up 

to now, there appears to be no tree-based method possessing both established theoretical 

validity and excellent practical performance.

As the most popular tree-based method, random forests (Breiman, 2001) shows great 

potential in cancer studies (Lunetta et al., 2004; Bureau et al., 2005; Díaz-Uriarte and De 

Andres, 2006) where a large number of variables (genes or SNPs) are present and complex 

genetic diseases may not be captured by parametric models. However, some studies also 

show unsatisfactory performance of random forests (Statnikov et al., 2008) compared to 

other machine learning tools. One of the drawbacks of random forests in the large p small n 

problem is caused by random feature selection, which is the most important “random” 

component of random forests and the driving force behind the improvement from a bagging 

predictor (Breiman, 1996). Consider the aforementioned high-dimensional sparse setting, 

where we have p variables, among which there are p1 ≪ p strong variables that carry the 

signal and p2 = p − p1 noise variables. Using only a small number of randomly sampled 

features would provide little opportunity to consider a strong variable as the splitting rule 

and would also lead to bias in the variable importance measures (Strobl et al., 2007), while 

using a large number of predictors causes overfitting towards terminal nodes where the 

sample size is small and prevents the effect of strong variables from being fully explored.
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Due to these reasons, a solution is much needed to improve the performance of random 

forests in high-dimensional sparse settings. Intuitively, in a high-dimensional setup, a tree-

based model with good performance should split only on the p1 strong variables, where p1 

follows our previous notation. Biau (2012) establishes consistency of a special type of 

purely random forest model where strong variables have a larger probability of selection as a 

splitting variable. This model essentially forces all or most splits to concentrate on only the 

strong variables. Biau (2012) also shows that if this probability can be properly chosen, the 

convergence rate of the model should only depend on p1. However, behind this celebrated 

result, two key components require careful further investigation. First, the probability of 

using a strong variable to split at an internal node depends on the within-node data (or an 

independent set of within-node samples as suggested in Biau (2012)). With rapidly reducing 

sample sizes toward terminal nodes, this probability, even with an independent set of 

samples, is unlikely to behave well for the entire tree. This fact can be seen in one of the 

simulation studies in Biau (2012) where the sample size is small (less than 25): the 

probability of using a strong variable as the splitting rule can be very low. Second, the 

marginal comparisons of splitting variables, especially in high-dimensional settings, can 

potentially fail to identify strong variables. For example, the checker-board structure in Kim 

and Loh (2001) and Biau et al. (2008) is a model having little or no marginal effect but 

having a strong joint effect.

In this paper, we introduce a new strategy—reinforcement learning—into the tree-based 

model framework. For a comprehensive review of reinforcement learning within the 

artificial intelligence field in computer science and statistical learning, we refer to Sutton 

and Barto (1998). An important characteristic of reinforcement learning is the “lookahead” 

notion which benefits the long-term performance rather than short-term performance. The 

main features we will employ in the proposed method are: first, to choose variable(s) for 

each split which will bring the largest return from future branching splits rather than only 

focusing on the immediate consequences of the split via marginal effects. Such a splitting 

mechanism can break any hidden structure and avoid inconsistency by forcing splits on 

strong variables even if they do not show any marginal effect; second, progressively muting 

noise variables as we go deeper down a tree so that even as the sample size decreases rapidly 

towards a terminal node, the strong variable(s) can still be properly identified from the 

reduced space; third, the proposed method enables linear combination splitting rules at very 

little extra computational cost. The linear combination split constructed from the strong 

variables gains efficiency when there is a local linear structure and helps preserve 

randomness under this somewhat greedy approach to splitting variable selection.

One consequence of the new approach, which we call reinforcement learning trees (RLT), is 

that it forces the splits to concentrate only on the p1 strong variables at the early stage of the 

tree construction while also reducing the number of candidate variables gradually towards 

terminal nodes. This results in a more sparse tree structure (see Section 5 for further 

discussion of this property) in the sense that the splitting rule search process focuses on a 

much smaller set of variables than a traditional tree-based model, especially towards 

terminal nodes. We shall show that, under certain assumptions, the convergence rate of the 

proposed method does not depend on p, but instead, it depends on the size of a much smaller 
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set of variables that contains all the p1 strong variables. This is a valuable result in its own 

right, especially in contrast to alternative greedy tree construction approaches whose 

statistical properties are largely unknown.

The paper is organized as follows. Section 2 gives details of the methodology for the 

proposed approach. Theoretical results and accompanying interpretations are given in 

Section 3. Details of the proofs will be deferred to the appendix. In Sections 4 we compare 

RLT with popular statistical learning tools using simulation studies and real data examples. 

Section 5 contains some discussion and rationale for both the method and its asymptotic 

behavior.

2. PROPOSED METHOD

2.1 Statistical model

We consider a regression or classification problem from which we observe a sample of i.i.d. 

training observations  = {(X1, Y1), (X2, Y2), …, (Xn, Yn)}, where each 

 denotes a set of p variables from a feature space . For the 

regression problem, Y is a real valued outcome with E(Y2) < ∞; and for the classification 

problem, Y is a binary outcome that takes values of 0 or 1. To facilitate later arguments, we 

use  to denote the set {1, 2, …, p}. We also assume that the expected value E(Y|X) is 

completely determined by a set of p1 < p variables. As discussed in the previous section, we 

refer to these p1 variable as “strong variables”, and refer to the remaining p2 = p − p1 

variables as “noise variables”. For the sake of organizing the discussion, we assume without 

loss of generality, that the strong variables are the first p1 variables, which means E(Y|X) = 

E(Y|X(1), X(2), …, X(p1)). The goal is to consistently estimate the function f(x) = E(Y|X = x) 

and derive asymptotic properties for the estimator.

2.2 Motivation

In short, the proposed reinforcement learning trees (RLT) model is a traditional random 

forests model with a special type of splitting variable selection and noise variable muting. 

These features are made available by implementing a reinforcement learning mechanism at 

each internal node. Let us first consider a checkerboard example which demonstrates the 

impact of reinforcement learning: Assume that X ~ uni f[0, 1]p, and E(Y|X) = 

I{I(X(1)0.5)=I(X(2)>0.5)}, so that p1 = 2 and p2 = p−2. The difficulty in estimating this structure 

with conventional random forests is that neither of the two strong variables show marginal 

effects. The immediate reward, i.e. reduction in prediction errors, from splitting on these two 

variables is asymptotically identical to the reward obtained by splitting on any of the noise 

variables. Hence, when p is relatively large, it unlikely that either X(1) or X(2) would be 

chosen as the splitting variable. However, if we know in advance that splitting on either X(1) 

or X(2) would yield significant rewards down the road for later splits, we could confidently 

force a split on either variable regardless of the immediate rewards.

