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More and more infectious diseases affect marine molluscs. Some diseases
have impacted commercial species including MSX and Dermo of the eastern
oyster, QPX of hard clams, withering syndrome of abalone and ostreid
herpesvirus 1 (OsHV-1) infections of many molluscs. Although the exact
transmission mechanisms are not well understood, human activities and associ-
ated environmental changes often correlate with increased disease prevalence.
For instance, hatcheries and large-scale aquaculture create high host densities,
which, along with increasing ocean temperature, might have contributed to
OsHV-1 epizootics in scallops and oysters. A key to understanding linkages
between the environment and disease is to understand how the environment
affects the host immune system. Although we might be tempted to downplay
the role of immunity in invertebrates, recent advances in genomics have pro-
vided insights into host and parasite genomes and revealed surprisingly
sophisticated innate immune systems in molluscs. All major innate immune
pathways are found in molluscs with many immune receptors, regulators and
effectors expanded. The expanded gene families provide great diversity and
complexity in innate immune response, which may be key to mollusc’s defence
against diverse pathogens in the absence of adaptive immunity. Further
advances in host and parasite genomics should improve our understanding
of genetic variation in parasite virulence and host disease resistance.

1. Introduction

Molluscs are a major group of marine animals that play key roles in marine eco-
systems. Most molluscs are calcifiers and many are filter-feeders, providing
essential ecological services such as habitat for other organisms and water clarifi-
cation. Molluscs such as oysters, clams, scallops, mussels, abalone and squid,
support significant fishery and aquaculture industries around the world [1]. In
molluscs, infectious diseases have devastated wild populations, fisheries and
aquaculture industries [2]. There are indications that as the oceans are changing,
marine diseases are becoming more frequent or severe, and these changes might
be associated with climate change and human activities [3,4]. Our ability to pre-
dict how climate change and human activities may accelerate the emergence of
marine diseases depends on our knowledge of the infection processes and the
influence of environmental factors. Fundamental to the infection process is the
complex interaction between the host and parasite, the outcome of which depends
partly on the host’s immune system.

All living organisms including single-celled algae and bacteria have parasites,
and host—parasite interactions are one of the most fundamental processes in
biology that drives evolution. The race between the host and its parasites as
best characterized by the Red Queen hypothesis is intense and everlasting [5].
As a result, host organisms have evolved sophisticated host-defence mechanisms
against parasites that constantly invent new ways to infect. Thus, the genotypic or
molecular interactions between the host and parasites are complex and present a
challenge to our understanding of infection dynamics.
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Most biologists are familiar with the adaptive immune
system in vertebrates, but invertebrates also have effective
innate immune responses to infectious agents. As filter-feeders
living in microorganism-rich environments, bivalve molluscs
may have evolved advanced host-defence mechanisms against
pathogens [6]. Recent advances in molecular genetics and
genomics have provided insights into the complex molecular
machineries involved in host—parasite interactions. In this
paper, we will review major infectious diseases of marine mol-
luscs, their transmission history and the molecular components
of the molluscan immune system, as revealed by genomic meth-
odology, that are essential to our understanding of the infection
processes and transmission dynamics of marine pathogens.

2. Major infectious diseases of marine molluscs

Although mass mortalities of commercially important
molluscs were noted in the early twentieth century and pre-
sumed to have an infectious agent aetiology [7-9], it was not
until mid-century that specific disease agents were clearly
observed, by microscopy and culture methods, just before
and during mortality outbreaks. In this section, we review
some of these diseases and their agents, with emphasis on
the role, if any, posed by human activities in epizootics—
specifically culture and commercial practices that trigger or
aggravate disease outbreaks. Very few studies have explicitly
addressed the role of climate change on molluscan diseases;
therefore, we note, where data are available, the association
of temperature with epizootics that might suggest the potential
for climate warming to exacerbate disease outbreaks. We
include climate change as an anthropogenic impact [10]. We
then explore in greater detail disease outbreaks associated
with ostreid herpesvirus 1 (OsHV-1) that infects a wide range
of molluscs. We argue that OsHV-1 outbreaks in oysters in
Europe and scallops in China may be caused by increasing
ocean temperature as well as culture practices that both
increase the likelihood of transmission and stress molluscs.
We are not able to cover all the diseases that affect marine mol-
luscs in the following overview, much less all of the parasites
that have been reported in them; however, we summarize, in
table 1, important points about other pathogens and diseases
not covered in the text.

