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Biological information encoded in genomes is
fundamentally different from and effectively
orthogonal to Shannon entropy. The biologically
relevant concept of information has to do with
‘meaning’, i.e. encoding various biological functions
with various degree of evolutionary conservation.
Apart from direct experimentation, the meaning,
or biological information content, can be extracted
and quantified from alignments of homologous
nucleotide or amino acid sequences but generally
not from a single sequence, using appropriately
modified information theoretical formulae. For short,
information encoded in genomes is defined vertically
but not horizontally. Informally but substantially,
biological information density seems to be equivalent
to ‘meaning’ of genomic sequences that spans the
entire range from sharply defined, universal meaning
to effective meaninglessness. Large fractions of
genomes, up to 90% in some plants, belong within
the domain of fuzzy meaning. The sequences with
fuzzy meaning can be recruited for various functions,
with the meaning subsequently fixed, and also
could perform generic functional roles that do not
require sequence conservation. Biological meaning
is continuously transferred between the genomes
of selfish elements and hosts in the process of their
coevolution. Thus, in order to adequately describe
genome function and evolution, the concepts of
information theory have to be adapted to incorporate
the notion of meaning that is central to biology.

1. Entropy, information,meaning andgenome
evolution

One of the most common, textbook concepts in
biology is that the genome encodes information on the
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organism—or synonymously, the genotype encodes information about the phenotype. Genomes
are ultimately strings of symbols, and this digital organization is naturally interpretable within
the framework of standard information theory [1,2]. The classical Shannon formula for the mean
entropy (often interpreted as information content) per position of a nucleotide (or amino acid)
sequence of length L be written as

H(L) = −
α∑

j=1

fjLlogα fjL, (1.1)

where fj is the frequency of the base j ( j = A, T, G, C) in the given sequence, and α is the size of
the alphabet (four in the case of nucleotide sequences and 20 for amino acid sequences). Applied
this way, entropy only tells us how far the count of each base in the given sequence deviates from
the random expectation L/α which does not convey any meaningful message on the genome
in question let alone about the phenotype of the organism it is supposed to encode. Clearly,
the message encoded in the genome is of a different nature. Within the classical information
theory, the quantity we are interested in is not entropy but rather information (more precisely,
information gain) that is obtained about a sequence L as a result of some procedure that we will
call measurement:

I(L) = H(L)0 − H(L)m, (1.2)

where H(L)0 is the entropy of the sequence before the measurement and H(L)m is the entropy
of the same sequence after the measurement. An insightful discussion of the crucial distinction
between information and entropy is presented by Adami in this theme issue of the Philosophical
Transactions [3].

In qualitative terms, biological information is perhaps best described as the ‘meaning’ of a
sequence. A nucleotide sequence assumes meaning only when it is either transcribed into a
RNA molecule that directly carries out a biological function, or transcribed into a mRNA that
is then translated into a functional protein, or else the DNA itself interacts with proteins or RNA
molecules resulting in a functional (often, regulatory) effect.

What kind of measurements can yield biological information and allow one to quantify the
meaning of genomic sequences? Obviously, one of the means to this end is direct experimentation.
However, exhaustive characterization of the biological roles of each nucleotide in the genome
is unrealistic even for the smallest model genomes such as those of viruses, let alone the
expansive genomes of complex organisms such as animals and plants. Moreover, quantitative
comparison of the ‘meaningfulness’ of different sites in the genome requires a whole other level
of experimentation whereby the phenotypic (fitness) effects of changes in each site are measured
in competition experiments. This type of experiment is central to experimental evolution research
[4,5] but the complexity of bringing it to the genome scale far exceeds any imaginable laboratory
capabilities.

Hence the alternative approach to information measurement involves extracting meaning
from sequences themselves. A single genomic sequence is largely meaningless. The meaning
of certain short nucleotide signals has been known for many years from multiple, definitive
experiments. The most prominent signals of this type are the translation start and stop codons
that mark protein-coding genes. A simple estimate shows that the presence of a long open reading
frame between a start and a stop signal is highly unlikely, and therefore, at least for intron-
less genomes, protein-coding regions can be predicted reliably [6]. This does tell us something
important about the meaning of the genome sequence, by delineating regions that most likely are
used to produce proteins.