To identify the most important variable at any internal node, we fit a pilot model (which is 

embedded at each internal node, and thus will be called an embedded model throughout the 

paper) and evaluate the potential contribution of each variable. Then we proceed to split the 
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node using the identified most important variable(s). When doing this recursively for each 

daughter node, we can focus the splits on the variables which will very likely lead to a tree 

yielding the smallest prediction error in the long run. The concept of this “embedded model” 

can be broad enough so that any model fitted to the internal node data can be called an 

embedded model. Even the marginal search, although with poor performance in the above 

example, can be viewed as an over-simplified embedded model. However, it is of interest to 

use a flexible, yet fast embedded model so that the evaluation of each variable is accurate.

Two problems arise when we greedily select the splitting variable. First, since the sample 

size shrinks as we move towards a terminal node, it becomes increasingly difficult to 

identify the important variables regardless of what embedded model we are using. Second, 

the extreme concentration on the strong variables could lead to highly correlated trees even 

when bootstrapping is employed. Hence we propose a variable muting procedure to counter 

the first drawback and use linear combination splits to introduce extra randomness. Details 

and rationale for these two procedures will be given in their corresponding sections below.

In the following sections, we first give a higher level algorithm outlining the main features 

of the RLT method (Section 2.3) and then specify the definition of each component: the 

embedded model (Section 2.4), variable importance (Sections 2.5), variable muting (Section 

2.6), and linear combination split (Section 2.7).

2.3 Reinforcement learning trees

RLT construction follows the general framework for an ensemble of binary trees. The key 

ingredient of RLT is the selection of splitting variables (using the embedded model), 

eliminating noise variables (variable muting) and constructing daughter nodes (using, for 

example, a linear combination split). Table 1 summarizes the RLT algorithm. The definition 

of the variable importance measure  is given in Section 2.5, and the definition of the 

muted set  is given in Section 2.6.

2.4 Embedded model

At an internal node A, an embedded model  is a model fitted to the internal node data DA 

= {(Xi, Yi) : Xi ∈ A}. The embedded model provides information on the variable importance 

measures  for each variable j so that the split variable can be chosen. At the root 

node, where the set of muted variables , all variables in the set  = {1, 2, …, p} are 

considered in the embedded model. However, as we move further down the tree, some 

variables will be muted so that , and then the embedded model will be fit using only 

the non-muted variables, i.e., the variables { }.

In practice, we use a slight modification of extremely randomized trees (Geurts et al. (2006)) 

as the embedded model by fitting each tree with a bootstrapped sample. Extremely 

randomized trees can achieve a similar performance to random forests at a reduced 

computational cost due to the random splitting value generation. Noting that the embedded 

model will be called many times during an RLT fitting, a fast approach has a great 
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advantage. However, any other learning method can be an alternative, such as random 

forests or purely random forests.

2.5 Variable importance

Since the purpose of fitting the embedded random forests is to determine the most important 

variable, we need to properly define a variable importance measure VIA(j) for each variable j 

∈  at an internal node A and use the embedded model to calculate the estimate . 

The variable importance defined in Breiman (2001) seems to be a natural choice here since 

we use a tree-based method as the embedded model. We give the formal definition of the 

variable importance measure in the following. In Section 3 and in the Appendix, we will 

carefully investigate the properties of VIA and the asymptotic properties of its estimate .

Definition 2.1—At any internal node A, denoting X̃(j) as an independent copy generated 

from the marginal distribution of X(j) within A, the variable importance of the j-th variable 

within A, namely VIA(j), is defined by:

where E[·|A] is a conditional expectation defined by E[g(Y, X)|A] = E[g(Y, X)|I(X ∈ A)], for 

any function g.

Following the procedure in Breiman (2001) to calculate  for each fitted embedded 

tree, we randomly permute the values of variable j in the out-of-bag data (the within-node 

observations which are not sampled by bootstrapping when fitting the embedded tree model) 

to mimic the independent and identical copy X̃(j), drop these permuted observations down 

the fitted tree, and then calculate the resulting mean squared error (MSE) increase. 

Intuitively, when j is a strong variable, randomly permuting the values of X(j) will result in a 

large , while randomly permuting the values of a noise variable should result in little 

or no increase in MSE, so  should be small. Hence  calculated from the 

embedded model can identify the variable with greatest need-to-be-split in the sense that it 

explains the most variation in the outcome variable Y in the current node (see Section 3). 

Also note that any strong variable j should have nonzero VI regardless of its marginal effect 

as long as f changes, as a function of the remaining p−1 arguments on some nonzero 

subspace, over its jth argument. For example, consider the checkerboard example we 

provided in Section 2.2. The VI for both strong variables are 2/3 although there is no 

marginal effect. Another important property that we observe is that for all the variables in 

the muted set , which will be introduced in the next section, since they are not involved 

in the embedded model , randomly permuting their values will not increase MSE. Hence, 

for , we must have . Table 2 gives details on how to assess the variable 

importance measure based on the embedded extremely randomized trees estimator .
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Remark 2.2—In practice, the embedded model is estimated using a small number of 

observations (within node data), which may give an inaccurate model fitting. However, the 

prediction accuracy of an embedded model is not the major concern here since we only need 

the ranks of variable importance measures to be reliable, i.e., variables with large VI are 

ranked at the top by the embedded model. Moreover, as the within node sample size gets 

even smaller when approaching terminal nodes, the variable muting procedure we introduce 

below helps to constrain the splits within the set of strong variables.

2.6 Variable muting

As we discussed previously, with sample size reducing rapidly towards a terminal node 

during the tree construction, searching for a strong variable becomes increasingly difficult. 

The lack of signal from strong variables (since they are mostly explained by previous splits) 

can eventually cause the splitting variable selection to behave completely randomly, and 

then the constructed model is similar to purely random forests. Hence, the muting procedure 

we introduce here is to prevent some noise variables from being considered as the splitting 

variable. We call this set of variables the muted set. At each given internal node, we force pd 

variables into the muted set, and we remove them from consideration as splitting variable at 

any branch of the given internal node. On the other hand, to prevent strong variables from 

being removed from the model, we have a set of variables that we always keep in the model, 

which we call the protected set. When a variable is used as a splitting rule, it is included in 

the protected set, hence will be considered in all subsequent nodes. We also set a minimal 

number p0 of variables beyond which we won’t remove any further variables from 

consideration at any node. Note that both the muted set and protected set will be updated for 

each daughter nodes after a split is done. We first take a look at the muting procedure at the 

root node, then generalize the procedure to any internal node.

At the root node: Assume that after selecting the splitting variable at the root node A, the 

two resulting daughter nodes are AL and AR. Then we sort the variable importance measures 

 calculated from the embedded model  and find the pd-th smallest value within the 

variable set  denoted by  and the p0-th largest value denoted by . Then we 

define:

•
The muted set for the two daughter nodes: , i.e. 

the set of variables with the smallest pd variable importance measures.