(a) Dermo

In the mid-1940s, eastern oyster (Crassostrea virginica) mortal-
ities in the Gulf of Mexico off the coast of Louisiana were
blamed on the oil industry, which spent heavily on research
that eventually found the cause—a protozoan now known as
Perkinsus marinus and the disease it causes, as Dermo disease
[11]. It was noted that the mortalities coincided with warm,
dry periods—and that similar mortalities had been evident in
earlier decades [65], suggesting that P. marinus had been
present for many years. Examination of oysters in other
locations along the US coastline in the late 1940s found the
pathogen as far north on the eastern seaboard as the lower
Chesapeake Bay [66,67], but epizootics were restricted to this
range until the mid-1980s [12]. Although P. marinus is trans-
mitted directly among oysters [66], transmission is not
necessarily density-dependent and uninfected oysters can
become infected even when the nearest known infected
stocks are several kilometres away [68]. Infection acquisition
and development are temperature-dependent and follow a

distinct seasonal cycle in which infections are acquired and
develop at temperatures greater than or equal to 20°C and mor-
talities predominate at temperatures greater than 25°C [69,70].
Seed oysters, likely infected by this parasite, had been shipped
over many years to northern locations to replenish overfished
beds, but temperatures were too low to launch epizootics or
even sustain detectable parasite populations [71] until a warm-
ing trend, which began in the mid-1980s and accelerated in the
early1990s, was associated with disease and mortality out-
breaks over a 500 km range north [12]. It should be noted
that many other species of Perkinsus have been found to
infect a variety of non-oyster species in many parts of the
world. Many show evidence of a negative effect on their
hosts; however, the impact is not always clear or well docu-
mented (see http://www.dfo-mpo.gc.ca/science/aah-saa/
diseases-maladies/perkincc-eng.html).

(b) MSX

Massive mortalities of C. virginica due to MSX (multi-
nucleated sphere unknown) disease were first noted in
Delaware Bay and subsequently in Chesapeake Bay on the
mid-Atlantic coast of the USA, between 1957 and 1959 [72].
An estimated 90-95% of affected oysters died within 2
years [73,74]. The aetiological agent, Haplosporidium nelsoni,
is an introduced parasite of the Pacific oyster, C. gigas in
Asia, where it exists at low prevalence and without causing
mortality [75]. Like others in the same genus, H. nelsoni has
never been transmitted experimentally and an intermediate
or alternative host is suspected [76]. Oyster density is not a
factor and infections can be acquired in the absence of
nearby infected oysters. Infections are acquired during the
late spring and summer, and parasites proliferate most
rapidly at temperatures greater than 20°C. Mathematical
modelling suggested that climate warming could shift the
parasite northward, and indeed epizootics were recorded in
Maine (1995 and 2010) and eastern Canada (2002) as the
water temperatures have increased [77-79]. Warm tempera-
ture, itself, however, is not a sufficient trigger, as epizootics
caused by H. nelsoni have not been reported in the southeast-
ern USA where the parasite is present [80,81] and
temperatures are high.

(c) Marteiliosis

In 1968, not long after the first MSX disease outbreak in the
USA, two protozoans both in the genus Marteilia: M. refrin-
gens and M. sydneyi, were identified as the causes of disease
and heavy mortalities in the flat oyster, Ostrea edulis, in
France and the Sydney Rock oyster, Saccostrea glomerata, in
Australia, respectively [17,22]. Since the initial outbreaks,
the reports of the parasite have become widespread. Marteilia
refringens is now found in Europe from Sweden and Britain in
the north to Greece and Croatia in the Mediterranean [18] and
in Australia, M. sydneyi is now found over 900 km south of
where it was first reported [23]. The spread is thought to
have occurred via the commercial movements of stocks
among growers in different regions; however, neither patho-
gen is directly transmitted among oysters and potential
alternative hosts have been described [19,24], although a
complete life cycle has not yet been elucidated. Thus, an
alternative host would have had to be already present in
the new locations or moved along with the oysters. The gen-
otype of the parasite that is predominantly in mussels is
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somewhat different from that found mostly in oysters, but
both forms can parasitize both hosts leading to the possibility
that mussels, which experience relatively low disease levels,
might act as an alternative/reservoir host for the oyster para-
site in areas where both are cultured [82]. Both M. refringens
and M. sydneyi are acquired, proliferate and cause oyster
mortality during the warm months of the year.