However, the only general way to extract meaning from sequences involves comparative
analysis of homologues. The premises are extremely simple, yet powerful. The great majority of
the meaningful sites in nucleotide sequences, i.e. those sites that contribute to biological function,
are subject to purifying selection, hence evolutionary conservation of meaningful sites. The
stronger the selection, the more meaningful (‘important’) a site is. These simple considerations
allow one to naturally quantify meaningful information contained in sequences [7–10].



3

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A374:20150065

.........................................................

For an alignment of orthologous sequences, the Shannon entropy formula (1.1) can be
re-written as follows:

H(L)n =
L∑

i=1

Hi = −
L∑

i=1

∑

j

fij log fij, (1.3)

where H(L)n is the total entropy of the alignment of n sequences of length L; Hi is the per
site entropy; and fij are the frequencies of each of the four nucleotides ( j = A, T, G, C) or each
of the 20 amino acids in site i. Clearly, for a fully conserved site H(i) = 0, whereas for a
completely random site H(i) = 1; accordingly, the values of H(L)n are between 0 and L. Note
that equation (1.3) is equivalent to equation (1.1) except that instead of applying the Shannon
formula ‘horizontally’, i.e. to a single sequence, we now apply it ‘vertically’, i.e. to an alignment
of homologous sequences. This definition of entropy is consistent both with Boltzmann’s famous
statistical definition of entropy and with Shannon entropy (information content) and thus can be
legitimately denoted ‘evolutionary entropy’ of a set of aligned sequences. In addition to being
physically valid, evolutionary entropy seems to make perfect biological sense: low-entropy sites
are most strongly conserved, and by inference, most functionally important (meaningful).

Then, using formula (1.3), ‘biological (evolutionary) information’ of a genome can be
defined as

I(N) = N −
k∑

i=1

H(Li), (1.4)

and ‘biological (evolutionary) information density’ can be calculated as

D(N) = I(N)
N

= N − ∑k
i=1 H(Li)
N

= 1 −
∑k

i=1 H(Li)
N

, (1.5)

where N is the total length (number of sites) in a genome; Li is the length of a genomic
segment that is subject to measurable selection (such as a protein-coding or RNA-coding gene);
k is the number of such alignable segments in the genome; and H(Li) is the evolutionary
entropy for the segment L calculated using formula (1.2). Previously, the quantity defined by
equation (1.4) has been denoted ‘biological complexity’ but at least for the purpose of the present
discussion, ‘biological (evolutionary) information’ seems to be a more straightforward definition.
The values of I(N) are between 0 and N, and equation (1.4) is equivalent to equation (1.2),
i.e. biological information is the information gain that can be extracted from an alignment of
homologous sequences through the constraint on change in ‘meaningful’ positions. Indeed,
biological information density is directly related to meaning: sites and sequences with the
highest values of D(N) are the most meaningful ones. Thus, Dobzhansky’s famous dictum
‘Nothing in biology makes sense except in light of evolution’ [11] takes a literal, even technical
interpretation: biological meaning (sense) effectively cannot be gleaned by any means other than
direct evolutionary analysis.