•
The protected set , i.e., the set of variables 

with largest p0 variable importance measures. Note that the variables in the 

protected set will not be muted in any of the subsequent internal nodes.

At internal nodes: After the muted set and protected set have been initialized at the root 

split, we update the two sets in subsequent splits. Suppose at an internal node A, the muted 

set is , the protected set is  and the two daughter nodes are AL and AR. We first update 

the protected set for the two daughter nodes by adding the splitting variable(s) into the set:
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Note that when a single variable split is used, the splitting variable is simply 

, and when a linear combination split is used, multiple variables could be 

involved.

To update the muted set, after sorting the variable importance measures , we find the 

pd-th smallest value within the restricted variable set , which value is denoted 

. Then we define the muted set for the two daughter nodes as

Remark 2.3—The muting rate pd is an important tuning parameter in RLT, as it controls 

the “sparsity” towards terminal nodes. pd dose not need to be a fixed number. It can vary 

depending on , which is the number of nonmuted variables at each internal node. In 

Section 4 we will evaluate different choices for pd such as 0 (no muting), 

(moderate muting, which is suitable for most situations), and  (very 

aggressive muting). Moreover, in practice, pd can be adjusted according to the sample size n 

and dimension p. In our R package “RLT”, several ad-hoc choice of pd are available.

Remark 2.4—The splitting rules at the top levels of a tree are all constructed using the 

strong variables, hence these variables will be protected. This property will be demonstrated 

in the theoretical result. Ideally, after a finite number of splits, all strong variables are 

protected, all noise variables are muted, and the remaining splits should concentrate on the 

strong variables. But this may not be the case asymptotically when extremely complicated 

interactions are involved. Hence choosing a proper p0 ≥ p1 to cover all strong variables at 

early splits is theoretically meaningful. However, in practice, tuning p0 is unnecessary. We 

found that even setting p0 = 0 achieves good performance when the model is sparse.

2.7 Splitting a node

We introduce a linear combination split in this section. Note that when only one variable is 

involved, a linear combination splitting rule reduces to the traditional split used in other tree-

based methods. Using a linear combination of several variables to construct a splitting rule 

was considered in Breiman (2001) and Lin and Jeon (2006). However, exhaustively 

searching for a good linear combination of variables is computationally intensive especially 

under the high-dimensional sparse setting, hence the idea never achieved much popularity.

The proposed embedded model and variable importance measure at each internal node 

provides a convenient formulation for a linear combination split. By using variables with 
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large , the splitting rule is likely to involve strong variables. However, we do not 

exhaustively search for the loadings in the combination. This introduces an extra level of 

randomness within the set of strong variables duo to the complex neighborhood structure of 

each target point (see Lin and Jeon (2006) regarding the potential neighborhood). In our 

proposed procedure, two parameters are used to control the complexity of a linear 

combination split:

• k: The maximum number of variables considered in the linear combination. Note 

that when k = 1, this simplifies to the usual one variable split.

• α: The minimal variable importance, taking values in (0, 1), of each variable in this 

linear combination in terms of the percentage of maximum  at the current node. 

For example, if α = 0.5 and  at the current node, then any variable 

with  less than 0.5 will not be considered for the linear combination.

We first create a linear combination of the form Xβ̂ > 0, where β̂ is a coefficient vector with 

dimension p × 1. Then we project each observation onto this axis to provide a scalar ranking 

for splitting. Define β̂
j(A) for each j ∈ {1, …p} at node A as follows:

where  is Pearson’s correlation coefficient between X(j) and Y within node A,  is 

the kth largest variable importance estimate at node A. The components in the above 

definition ensure that the variables involve in the linear combination are the top k variables 

with positive importance measure, and are above the α threshold in terms of the maximum 

variable importance at the current node.

We then calculate Xiβ̂(A) for each observation Xi in the current node. This is precisely the 

scalar projection of each observation onto the vector β̂(A). The splitting point can be 

generated by searching for the best (as in random forests) or by comparing multiple random 

splits (as in extremely randomized trees). Biau et al. (2008) showed that an exhaustive 

search for the splitting point could cause inconsistency of a tree-based model, hence we 

generate one or multiple random splitting points (1 is the default number) and choose the 

best among them. Moreover, the splitting points are generated from quantiles of the 

observed samples to avoid redundant splits.

Remark 2.5—The construction of a linear combination requires specification of both k and 

α. We consider k as the decisive tuning parameter, while α is used to prevent extra noise 

variables from entering the linear combination when k is set too large. However, when α is 

set to its extreme value 1, it is essentially setting k = 1. In our simulation studies, we found 

that α only affects large k values, and setting α = 0.25 achieves good performance.
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3. THEORETICAL RESULTS

In this section, we develop large sample theory for the proposed RLT model. We show that 

under basic assumptions, the proposed RLT is consistent, with convergence rate depending 

only on the number of strong variables, p1, if the tuning parameters are optimally chosen. 

We only focus on a simplified version of RLT with a single variable split (RLT1) and a 

fixed muting number parameter pd in the regression setting. Moreover, we assume that the 

number of variables p is fixed with p1 strong variables, and the number p0 of protected 

variables is chosen to be larger than p1. We assume, for technical convenience, that the 

covariates X are generated uniformly from the feature space  = [0, 1]p, which was also 

used in Lin and Jeon (2006) and Biau (2012). Although the independence assumption seems 

restrictive, the consequent theoretical results serve as a starting point for understanding the 

“greedy” tree method, whose theoretical results are largely unknown. A possible approach to 

address correlated variables is discussed in Section 5. Note that under the uniform 

distribution assumption, any internal node can now be viewed as a hypercube in the feature 

space , i.e., any internal node A ⊆ [0, 1]p has the form

(1)

Throughout the rest of this paper, we will use the terms “internal node” and “hypercube” 

inter-changeably provided that the context is clear.

The main results are Theorem 3.6 which bounds below the probability of using strong 

variables as the splitting rule, and Theorem 3.7 which establishes consistency and derives an 

error bound for RLT1. Several key assumptions are given below for the underlying true 

function f and the embedded model.

Assumption 3.1—There exist a set of strong variables  = (1, …, p1) such that f(X) = E[Y 

|X] = E[Y |X(j), j ∈ ] and  for j ∈ . The set of noise variables is 

then  = (p1 + 1, …, p). The true function f is Lipschitz continuous with Lipschitz constant 

cf.

The assumption  for j ∈  guarantees that with probability 1, a 

target point {(X(1), …,X(p))} is a point where all strong variables carry a signal. It is satisfied 

for most parametric models, such as linear, additive, single index and multiple index models, 

hence is not restrictive. Since our embedded model only fits the “local” (within node) data, 

this assumption is needed to correctly identify the strong variables at an internal node. 