(d) Bonamiosis

By 1979, the French flat oyster industry, already hit by
M. refringens, was devastated by another protozoan, Bonamia
ostreae. Like most members of the genus, B. ostreae can be
transmitted directly among oysters; thus movements of
seed or adult oysters, and even larvae [83], from enzootic
regions are potential sources of infection. The well-documen-
ted history of transfers of flat oysters, and likely the parasite,
too, from California to France and Spain, and thence to
other regions of Europe, has been previously described [28].
Bonamia ostreae prevalence is greatest during warm months,
but infections show no strong seasonality [83]. In fact,
in vitro experiments showed greater survival of the parasite
at 4-15°C than at 25°C [84]. Density and handling stress
appear to enhance infections, which develop more rapidly
in cultured than in wild stocks [29].

In 1986, the New Zealand dredge oyster, Tiostrea (Ostrea)
chilensis, suffered a loss of at least 60% in the area of Foveaux
Strait. By 1992, only 9% of the stock that was present in
1975 remained [85]. The causative agent was identified as
B. exitiosa [32], which was subsequently identified in oyster
samples collected in 1964 [33]. Since then, the same pathogen
has been detected in several species of oysters in North
and South America and Europe as well as Australia/
New Zealand [86], although whether it was introduced into
any of these regions is not known.

(e) QPX

Most known bivalve diseases have affected oyster species,
although a recently described disease, caused by an unnamed
thraustochytrid parasite called QPX (quahog parasite
unknown) has caused mortality in the hard clam (=quahog),
Mercenaria mercenaria, in the northeastern USA [41,87]. In con-
trast to the previously described obligate pathogens of oysters,
QPX is considered to be a facultative parasite, which, like
others in the group, can live on macroalgae and detritus [88].
In fact, QPX DNA can be found widely distributed in environ-
ments where QPX-associated clam mortalities are documented
[89]. The parasite appears to be favoured by colder tempera-
tures [42] and is not found south of Chesapeake Bay. QPX
can be transmitted directly and high density tends to increase
prevalence [43,90], but there is no evidence that it is associated
with hatchery production of clam seed [91]. On the other hand,
QPX has been linked to clam culture practices, including the
use, in northern climes, of southern seed clams, which grow
fast, but are more susceptible to infection [92].

(f) Bacterial diseases of clams and oysters

Two bacterial diseases, one of the Manila clam, Venerupes
(=Ruditapes) philippinarum in Brittany, France, and the other
of the oyster, C. virginica, in New England, USA were first
observed in the late 1980s. Both are diagnosed by similar ‘exter-
nal’ signs—an anomalous ring of conchiolin around the inner

edge of the valves, formed in response to the bacteria in the
extrapallial space. They are called brown ring disease (BRD)
and juvenile oyster disease (JOD), respectively, but are
caused by quite different bacterial species. The aetiological
agent of BRD is a marine Vibrio: V. tapetis [93]; that of JOD
is an a-proteobacterium, Roseovarious crassostreae [45]. The
latter, which has been renamed roseovarious oyster disease
(ROD), affects juvenile oysters and can result in mortalities of
up to 90% within a week of first detection [46]. BRD affects
both juveniles and adults, killing up to 100% of clams if the bac-
terium is able to penetrate soft tissues [94]. Both diseases
appeared first and have had the most detrimental effect, in cul-
ture settings, although BRD signs have also been found at very
low levels in naturalized Manila clams [47,51].

ROD outbreaks are triggered by temperatures rising above
about 21°C [47]. In contrast, BRD has been considered a ‘cold
water’ disease because experimental infections were more suc-
cessful at 14°C than at 21°C; however, the first outbreaks were
in spring and summer [93] and a modelling exercise that
included elements of the clam defence system as well as bac-
terial temperature tolerances, suggested that a temperature
increase would increase the risk of disease [51]. Whereas cul-
ture conditions, including high densities and handling stress
are known to exacerbate both diseases [46,49], another element
is at play in the case of BRD. Venerupes philippinarum is an intro-
duced species, brought, in the early 1970s, to France where it
initially adapted well to culture [95]. Vibrio tapetis is a native
and does not cause disease in the native V. decussatus [94],
arguing that BRD is the result of an introduced host being
susceptible to disease caused by a resident bacterium.