To conclude this conceptual discussion, it seems pertinent to ask: what is biological
information about? It has been persuasively argued that the genome stores information about
the environment, allowing the organism to predict and exploit environmental changes [10,12].
Although environmental interactions certainly are an important part of the genomic information
content, it seems prudent to indicate that another key part is about the (nearly) universal
aspects of cellular and organismal design. A notable evidence of the universality of cellular
design comes from the consistent observations on the universal scaling of different functional
categories of genes with the total gene count in all cellular life forms [13,14]. The genes encoding
universal components of cells, such as RNA and proteins that constitute the translation system,
are endowed with by far the most pronounced meaning (i.e. evolutionary conservation) than
genes that are involved in environmental interactions [15,16].
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2. Informational andentropic genomesandevolutionof organismal complexity
The exact values of H are difficult to calculate for complete genomes because the distribution of
evolutionary constraints is never known precisely [16]. Furthermore, there is always arbitrariness
in the choice of orthologues to be included in the alignment for the calculation, and most
important, the sequences of orthologous genes are actually not independent but rather are
connected by an evolutionary tree. Thus, to produce accurate estimates of biological information
density, an appropriate weighting scheme taking into account the evolutionary tree topology and
branch lengths is required. However, these details are not essential if one is interested only in
ballpark estimates. The fraction of sites under selection across the genome has been estimated
with reasonable precision for some model organisms such as humans or Drosophila [16–18]. For
others, particularly prokaryotes and unicellular eukaryotes, the fraction of coding nucleotides
plus the estimated fraction of regulatory sites can be taken as a reasonable approximation; for
sites under selection, Hi = 0.5 can be taken to approximate the mean entropy value.

Comparison of the estimates of H(N), I(N) and D(N) for genomes of different life forms reveals
a paradox. The total biological information I(N) (arguably, the measure of biological complexity)
monotonically increases with the genome size, in particular, in multicellular eukaryotes compared
to prokaryotes, but the entropy H(N) increases dramatically faster, and as the result, the
evolutionary information density D(N) sharply drops (figure 1). Thus, the genomes of organisms
that are usually perceived as the most complex, such as animals and plants, indeed have
the highest total information content but also are ‘entropic’ genomes with a low biological
information density. By contrast, organisms that we traditionally think of as primitive, such
as bacteria, have ‘informational’ genomes with high information density [9]. To rephrase the
same statement more provocatively, the genomes of unicellular organisms and viruses appear
to be incomparably ‘better designed’ than the genomes of plants or particularly animals.
Certainly, this conundrum is already apparent in a simple comparison of the genome architectures
of multicellular and unicellular organisms, with the former being dominated by non-coding
sequences (introns and intergenic regions), whereas the latter are ‘wall to wall’ genomes that
are almost completely comprised of genes [19]. Nevertheless, the formal approach to biological
information outlined above allows one to emphasize and quantify the differences between the
informational landscapes of different life forms.

The primary cause behind the low information density of the genomes of the complex
life forms seems to follow directly from straightforward population genetic theory [20–22]. In
populations with a small effective size that are characteristic of complex multicellular organisms,
the weak purifying selection and the high intensity of genetic drift preclude efficient purging
of meaningless sequences and conversely allow proliferation of such sequences, in particular,
various mobile elements. Evolutionary and functional plasticity is the other side of the same
coin [16]. This plasticity is manifested in the numerous demonstrated cases of recruitment of
mobile element sequences and other originally ‘meaningless’ sequences for biological functions.
What matters for the evolution of phenotypic (organismal) complexity appears to be the total
biological information content of the genome rather than information density (‘design’). I discuss
these aspects of biological information in the following sections.

3. Junk DNA or sequences with fuzzy meaning?
The now well-established phenomenon of pervasive transcription [23–25], that has triggered
the (in)famous debate around the results of the ENCODE project [26–30], when pitted against
the formal considerations outlined above, suggests a radical line of thinking on the nature of
biological information and meaning. The indisputable findings that (nearly) all sequences in
complex genomes, such as human, are transcribed at some level (at least in some cell types and at
some life stages) most likely fit the same population genetic perspective [20–22]. Conceivably,
transcription is pervasive because selection against spurious promoters and enhancers is
not sustainable in small populations subject to drift. However, in the context of the above
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Figure 1. Biological information and information density depending on genome size: viruses, prokaryotes and eukaryotes. The
biological information and density valueswere calculated using equations (1.4) and (1.5), respectively, and the data on genomes
were from Genbank. The plot is on a double logarithmic scale. 1, encephalomyocarditis virus (RNA virus); 2, lambda phage; 3, T4
phage; 4,Mycoplasma genitalium (parasitic bacterium); 5, acanthamoeba polyphaga mimivirus (giant virus); 6, Archaeoglobus
fulgidus (free-living archaeon); 7, Escherichia coli (free-living bacterium); 8, Saccharomyces cerevisiae; 9, Arabidopsis thaliana;
10, Drosophila melanogaster; 11, Homo sapiens. (Online version in colour.)