Further, we need to precisely define how “strong” a strong variable is. Definition 2.1 of the 

variable importance measure suggests that V IA(j) relies on the true underlying function f 

restricted to a hypercube A. To avoid explicitly defining the true function f, we give the 

following lower bound on the variable importance, followed by a remark that makes the 

connection between this definition and the true functional form of f.
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Assumption 3.2—Let hypercube A be defined in the form of Equation (1). If for any 

strong variable j, the interval length of all other strong variables at A is at least δ, i.e., 

, then there exist positive valued monotone functions ψ1(·) and 

ψ2(·), such that the variable importance of this strong variable j can be bounded below by

(2)

where V IA(j) is as defined in Definition 2.1.

Remark 3.3—This assumption can be understood in the following way. It basically 

requires that the surface of f cannot be extremely flat, which helps to guarantee that at any 

internal node A with nonzero measure, a strong variable can be identified. However, this 

does not require a lower bound on |∂f/∂X(j)|, which is a much stronger assumption. Further, 

the two functions ψ1(·) and ψ2(·) help separate (locally at A) the effects of variable j and all 

other strong variables. We make two observations here to show that if f is a polynomial 

function, the condition is satisfied: (1) If f is a linear function, then the variable importance 

of j is independent of the interval length (or value) of other strong variables. Then ψ1(δ) ≡ 

σ2 and  satisfy the criteria, where σ2 is the variance of the random 

error (see Assumption 3.5). (2) When f is a polynomial function with interactions up to a 

power of k ≥ 2, the variable importance of j is entangled with the within node value of other 

strong variables. However, for small values of δ and bj − aj (or equivalently, for a small 

hypercube A),  and  satisfy the criteria.

Another assumption is on the embedded model. Although we use extremely randomized 

trees as the embedded model in practice, we do not rule out the possibility of using other 

kinds of embedded models. Hence we make the following assumption for the embedded 

model, which is at least satisfied for purely random forests:

Assumption 3.4—The embedded model f̂* fitted at any internal node A with internal 

sample size nA is uniformly consistent with an error bound: there exists a fixed constant 0 < 

K < ∞ such that for any δ > 0, , where 0 < η(p) ≤ 1 is a 

function of the dimension p, and the conditional probability on A means that the expectation 

is taken within the internal node A. Note that it is reasonable to assume that η(p) is a non-

increasing function of p since larger dimensions should result in poorer fitting. Furthermore, 

the embedded model f ̂* lies in a class of functions  with finite entropy integral under the 

L2(P) norm (van der Vaart and Wellner, 1996).

Finally, we assume the moment condition on the random error terms εi.

Assumption 3.5—With f(X) being the true underlying function, the observed values are Yi 

= f(Xi) + εi, where εis are i.i.d. with mean 0 and variance σ2. Moreover, the following 

Bernstein condition on the moments of ε is satisfied:
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(3)

for some constant 1 ≤ K < ∞.

Now we present two key results, Theorem 3.6 and Theorem 3.7, followed by a sketch of the 

proof for each. Details of the proofs are given in the Appendix and the supplementary file. 

Theorem 3.6 analyzes the asymptotic behavior of the variable importance measure and 

establishes the probability for selecting the true strong variables and muting the noise 

variables. Theorem 3.7 bounds the total variation by the variable importance measures at 

each terminal node and shows consistency and an error bound for RLT1. For simplicity, we 

only consider the case where one RLT1 tree is fitted to the entire dataset, i.e, M = 1 and the 

bootstrap ratio is 100%. For the embedded model, we fit only one tree using half of the 

within node data and calculate the variable importance using the other half. To ensure the 

minimum node sample size, the splitting point c is chosen uniformly between the q-th and (1 

− q)-th quintile with respect to the internal node interval length of each variable, where q ∈ 

(0, 0.5]. The smaller q is, the more diversity it induces. When q = 0.5, this degenerates into a 

model where each internal node is always split into two equally sized daughter nodes.

Theorem 3.6—For any internal node A ∈  with sample size nA, where  is the set of all 

internal nodes in the constructed RLT, define ĵA to be the selected splitting variable at A and 

let pA denote the number of non-muted variables at A. Then, under Assumptions 3.1, 3.2, 

3.4, and 3.5, we have,

a.

, i.e., with probability close to 1, we always select a strong variable as the splitting 

variable.

b.
, i.e., for any 

internal node in the constructed RLT model, the true variable importance measure 

for the selected splitting variable is at least half of the true maximum variable 

importance with probability close to 1.

c.
The protected set  contains all strong variables, i.e., 

.

Note that in the above three results, ψ1(·), ψ2(·), and the constants Ck and Kk, k = 1,…, 3, do 

not depend on pA or the particular choice of A.

The proof of Theorem 3.6 is provided in the supplementary file. There are three major 

components involved in the probabilities of Theorem 3.6: node sample size nA; local signal 

strength ; and local embedded model error rate . The proof is in fact 

very intuitive. We first show the consistency and convergence rate of the variable 

importance measure , which is related to the local embedded model error rate. Then 
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with the lower bound on the true local variable importance (Assumption 3.2), we establish 

result (a), the probability of choosing a strong variable as the splitting rule. Result (b) 

follows via the same logic by looking at the the variable importance of the chosen splitting 

variable. Result (c) utilizes the facts that the variable importance measure of a strong 

variable is larger than that of a noise variable and that we choose p0 larger than p1.

The probabilities in Theorem 3.6 rely on the fact that the node sample size nA is large 

enough to make . As we discussed earlier in Remark 3.3, the 

functions ψ1(·) and ψ2(·) can be chosen as power functions when f is a polynomial. Hence, 

for any specific function f and embedded model, we precisely know ψ1(·), ψ2(·), and η(·). 

We can then separate all the internal nodes in a fitted RLT tree into three groups with 

different levels of sample sizes by defining nγ*
 and nγ in the following, and analyze the 

different groups separately:

• Set : Internal nodes with sample size larger than nγ*
, where γ* ∈ (0, 1) is chosen 

such that ψ1(nγ*−1) · ψ2(nγ*−1) · nγ*η(p) → ∞.

• Set : Internal nodes with sample size smaller than nγ*
, but larger than nγ, where γ 

∈ (0, 1) is chosen such that ψ1(nγ−1) · ψ2(nγ−1) · nγη(p0) → ∞. Note the change 

from η(p) to η(p0) and the fact that γ is supposed to be smaller than γ*.

• Set : Internal nodes with sample size smaller than nγ.