(g) OSHV-1
Herpes-like viruses were first found by Farley [96] in 1970 in
C. virginica that died in cages under elevated water temperature
(28-30°C) in Maine, USA. They were found in intranuclear
inclusions of aggregated cells in haemolymph sinuses. The
viruses were hexagonal, 70-90 nm in diameter and had a
single coat, characteristic of herpes-like viruses. They were
enzootic under natural temperature conditions in Marsh and
Piscataqua Rivers of Maine but did not cause mortalities
except under elevated temperatures.

Herpes-like viruses were not observed or reported to cause
oyster mortalities for about 20 years after Farley’s initial report.
Then in summer of 1991, herpes-like viruses were found in
moribund larvae of C. gigas that experienced abnormal mortal-
ities in hatcheries in northern France [97]. In the same year,
herpesviruses associated with mortalities of hatchery-reared
Pacific oyster larvae were reported in New Zealand [98]. In
July 1993, herpesviruses were observed in C. gigas spat experi-
encing mortalities in France [99]. The mortalities up to 80-90%
occurred at the beginning of July in both wild and hatchery-
produced spat at four locations and were over within a week.
It was suggested that warm temperature and overcrowding
might play a role in disease development. Mature viral par-
ticles were found in Pacific oyster larvae cultured at 25-26°C
but not in those cultured at 22-23°C [64]. Although no bio-
chemical diagnosis was made in the early reports, the
morphology, size and cellular location of the viruses observed
by electron microscopy strongly resembled those of herpes-like
viruses.

Summer mortalities of C. gigas have been reported for
many decades, although in most cases the causative agent
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was unknown. Summer mortalities were observed as early as
1945 in Japan [100] and in 1950 in the USA [101]. In France,
summer mortalities began in the mid-1970s and intensified
over the next three decades. They were associated with a
complex of interactions between host, environment and oppor-
tunistic pathogens [55]. Since 2008, an extreme mortality has
been associated with a new and highly virulent oyster herpes
variant, OsHV-1 pVar [59]. The mortality is associated with
warm water temperatures and generally not observed below
16°C [102]. In the USA, severe summer mortalities of spat
have been observed annually in Tomales Bay, California,
since 1993, probably due to OsHV-1 infections [103,104]. In
Australia, a herpes-like virus has been reported in haemocytes
of adult flat oyster Ostrea angasi [105]. The first confirmed cases
of OsHV-1, causing heavy mortality of wild Pacific oysters,
occurred in 2010 and 2011 [106].

OsHV-1 has a broad host range. In addition to hosts men-
tioned above, herpes-like viruses have been observed in
European flat oyster O. edulis, dredge oyster T. chilensis,
clam V. decussatus, hard clam M. mercenaria, Manila clam
V. philippinarum and scallops [107-110]. OsHV-1 has been
detected in Crassostrea sikamea, C. virginica, O. edulis, Mytilus
galloprovincialis and V. phillipinarum in California [111]. It is
also detected in diverse bivalve molluscs in China, including
C. gigas, Crassostrea hongkongensis, Chlamys farreri, Patinopecten
yessoensis, Meretrix meretrix, V. philippinarum and Scapharca
broughtonii [112].

Starting in the early 1990s, mortalities began to occur in
Chinese scallops C. farreri cultured in lantern nets in Shan-
dong, China. The mortalities occur in early August when
the water temperature exceeds 28°C and last for about 20
days, decreasing with decreasing temperatures [1]. Cumulat-
ive mortality can reach as high as 90% in about two to three
weeks [60]. At Rizhao in southern Shandong, mortalities
were first observed in 1994 and continued thereafter. Mortal-
ities worsened in 1997 and 1998, reaching 80% at many sites
[1]. For many years, the cause of the scallop mortality in
China was unknown, and suspected causes included stress
caused by high temperature, overcrowding, starvation and
parasites. Later, it was demonstrated that the mortality is
caused by a variant of OsHV-1 virus [113].