formalization of biological information, would it be appropriate to view most of the sequences
in complex genomes, with (extremely) low biological information density, as being endowed
with ‘fuzzy meaning’ (figure 2)? Operationally, sequences with fuzzy meaning can be defined
as those that cannot be aligned between genomes that have diverged beyond the threshold of
sequence conservation that is due to common ancestry alone, e.g. after the synonymous sites in
protein-coding genes have reached saturation. This is a conservative definition because it assumes
neutrality of the synonymous sites that in actuality are subject to selection albeit substantially
weaker than that affecting non-synonymous sites [31–33].

The exact sequences of genomic regions with fuzzy meaning are (almost) inconsequential but
their expression has meaning that can be rationalized at least at two levels. First, the sequences
with fuzzy meaning form the material basis of plasticity from which functional molecules,
primarily but not exclusively, regulators of various processes, are continuously recruited to
assume better defined meaning, a process that can be denoted ‘gain of meaning’. Second, although
numerous sequences might not encompass any specific meaning whatsoever, their transcription
itself could be meaningful, in particular, for maintaining particular chromatin states that in
turn regulate transcription of regions with specific meaning (genes) [24]. The information flow
between the domains of defined meaning and fuzzy meaning certainly is a two-way street: loss
of meaning continuously occurs, e.g. in the process of pseudogenization.

The boundary between the genomic sequences with well-defined meaning and those with
fuzzy meaning is not necessarily sharp. The long non-coding (lnc) RNAs that recently have been
identified in abundance in mammals [34–36] appear to bridge the islands of highly meaningful
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Figure 2. The fuzzy meaning concept and gain and loss of meaning. The cartoon schematically shows a fragment of a genome
of a complex multicellular organism (animal or plant) that consists mostly of sequences with fuzzy meaning, interspersed with
‘islands’ of defined meaning such as genes (exons) encoding structural RNAs and proteins as well as evolutionarily conserved
regulatory elements. (Online version in colour.)

protein-coding regions (and those that encode structural RNAs) with the sea of fuzzy meaning
sequences (figure 2). In the expansive pool of lncRNAs, there are many that are represented
by orthologues even in distant organisms, such as primates and rodents, although sequence
conservation (biological information density) is low [35,37–40]. However, numerous lncRNAs,
even within well-defined, relatively highly expressed sets [39], are lineage-specific and hence
belong in the fuzzy meaning domain.

The concept of fuzzy meaning seems to reconcile two fundamental, undeniable but apparently
contradictory lines of evidence: (i) in complex, large genomes, the substantial majority of the
sequences is subjected to extremely weak or effectively no purifying selection and (ii) most of
these apparently meaningless sequences are at least occasionally transcribed, i.e. have a distinct
phenotypic manifestation. Rather than dismissing most of the genome as junk DNA [41–44], the
fuzzy meaning concept seems to offer a more adequate description of this vast pool of sequences.

The relevance of fuzzy meaning for evolution, and in particular evolutionary innovations,
does not appear to be limited to non-coding DNA or to large, complex genomes. It has been
observed that most of the novel eukaryotic proteins adopt α-helical folds and seem to have
evolved from generic, repetitive coiled coil proteins [45]. Even more strikingly, evidence has
been presented that in various eukaryote organisms, numerous short genes evolve from non-
coding sequences through a stage of ‘pre-proteins’ [46–52]. This route of evolution appears to be
a clear manifestation of fuzzy meaning. Upon acquiring a specific function, the evolution of these
proteins substantially slowed down: their meaning was sharply defined as they left the fuzzy
domain (figure 2).