We shall show in Theorem 3.7 that during the tree splits of , the noise variables are muted 

and the remaining protected p0 variables contain all the strong variables. During the tree 

splits of  ∪ , all the splitting variables are within the set of strong variables. The proof 

does not depend on the particular function f or embedded model. The set  is then less 

interesting since the sample size is too small and the remaining splits (up through the 

terminal nodes) are likely to behave like random choices. However, we know that there are 

only p0 variables for any node in , and these p0 variables contain all the strong variables. 

To facilitate our argument here, we use a toy example (provided in the Appendix) to 

demonstrate the probability of selecting a strong variable as the splitting rule under different 

n, p, and levels of model complexity. This again confirms that splits at the top levels of a 

tree have larger impact.

To better understand the proposed RLT method, we focus on the set  ∪  in Theorem 3.7, 

where the reinforcement learning is having the greatest effect, and show a convergence 

result for this setting. Note that this part of the fitted tree has node sample size larger than nγ, 

thus forcing the minimal node sample size to be nγ. However, nγ is by no means a tuning 

parameter, and a tree should continue to split until the pre-defined nmin is reached. We will 

discuss the behavior of the set  after the theorem.

Theorem 3.7—Under Assumptions 3.1, 3.2, 3.4, and 3.5, with probability close to 1,
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where r is a constant such that r > 1 and 2(1 − q)2r/q2 ≤ 1, γ defines the minimum node 

sample size nγ, q is the lower quintile to generate a random splitting point, and p1 is the 

number of strong variables.

At first glance, the rate seems slow, however, this is to compensate for the fact that we do 

not want to make strong assumptions on the functional form of f. The rate is essentially the 

convergence rate of the worst node of the entire tree (if using nmin = nγ), where some strong 

variables receive few splits. Since we allow arbitrary interactions in f, the signal in the worst 

node can be extremely weak. Apparently, with stronger assumptions on f, the rate can be 

greatly improved. However, the key point here is that the convergence rate does not depend 

on the original number of variables p since all the splits (in  ∈ ) are constructed using 

strong variables. We also note that the rate does not depend on the number of protected 

variables p0 for the same reason. Unfortunately, this second statement is not true if we 

consider the entire fitted tree, which further splits the nodes in  into smaller hypercubes 

that belong to . For the scope of this paper, we do not investigate further the asymptotic 

behavior of , which leads to the true convergence rate. This is because the nodes in  will 

not be affected by reinforcement learning and the splits are more likely to behave like 

random choices. However, we want to make a couple of observations here to further justify 

the superior performance of RLT:

• The convergence rate of RLT depends at worst on the number p0. If nmin = nγ, then 

Theorem 3.7 gives the convergence rate of RLT1, which only depends on p1. 

However, in practice, nmin should be a much smaller number, which leads to further 

splits among the remaining p0 variables.

• Without variable muting, convergence of a tree-based model should depend on p 

for small values of nmin. We can view the traditional marginal search in a tree-

based model (such as random forests) as a simplified version of reinforcement 

learning which only evaluates the marginal variable importance. In that case, there 

still exists a threshold of node sample size such that for smaller nodes, the splitting 

rule behaves like a random choice. Although choosing a large nmin could limit this 

effect, variable muting, on the other hand, provides a convenient way to control the 

splits near terminal nodes.

4. NUMERICAL STUDIES

4.1 Competing methods and parameter settings

We compare our method with several major competitors, including the linear model with 

lasso, as implemented in the R package “glmnet” (Friedman et al. 2008); random forests 

(Breiman 2001), as implemented in the R package “randomforest”; gradient Boosting 

(Friedman 2001), as implemented in the R package “gbm”; Bayesian Additive Regression 

Trees (Chipman et al. 2008), as implemented in the R package “BayesTree”; Extremely 

randomized trees (Geurts et al. 2006), as implemented in the R package “extraTrees”. The 

proposed method is implemented using the R package “RLT” which is currently available at 

the first author’s personal webpage. We also include two interesting versions of random 

forests (RF-log(p) and ), and a naive version of the RLT method (RLT-naive). 

These three methods implement a simplified variable muting mechanism in a certain way. 
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The two random forests adaptations, as their names suggest, first fit the RF model, select a 

set of log(p) (or ) most important variables, and then refit using only these variables. The 

RLT-naive method compares marginal signals for all variables at each split based on 

variance/misclassification reduction of multiple random splitting points. Then variables with 

low marginal signals, as opposed to global signals in RLT, are muted.

The details for all tuning parameter settings are given in the following Table 3. Noting that 

machine learning tools are always sensitive to tuning parameters, for all competing methods, 

we report the prediction error of the best tuning in each setting. For the proposed RLT 

model, we report the average test error for each of the 9 tunings. Note that this will benefit 

the competing methods and can only be done in a simulation study where the true model 

generator is known. However, by doing this, we eliminate as much as possible the impact of 

tuning for the competing methods. The reported prediction errors for competing methods 

thus fairly represents the best possible performance for them.

Remark 4.1—The purpose of reporting the test error for all RLT tunings is to compare and 

analyze the effect of the three different components: splitting variable selection, linear 

combination splitting and variable muting. Hence only the parameters involved in these 

components are tuned in our simulation study. Some other key parameters such as ntrees 

and nmin are not tuned for RLT in this simulation study since they are common to all tree-

based methods. These parameters are irrelevant to the proposed new mechanism, and we 

want to eliminate their impact on our comparisons within RLT. In practice, we recommend 

that these parameters are always tuned as is done for other treebased methods.

4.2 Simulation scenarios

We create four simulation scenarios that represent different aspects which usually arise in 

machine learning. Such aspects include, training sample size, correlation between variables, 

and non-linear structure. For each scenario, we further consider three settings of the 

dimension p = 200, 500, 1000. We generate 1000 independent test samples to calculate the 

prediction mean squared error (MSE) or misclassification error. Each simulation is repeated 

200 times, and the averaged prediction error (mean squared error or classification error) is 

presented in the way that we described previously. The simulation settings are as follows: 

Scenario 1: Classification with independent covariances. N = 100, . Let 

, where Φ denotes a normal c.d.f. Draw Yi 

independently from Bernoulli(μi). Scenario 2: Non-linear model with independent 

covariances. N = 100, . , where (·)+ 

represents the positive part. Scenario 3: Checkerboard-like model with Strong 

correlation. N = 300, , where Σi,j = 0.9|i−j|. 