Temperature might have played a role in the development
of OsHV-1 infections in scallops as well as in oysters. The
worsening of scallop mortality in 1997 and 1998 correlates
with rising ocean temperature. The 11-month running mean
sea surface temperature in Yellow Sea that covers Rizhao
and most of the Chinese scallop culture sites increased from
about 15°C in 1995 to 19°C in 1998 [114]. But other changes
happened along with increasing temperature. The period
between 1994 and 1997 was also the time when aquaculture
production of Chinese scallops reached its peak (figure 1a).
Field observations noted that scallop farmers often over-
stocked their lantern nets by two to three times their capacity
[1]. The overcrowding was not limited to the cage. Bays and
coastal areas were densely populated with scallop longlines
and cages, which might have exceeded the carrying capacity
of the culturing environment [1]. The high density of cultured
scallops at cage level could have stressed scallops, while a
high density of cages might have facilitated easy transmission
of the virus and large-scale epizootics. The availability of
hosts in high numbers might also promote the proliferation
and mutation of the virus. Similarly, in France, OsHV-1 out-
breaks in C. gigas also followed a period of rapid expansion of

(a) Chinese scallop
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Figure 1. Large-scale aquaculture production precedes outbreaks of OsHV-1
in Chinese scallop C. farreri in China (a) and in Pacific C. gigas cultured in
France (b). Arrows point to first reports of OsHV-1 caused mortalities. Pro-
duction statistics for Chinese scallop are estimated based on total scallop
production data from Ministry of Agriculture of China and personal knowledge
of regional production of Chinese scallop. Production of C. gigas in France is
extracted from United Nations Food and Agriculture Organization’s database.

the oyster aquaculture industry (figure 1b). Thus, it is possible
that large-scale aquaculture at high densities, or ocean warm-
ing, or both could have contributed to the large-scale
epizootics of OsHV-1 in scallops and oysters.

3. Genomes of molluscs and their parasites

Disease and mortality are the outcome of host—parasite
interactions, which are complex and poorly understood in mol-
luscs. Genomic tools and resources are helpful for studying
host—parasite interactions. Whole genome or transcriptome
sequencing can generate a complete inventory of genes that
participate in host—parasite interactions. Recent advances in
next-generation sequencing technologies have greatly reduced
the cost of transcriptome and whole-genome sequencing. The
whole genomes of three molluscs have been sequenced: the
Pacific oyster C. gigas [115], the owl limpet Lottia gigantea
[116], and the octopus Octopus bimaculoides [117]. These three
molluscan genomes give unprecedented insights into the
genome architecture of molluscs as well as a rich repertoire
of immune-related genes for studying host—parasite inter-
actions. In C. gigas, many gene families related to immune
responses are expanded [115,118]. The expansion has resulted
in great diversity in sequence, structure and function of
immune and stress response genes, which may be central to
oysters’ remarkable resilience against highly stressful and
pathogen-rich environments [6]. In O. bimaculoides, expanded
gene families included C2H2 zinc-finger proteins, inter-
leukin-17-like genes, and G-protein-coupled receptors, which
may be involved in regulating the immune system [117].
A survey sequence of the pearl oyster has also been published
[119], and genomes of C. virginica [120], Pinctada martensii and
P. yessoensis are being sequenced.
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Transcriptomes have been sequenced in many molluscs
and identified many genes related to the immune response
[6,121,122]. Transcriptomes are often sequenced after challenge
with pathogens, and transcriptomic comparison between
control and challenged molluscs can suggest the possible
involvement of candidate genes in immune responses.

Several molluscan pathogen genomes have also been
sequenced [122]. They include OsHV-1 [123], P. marinus
(PRJNA46451) and several Vibrio species [124,125], and com-
parative analysis of the last has identified antibiotic genes.
Clearly, the number of pathogens that have been sequenced
is small, and further genome and transcriptome sequencing
of molluscan parasites are needed. Genome sequencing of
some molluscan pathogens is limited by the inability to culture
them in vitro, although metagenomics and metatran-
scriptomics can be used to sequence and identify potential
pathogens in the environment and the host [126,127].

4. Host immune responses

Host—parasite interactions are extremely complex, and recent
genomic studies have led to the identification of thousands of
immune-related genes in molluscs. Infection of the Pacific
oyster by OsHV-1 alone induces the upregulation of 1942
genes [128]. The large numbers of candidate genes and their
possible roles in molluscan immunity have been the subjects
of several recent reviews [6,129-131]. Below is a brief summary
of the basic components of mollusc’s immune response to some
important pathogens.