4. The agency of biological meaning: parasite–host interaction, arms races
and exaptation

Much like in human affairs and unlike in standard information theory, the meaning of genomic
sequences can only be meaningfully defined if the beneficiary of the message is identified
(‘meaning for whom?’). The sequences of the innumerable selfish, mobile genetic elements that
are integrated into the genomes of cellular lifeforms [53–57]—and represent the majority of the
genome sequences in many animals and plants [58,59]—are generally meaningless for the host



7

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A374:20150065

.........................................................

organisms. For most of these elements, orthologous relationships cannot be established between
any distant host species, and hence biological information density cannot be estimated from the
host genome comparison. Yet, ‘from the selfish element’s point of view’, i.e. when biological
information density is estimated from an alignment of homologous sequences of elements in the
same family, these sequences are densely packed with meaning.

Continuous transfer of meaning between selfish elements and hosts is a major evolutionary
trend that comes in several guises. First, genes from selfish elements are often recruited by host
organisms such that the specific activity of the encoded protein is modified and appropriated
for host functions. Examples include the essential eukaryotic enzyme telomerase that is required
for linear chromosome replication that was recruited from a bacterial retroelement (group II self-
splicing intron) for its reverse transcriptase activity [60,61]; hedgehogs, key regulators of animal
development, that have been derived from an intein and employ the autoprotease activity of
the latter [62–64]; and syncytins, placental receptors derived from retrovirus genes [65,66]. A
remarkable, common phenomenon involves what can be described as a change of biological
meaning to its opposite. Under this trend, ‘offensive weapons’ of selfish elements are captured
by the hosts and turned into means of defence [67]. Striking examples include the parallel
recruitment of integrases from unrelated selfish elements for adaptive immunity systems in
prokaryotes (CRISPR-Cas) and in animals [68] as well as the system of DNA elimination in the
ciliate macronucleus [69]. Conversely, selfish elements, particularly viruses with comparatively
large genomes, consistently capture host genes involved in defence and adopt them for counter-
defence, e.g. as dominant-negative inhibitors [70–72]. Thus, sequences that have been meaningful
for selfish elements become meaningful for the host and vice versa.

Another common trend in the coevolution of selfish elements and hosts is the erosion of
meaning that accompanies integration of genomes. This phenomenon includes inactivation and
deterioration of all kinds of mobile elements that occurs on a limited scale in bacteria and archaea
but is a massive contribution to the genomes of animals and plants. Including splicesosomal
introns which appear to be descendants of bacterial retrotransposons (group II self-splicing
introns) [61], the majority of the DNA in animal and plant genomes is derived from mobile
elements. Thus, these elements are the principal source of fuzzy meaning discussed in the
preceding section.

5. Conclusion
The biologically relevant information is more akin to meaning than to entropy. This type
of information can be quantified by applying theoretical informational concepts to aligned
sequences of orthologous genes or proteins: biological information density (meaning) is defined
vertically, i.e. across an alignment of homologous sequences, rather than horizontally, i.e. along a
single genome. Sites with the lowest entropy have the highest biological information density or
in other words, are the most meaningful ones. The meaningfulness of genomic sequences spans
the entire range from sharply defined, universal meaning to effective meaninglessness. Sequences
with low biological information density can be assigned to the domain of fuzzy meaning which
encompasses most of the genomic sequence in animals and plants. The sequences with fuzzy
meaning serve as a pool for recruitment for diverse functions and could also be involved in
generic functional roles that require little if any sequence conservation. The concept of fuzzy
meaning seems to capture better the status of non-conserved genomic sequences than the more
rigid notion of junk DNA. The evolution of life involves the perennial arms race between parasites
and hosts that involves continuous transformation of the agency of biological meaning. Sequences
that are meaningful for selfish elements are appropriated by the hosts to assume meaning,
particularly as means of defence, and vice versa, host genes involved in antivirus defence and
other processes are recruited by selfish elements, with their meaning changed in the process.
An even more common phenomenon is the erosion of meaning of selfish element genes upon
integration with the host genomes. These sequences replenish the fuzzy meaning domain. In
summary, meaningful analysis of genomes from an informational theoretical standpoint requires
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Figure 3. Flow of meaning between selfish elements and hosts. (Online version in colour.)

re-interpretation of the very notion of information as a concept of meaning that is specific to
biology (figure 3).
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