. Scenario 4: Linear model. N = 200, 

. We set Σi,j = 0.5|i−j| + 0.2 · I(i≠j), and 

. For Scenario 2 – 4, we assume that εi are i.i.d. N(0, 1).
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4.3 Simulation results

Tables 4, 5, and 6 summarize testing sample prediction error and corresponding standard 

error for each simulation setting. The best RLT method and competing method are bolded, 

with the best overall method underlined. There is clear evidence that the proposed RLT 

model outperforms existing methods under these settings. The proposed splitting variable 

selection, linear combination split, and variable muting procedure all work individually and 

also work in combination. In general, the results show preference towards RLT methods 

with aggressive muting and linear combination splits using 2 variables. Although the method 

falls behind the Lasso under the linear model setting (scenarios 4), which is expected, it 

outperforms all tree-based methods. RLT shows greater advantages for capturing the non-

linear effects in scenarios 1, 2 and 3. In these scenarios across all different settings of p, the 

best RLT method reduces the prediction error by 31.9% – 41.5%, 23.7% – 36.4% and 16.7% 

– 28.8%, respectively, from the best competing method. To further understand each of the 

three components in RLT, we analyze them separately.

Variable muting is the most effective component of RLT and this can be seen by comparing 

different muting rates of RLT. Across all scenarios and settings, aggressive muting versions 

of RLT outperform non-muting versions if not combined with linear combination. When we 

restrict the comparison between no muting and aggressive muting within RLT1, the 

improvement ranges from 10.3% to 31.8% when p = 200, ranges from 11.8% to 31.4% 

when p = 500, and ranges from 7.8% to 33.8% when p = 1000. Comparing the three random 

forest methods also reflects the benefits of limiting the splits to the strong variables. 

However, both  and RF-log(p) can be a “hit-or-miss” approach, especially when 

there are strong correlations between covariates (this is observed in scenario 3 where RF-

log(p) performs worse than  and has large standard error). RLT, on the other hand, 

achieves a similar purpose in a robust way by adaptively choosing the protected variables 

for different nodes and different trees.

The embedded model is the foundation for our splitting variable selection, variable muting, 

and linear combination split. We first look at the solo effect of using the embedded model to 

select the splitting variable. This can be seem by comparing non-muting RLT1 with RF and 

ET, where the prediction error is reduced by up to 50.1% (vs. RF in Scenario 2) and 34.2% 

(vs. ET in Scenario 3) when p = 200. However, this solo effect reduces slightly as p 

increases. This is because the embedded model (a random forest model) becomes less 

accurate and the variable importance measure less trustworthy, especially when approaching 

the terminal nodes. Hence the embedded model works best when equipped with the variable 

muting mechanism, which can be seen by comparing aggressive RLT1 with RLT-naive, 

which is a model with variable muting, but not the embedded model. The performance 

difference of these two demonstrates the benefit of searching for global effects (RLT) and 

marginal effects (RLT-naive), while both perform variable muting. The improvement ranges 

from 29.6% to 45.9% for p = 200, ranges from 29.6% to 43.2% for p = 500, and ranges from 

20.8% to 40.1% for p = 1000.

The improvement obtained from linear combination splits is also profound, especially in 

linear models (scenario 4). When the underlying model is linear, utilizing linear combination 
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splits can yield huge improvements over RLT1 regardless of whether muting is 

implemented. The MSE reduction obtained by going from RLT1 to RLT5 is at least 33.3% 

under no muting and at least 43.2% under aggressive muting. The reason is that under such a 

structure, linear combination splits cut the feature space more efficiently. These results also 

demonstrate the effect of variable muting. However, this may not always be beneficial when 

the linear combination is not concentrated on strong variables. One cause of this is the lack 

of muting. Small sample size and a weak signal near terminal nodes create extra noise in the 

linear combination if a large number of variables need to be considered in the embedded 

model. The non-muting version of RLT in scenarios 1 and 2 are typical examples of this. 

However, as we mentioned before, the linear combination split also creates a more complex 

neighborhood structure within the set of strong variables when muting is implemented. 

Hence, RLT2 with aggressive muting can be considered the overall best method regardless 

of the presence of linear structure.

Our separate analysis of α in the Appendix shows that large linear combinations are likely to 

be affected by this tuning parameter, especially RLT5. This is because many of the noise 

variables are forced to enter the linear combination (such as in Scenarios 1 and 2) and to be 

protected. However, for RLT2, the performance is very stable, with or without muting. Also 

note that α does not affect RLT1 in any circumstances. In general, it is reasonable to use α = 

0.25 as the default choice (implemented in the “RLT” package). And we shall use this value 

in the data analysis section.

4.4 Data analysis example

We analyze 10 datasets (Boston housing, parkinson, sonar, white wine, red wine, parkinson-

Oxford, ozone, concrete, breast cancer, and auto MPG) from the UC Irvine Machine 

Learning Repository (http://archive.ics.uci.edu/ml/), a complete list of all datasets and their 

background information is provided in the Appendix. These datasets represent a wide range 

of research questions with the major purpose of either classification or regression with a 

single outcome variable. In this data analysis, we want to evaluate the performance of all 

previously mentioned methods and provide an overall comparison.

For each dataset, we standardized all continuous variables to have mean 0 and variance 1. 

We then randomly sample 150 observations without replacement as the training data, and 

use the remaining observations as a testing sample to compute the misclassification rate or 

mean squared error. We also add an extra set of covariates to increase the total number of 

covariates p to 500. Each of these extra covariates is created by combining a randomly 

sampled original covariate and a randomly generated noise, with a signal-to-noise ratio 1 to 

2. Note that each of these extra covariates contain a small amount of signal hence they still 

preserve predictive values. We keep the same parameter settings as given in Table 3 for all 

competing methods. For RLT, considering the smaller sample size, the tuning parameter 

nmin is included with values 2 or n1/3.

To compare results across all datasets, we plot the relative prediction errors in Figure 4.4. 

The relative prediction errors are calculated by comparing the performances of each method 

(misclassification error or mean squared error) with the best performance within the analysis 

of each dataset, and the best performance is always scaled to 1. RLT performs the best in 7 
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Out of the 10 datasets. The two largest improvement of RLT can be seen in the concrete and 

parkinson-Oxford datasets, where the performance of the second best methods are 29% 

(BART) and 25% (RF-log(p)) worse respectively. For the three datasets where RLT does 

not perform the best (Boston housing, sonar, and breast cancer), it remains among the top 

three methods with relative performance 1.01, 1.13, and 1.07 respectively. Further details of 

the analysis results are provided in the Appendix.

4.5 Numerical study conclusion and computational cost

In this numerical study section, we compared the performance of the proposed RLT method 

with several popular learning tools. Under both simulated scenarios and some benchmark 

machine learning Datasets, the results favor RLT methods. There is a significant 

improvement over competing methods in most situations, however, the results vary some 

depending on the choice of tuning parameters. RLT methods with moderate to aggressive 

muting generally perform the best and most stably across different settings, and 

incorporating linear combination splits seems almost always beneficial.