Recognition by the host of parasites as non-self triggers
immune signal transduction and host immune responses.
The recognition of parasites or foreign agents is accomplished
by immune receptors. In vertebrates, highly diverse and
specific antibodies are produced as part of the adaptive
immune system and used to recognize specific pathogens
based on immune memory. Innate immunity uses relatively
few receptors that can recognize broad pathogen-associated
molecular patterns (PAMPs). Invertebrates such as molluscs
have no adaptive immunity and rely solely on innate or non-
specific immunity for host defence. However, molluscs and
some other invertebrates have greatly expanded sets of innate
immune receptors, which may provide great specificity in
immune recognition in the absence of adaptive immunity,
and without the autoimmune costs of adaptive immunity.

(a) Toll-like receptors
Toll-like receptors (TLRs) are an ancient family of pattern rec-
ognition receptors (PRRs) that are involved in pathogen
recognition and immune modulation in diverse organisms
[132]. TLRs have been identified and implicated in immune
responses in all molluscs studied so far, including C. farreri
[133], C. virginica [121], V. philippinarum [134], M. galloprovincia-
lis [135] and C. gigas [118,128]. The C. gigas genome encodes an
expanded set of 83 TLRs, compared with nine in the fruit fly,
10 in humans and 12 in mice, and the expanded oyster TLRs
have shown great diversity in structure and function
[118,128]. The expansion and diversification of TLRs may be
essential in the oyster’s adaptation to diverse pathogens
under dynamic environmental conditions [6].

Upon binding to PAMPs, TRLs activate downstream path-
ways through either the myeloid differentiation factor
88 (MyD88) or an MyD88-independent pathway (figure 2).

Downstream factors of the TLR pathway include TNF (tissue
necrosis factor) receptor-associated factor 6 (TRAF6), transform-
ing growth factor-beta-activated kinase 1 (TAK1), nuclear factor
kappa-B (NF-«B), inhibitor of NF-xB (IkB), IkB kinase (IKK),
cJun N-terminal kinase (JNK), activator protein 1 (AP-1),
Fas-associated protein with death domain (FADD), caspases,
TRAF3 and interferon regulatory factors (IRFs) [132]. NF-«xB
and AP-1 are transcription factors that activate the transcription
of other immune regulators and effector genes, while caspases
participate in apoptosis (figure 2). TLRs may also activate
TRAF3 through an MyD88-independent pathway, leading to
the induction of IRFs.

TLRs and TLR pathways are activated by infections in
molluses [129,130]. In the Pacific oyster, four TLR-like and
four MyD88-like genes along with several genes for down-
stream factors are highly upregulated by OsHV-1 infections
[128]. Some upregulated TLR-like and MyD88-like genes
lack essential domains and may play an antagonistic role in
immune regulation.

(b) RIG-1 receptors and signalling

Retinoic acid-inducible gene (RIG) 1 like receptors (RLRs) are
a group of PRRs that recognize viral nucleic acids and trigger
antiviral inflammatory responses. Upon activation, RIG-1
receptors send signals through TRAF3, TRAF6 and FADD
to activate terminal transcription factors and apoptosis
(figure 2). Several RLRs and downstream factors such as
NFkB, AP-1, IRFs and IF44 L, are highly upregulated in the
Pacific oysters infected by OsHV-1 [128,136]. Genes involved
in RNA destruction or editing such as ribonucleases, RNA-
specific adenosine deaminase and Dicer-like proteins are
also highly upregulated, and ribonuclease inhibitors are
downregulated, suggesting that RIG-1 receptors and viral
RNA destruction may be critical to oyster’s antiviral response
against OsHV-1 [128]. Oyster’s immune response to poly I:
C, a mimic of dsRNA, has been demonstrated in the Pacific
oyster [137].

(c) Lectins and other carbohydrate pattern recognition
receptors

Lectins and other carbohydrate PRRs recognize characteristic
carbohydrates and glycoproteins located on cell walls of bac-
teria and other microbes as PAMPs. They bind, agglutinate
and opsonize microbes to promote phagocytosis and destruc-
tion. C-type (calcium-dependent) lectin is the most common
lectin found in molluscs. The C. gigas genome encodes 266
and the M. galloprovincialis transcriptome contains 154 C-type
lectin genes, compared to 34 found in Drosophila melanogaster
and 81 in Homo sapiens [115,129]. Molluscan C-type lectins
agglutinate bacterial cells and are upregulated by bacterial chal-
lenges in several molluscs including C. farreri and C. virginica
[130,138]. Crassostrea virginica galectins, a family of lectins that
bind to B-galactosides, selectively recognize P. marinus that
may use galectin to gain entry to host cells [139,140]. The down-
regulation of galectin after P. marinus infection [141] may
represent an attempt of the host to limit infections.

