Skip to main content
. Author manuscript; available in PMC: 2016 Apr 16.
Published in final edited form as: J Am Stat Assoc. 2015 Apr 16;110(512):1770–1784. doi: 10.1080/01621459.2015.1036994

Table 4.

Classification/prediction error (SD), p = 200

Scenario 1 Scenario 2 Scenario 3 Scenario 4
RF 21.3% (3.5%) 8.35 (1.28) 8.66 (0.55) 5.93 (0.61)
RF-p
19.8% (3.6%) 6.50 (1.30) 6.97 (0.88) 4.35 (0.47)
RF-log(p) 15.2% (3.3%) 4.55 (1.23) 7.75 (1.74) 3.23 (0.33)
ET 18.3% (4.2%) 4.61 (1.26) 8.26 (0.60) 4.57 (0.51)
BART 25.7% (2.8%) 8.00 (1.13) 8.13 (0.83) 2.63 (0.30)
Lasso 26.5% (2.6%) 9.99 (1.02) 8.96 (0.50) 1.12 (0.07)
Boosting 21.3% (2.8%) 8.47 (0.97) 8.60 (0.53) 2.85 (0.35)
RLT-naive 19.0% (4.3%) 4.65 (1.51) 7.77 (0.69) 4.59 (0.54)

RLT
Muting Linear combination

None 1 14.8% (4.0%) 4.09 (1.00) 5.43 (0.75) 4.36 (0.52)
2 16.5% (4.3%) 4.93 (1.27) 5.71 (0.65) 2.88 (0.44)
5 18.9% (4.2%) 5.52 (1.43) 5.85 (0.62) 2.80 (0.44)
Moderate 1 11.8% (3.4%) 3.20 (0.84) 4.80 (0.74) 3.27 (0.39)
2 12.2% (3.6%) 3.43 (0.96) 4.85 (0.71) 2.13 (0.30)
5 14.2% (4.0%) 3.90 (1.18) 4.89 (0.69) 2.03 (0.30)
Aggressive 1 10.3% (3.2%) 2.79 (0.71) 4.87 (0.81) 3.23 (0.39)
2 9.8% (3.1%) 2.66 (0.76) 4.90 (0.80) 1.84 (0.23)
5 11.1% (3.4%) 2.95 (0.94) 4.74 (0.82) 1.71 (0.22)

For each scenario, the best two methods within each panel are bolded. The overall best method is underlined.

HHS Vulnerability Disclosure