The proposed RLT model requires significantly larger computational cost. In a worst case 

scenario, RLT will fit as many as n1−γ, 0 < γ < 1 embedded models if we require the 

terminal sample size to be at least nγ. Hence the speed of the embedded model is crucial to 

the overall computational cost of RLT. In our current R package “RLT”, the default setting 

for an embedded model is extremely randomized trees with 100 trees and 85% resampling 

rate (sampled from the within-node data). Parallel computing with openMP is implemented 

to further improve the performance. The average computation times for Scenario 1 under 

different settings of n and p are summarized in Table 7. For RF and BART, the default 

setting is used. All simulations are done on a 4 core (8 threads) i7-4770 CPU.

5. DISCUSSION

We proposed reinforcement learning trees in this paper. By fitting an embedded random 

forest model at each internal node, and calculating the variable importance measures, we can 

increase the chance of selecting the most important variables to cut and thus utilize the 

available training samples in an efficient way. This shares the same view as the “look-

ahead” procedures in the machine learning literature (Murthy and Salzberg, 1995). The 

variable muting procedure further concentrates the splits on the strong variables at deep 

nodes in the tree where the node sample size is small. The proposed linear combination 

splitting strategy extends the use of variable importance measures and creates splitting rules 

based on a linear combination of variables. However the linear combination is not 

exclusively searched (Murthy et al., 1994), hence no further computational burden is 

introduced. All of these procedures take advantage of Reinforcement Learning and yield 

significant improvement over existing methods especially when the dimension is high and 

the true model structure is sparse. There are several remaining issues we want to discuss in 

this section.

The number of trees M in RLT does not need to be very large to achieve good performance. 

In all simulations, we used M = 100. In fact, the first several splits of the trees are likely to 

be constructed using the same variables, which makes them highly correlated (if we use k = 
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1). However, using linear combination splits (k > 1) introduces a significant amount of 

randomness into the fitted trees since the coefficients of the linear combinations vary 

according to the embedded model. In practice, the embedded model is estimated using a 

small number of observations, however, the prediction accuracy of an embedded model is 

not the major concern here since we only need the ranks of variable importance measures to 

be reliable, i.e., variables with large V I are ranked at the top by the embedded model. This 

allows many alternative methods to be used as the embedded model as long as they provide 

reliable variable rankings, however, exploring them is beyond the scope of this paper. For 

the muting parameter pd, we considered only three values and the performance is 

satisfactory. However, ideally the muting parameter pd can account for the different 

combinations of n and p. In our “RLT” package, an ad-hoc formula is proposed: 

 for moderate muting, and 1 − (log(p)/p)1/log
2
(n/40) for aggressive 

muting. The choice is motivated by the simulation results in Biau (2012), which shows that 

when n = 25 and p = 20, the search for a splitting rule behaves almost like a random pick. 

However, our toy example in the Appendix shows that this may depend heavily on the 

underlying data generator. While our aggressive muting procedure achieves satisfactory 

performance, optimal tuning may require further experiments. We found that tuning the 

number of the protected variables p0 is less important in our simulations, and in practice, 

setting a slightly larger k value achieves the same purpose as p0. We suggested to use nm in 

= n1/3 based on our theoretical developments. However, in practice, tuning this parameter is 

always encouraged. When p is extremely large, the number of trees in the embedded model 

should be increased accordingly to ensure reliable variable importance measure estimation. 

The “RLT” package provides tunings for the embedded model. A summary of all tuning 

parameters in the current version of “RLT” is provided in the supplementary file.

As we discussed in the introduction, a desirable property of RLT is the “sparsity” of the 

fitted model, although this is not directly equated with “sparsity” as used in the penalization 

literature. Figure 2 demonstrates this property of RLT as compared to a random forests 

model. We take Scenario 3 in the simulation section as our demonstration setting. The upper 

panel compares the variable importance measures of a single run, and the lower panel 

compares the averaged variable importance measures over 100 runs. In an RLT model, noise 

variables have very little involvement (with V I = 0) in tree construction. This is due to the 

fact that most of them are muted during early splits, engendering the “sparsity”. The average 

plot shows a similar pattern while RLT has a much larger separation between the strong and 

the noise variables compared to Random forests. On the other hand, random forests tend to 

have spikes at noise variables. This also shows that RLT is potentially a better non-

parametric variable selection tool under the sparsity assumption. However, this sparsity 

comes at the expense of sacrificing some correlated variables, as shown in the plots. The 

chance of selecting the highly correlated variables (located at the neighborhood of 50, 100, 

150 and 200) is reduced. In situations where correlated variables are also of interest, special 

techniques may be needed.

Our theoretical results analyze tree-based methods from a new perspective, and the 

framework can be applied to many tree-based models, including many “greedy” versions. 

We showed that a tree splitting process involves different phases. In the early phase 
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(corresponding to  ∪  in Section 3), when the sample size is large, the search for 

splitting rules has good theoretical properties, while in the later phase, the search for 

splitting variables is likely to be essentially random. This causes the convergence rates for 

most tree-based methods to depend on p if nmin is not large enough. Variable muting is a 

convenient way to solve this problem.

There are several other key issues that require further investigation. First, we assume 

independent covariates, which is a very strong assumption. In general, correlated covariates 

pose a great challenge for non-parametric model fitting and variable selection properties 

theoretically. To the best of our knowledge, there is no developed theoretical framework for 

greedy tree-based methods under this setting. One of the possible solutions is to borrow the 

irrepresentable condition (Zhao and Yu, 2006) concept into our theoretical framework. The 

irrepresentable condition, given that the true model is indeed sparse, essentially prevents 

correlated variables from fully explaining the effect of a strong variable. Hence a strong 

variable will still have a large importance measure with high probability. This part of the 

work is currently under investigation but is beyond the scope of this paper. Second, splitting 

rules using linear combinations of variables results in non-hypercube shaped internal nodes, 

which introduces more complexity into the fitted trees. Moreover, the linear combinations 

involve correlated variables which adds yet further complications. Third, it is not clear how 

ensembles of trees further improve the performance of RLT in large samples. However, due 

to the feature selection approach in RLT, there is a possible connection with adaptive nearest 

neighborhood methods and adaptive kernel smoothers (Breiman, 2000). These and other 

related issues are currently under investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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6. APPENDIX

Proof of Theorem 3.7

We prove this theorem in two steps. First, we show that for the entire constructed tree, with 

an exponential rate, only strong variables are used as splitting variables. Second, we derive 

consistency and error bounds by bounding the total variation using the terminal node size 

variable importance which converges to zero.

Step 1

In this step, we show that for the entire tree, only strong variables are used as the splitting 

variable, and furthermore, the variable importance measure for the splitting variable is at 

least half of the maximum variable importance at each split. First, it is easy to verify that, 
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both a) and b) in Theorem 3.6 can be satisfied simultaneously with probability bounded 

below by

(4)

Define  as the set of all internal nodes. Recall that ψ1(δ) and ψ2(bj − aj) can be 

approximated by δζ1 and (bj − aj)ζ2, respectively. Thus we can always find a γ* < 1 such that 

when nA > nγ*, . We define two groups of internal nodes  = 

{Ai, s.t. Ai ∈ , nAi ≥ nγ*} and  = {Ai, s.t. Ai ∈ , nAi < nγ*}, where nAi is the sample size 

at node Ai. Then we bound the probability:

(5)

For all internal nodes in , the number of nonmuted variables is less than or equal to p. 

Hence, by the monotonicity of η(·) in Assumption 3.4 and Equation (4), the first term in 

Equation 5 can be bounded above by

(6)

Note that in , the node sample size is less than nγ*. Since we choose the splitting point 

uniformly between the q-th and (1 − q)-th quintile, to reach a node in , we need to go 

through a minimum of −γ* logq(n) splits. Noticing that this number goes to infinity, and that 

we mute pd variables after each split, all variables except the ones in the protected set should 

be muted in . Hence, the second term in Equation (5) can be bounded above by

(7)

Noting that  ∪  = , and that they contain at most n1 − γ elements, and combining 

Equations (6) and (7), we obtain:

which goes to zero at an exponential rate. Thus the desired result in this step is established.
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Step 2

Now we start by decomposing the total variation and bounding it by the variable 

importance:

(8)

where f̄At is the conditional mean of f within terminal node At, and where t indexes the 

terminal node. Noting that each terminal node At in f̂ contains nAt ≥ nγ observations, and that 

the value of f̄ at each terminal node is the average of the Y s, it must therefore have an 

exponential tail. Hence the first term in Equation (8) can be bounded by:

(9)

The second sum in Equation (8) can be further expanded as

(10)

The Cauchy-Schwartz inequality now implies that

(11)

For each given At, due to the independence of Z and X, the expectation in every summand 

can be decomposed as

(12)
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Note that the variables with the labels p1 + 1, …, p are in the set  of noise variables. 

Changing the values of these components will not change the value of f. Hence the last term 

in the expectation of (12) is equal to

Again, since all the components of X and Z are independent, the jth term in the expectation 

of (12) corresponds to the variable importance of the jth variable. Thus we have:

(13)

It remains to show that  as n → ∞. Using Lemma 2.1 in the 

supplementary file, we have maxj V IAt(j) = O(n−C1) = O (n−2rγlogq(1−q)/(rp1)p1+1
), where r is 

a constant satisfying r > 1 and 2(1 − q)2r/q2 ≤ 1. Hence combining equations (8), (9) and 

(13), we have

(14)

Due to the monotonicity of the contribution from C1, this rate is also monotone decreasing 

in p1. Noticing that C3 does not depend on p, the convergence rate depends only on the 

choice of γ, q, and the number of strong variables p1. This concludes the proof.
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Figure 1. 
Relative prediction errors on 10 machine learning datasets

The relative performance in 10 machine learning datasets: (Boston housing, parkinson, 

sonar, white wine, red wine, parkinson-Oxford, ozone, concrete, breast cancer, and auto 

MPG). For each dataset, a random training sample of size 150 is used. RF-all represents the 

best performance among RF, , and RF-log p. Each gray line links the performance 

of the same dataset.
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Figure 2. 
Comparing variable importance of Random Forests and RLT

Black: Strong variables; Gray: Noise variables.

P = 200, strong variables are located at 50, 100, 150 and 200.
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Table 1

Algorithm for reinforcement learning trees

1 Draw M bootstrap samples from D.

2 For the m-th bootstrap sample, where m ∈ {1, …, M}, fit one RLT model f ̂m, using the following rules:

a.
At an internal node A, fit an embedded model  to the training data in A, restricted to the set of variables 

, i.e. , where  is the set of muted variables at the current node A. Details are given in 
Section 2.4.

b.
Using , calculate the variable importance measure  for each variable X(j), where j ∈ . Details are given in 
Section 2.5.

c. Split node A into two daughter nodes using the variable(s) with the highest variable importance measure (Section 2.7).

d. Update the set of muted variables  for the two daughter nodes by adding the variables with the lowest variable 
importance measures at the current node. Details are given in Section 2.6.

e. Apply a)–d) on each daughter node until node sample size is smaller than a pre-specified value nmin.

3

Average M trees to get a final model . For classification, .
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Table 2

Variable Importance

1
For the m-th tree , m ∈ (1, 2, …, M*), in the embedded tree model, do steps a) – c).

a. Select the corresponding m-th out-of-bag (OOB) data which consists of the data not selected in the m-th bootstrap sample.

b.
Drop OOB data down the fitted tree  and calculate prediction mean squared error, MSEA,m.

c.
For each variable , do the following:

i. Randomly permute the values of the jth variable X(j) in the OOB data.

ii.
Drop permuted OOB data down the fitted tree , and calculate the permuted mean squared error, 

.

2
For . For variable , average over M* measurements to get the variable importance 
measure:

VÎ A( j) =
∑m=1

M ∗
PMSEA,m

j

∑m=1
M ∗

MSE A,m

- 1.
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Table 3

Tuning parameter settings

Lasso 10-fold cross-validation is used with α = 1 for the lasso penalty. We use lambda:min and lambda:1se for λ.

Boosting A total number of 1000 trees are fit. Testing error is calculated for every 20 trees. n:minobsinnode = 2, n1/3, 10. learning rate 
shrinkage = 0.001, 0.01, 0.1, interaction:depth = 1, 3, 5.

BART A total of 18 settings: ntrees = 50 or 200; Sigma prior: (3, 0.90), (3, 0.99), (10, 0.75); μ prior: 2, 3, 5.

RF
A total of 36 settings: ntrees = 500, 1000; , p/3, p; nodesize = 2, n1/3. Bootstrap sample ratio = 1, 0.8, 2/3.

Select the top  important variables from each RF model and refit with the same settings as RF (with mtry recalculated 
accordingly).

RF-log(p)
Similar as , however with top log(p) variables selected.

ET
ntrees = 500, 1000; , p/3, p; nodesize = 2, n1/3; numRandomCuts = 1, 5.

RLT-naive ntrees = 1000; nodesize = 2, n1/3; muting rate = 0%, 50%, 80%. Bootstrap sample ratio = 1, 0.8, 2/3. number of random splits = 
10 or all possible splits.

RLT
M = 100 trees with nmin = n1/3 are fit to each RLT model. We consider a total of 9 settings: k = 1, 2, 5, with no muting (pd = 0), 

moderate muting ( ), and aggressive muting ( ) as discussed in Remark 2.3. 
We set the number of protected variables p0 = log(p) to be on par with RF-log(p). Note that when pd = 0, all variables are 
considered at each internal node, hence no protection is needed. This is on par with RF.
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