Other sugar-binding PRRs that may participate in immune
responses include fibrinogen-related proteins (FREPs), pep-
tidoglycan recognition proteins (PGRPs) and Gram-negative
binding proteins (GNBPs). The freshwater snail Biomphalaria
glabrata has highly diverse FREPs with immunoglobulin-like
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Figure 2. Hypothetical immune pathways in molluscs based on genes identified and their functions in model organisms. Genes shared in blue are receptors, genes
in red are immune effectors, genes in green are transcriptional factors and genes in grey are suspected but have not been identified or confirmed in molluscs. IFN,
interferon; IFNR, IFN receptor; IL-17, interleukin 17; IL-17R, IL-17 receptor; TNF, tissue necrosis factor; TNFR, TNF receptor; TLR, Toll-like receptor; MyD88, myeloid
differentiation primary response gene 88; TRIF, TIR-domain-containing adapter-inducing interferon-[3; ADAR, double-stranded RNA-specific adenosine deaminase;
RIG-1, retinoic acid-inducible gene 1; MDA5, melanoma differentiation-associated protein 5; DCL, Dicer-like; AGO2, argonaute 2; Ribon, ribonucleases; PGRP, pep-
tidoglycan recognition protein; GNBP, Gram-negative binding protein; FREP, fibrinogen-related protein; GPCR, G-protein-coupled receptor; SR, scavenger receptor;
JAK, Janus kinase; STAT, signal transducer and activator of transcription; SOCS2, suppressor of cytokine signalling 2; IRF, interferon regulatory factor; BCL2,
B-cell lymphoma 2; BAX, Bd-2-associated X; C, cytochrome ¢; Casp, caspase; IAPs, inhibitors of apoptosis; FADD, Fas-associated protein with death domain;
TRAF, TNF receptor-associated factors; JNK, c-Jun N-terminal kinases; NFkB, nuclear factor kappa B; IkB kinase (IKK); IKK, 1B kinase; TBK1, TANK-binding
kinase 1; TAK1, transforming growth factor-beta-activated kinase 1; AP-1, activator protein 1; HSPs, heat shock proteins; CYP450, cytochrome P450; C1q, globular
head C1q domain containing protein; IF44 L, interferon-induced protein 44-like; MCO, multi-copper oxidase; SO, spermidine oxidase; MP, metalloproteinase; SOD,
superoxide dismutase; GPX, glutathione peroxidase; GST, glutathione S-transferase; CAT, catalase; AMP, antimicrobial peptide; TRIM, tripartite motif family; and 1SGs,

[FN-stimulated genes. (Adapted from [6].)

domains that arise from somatic variation similar to receptors
of adaptive immunity of vertebrates [142]. Large numbers of
FREPs are also found in other molluscs: 190 in the C. gigas
genome [118] and 150 in the M. galloprovincialis transcriptome.
The C. gigas genome encodes nine PGRPs [118]. One C. gigas
PGRP is upregulated by Marinococcus halophilus and Vibrio
tubiashii exposures [143]. Also, GNBP or $-1,3-glucan binding
protein is involved in responding to Vibrio infections in
C. farreri [144] and Perna viridis [145]. Many canonical
immune receptors and response genes including PGRPs and
GNBPs show the highest levels of expression in the digestive
gland of C. gigas, suggesting that the gut may be a primary
site of host—parasite interactions [115].

(d) The complement system
The complement system is an important part of the immune
system. It functions through classical, alternative and lectin

pathways, leading to the agglutination, opsonization, chemo-
taxis and lysis of foreign cells. The classical pathway requires
the activation of Clq by antigen:antibody complexes.
Although molluscs do not produce antibodies, many Clq
domain containing proteins (C1qDCs) have been found: 321
in C. gigns genome, 1274 in M. galloprovincialis genome and
187 in C. virginica transcriptome, compared with four in sea
urchin and 31 in human [115,121,129]. The globular Clq
domain recognizes a broad range of ligands, and its expansion
in bivalve molluscs may provide great binding specificity to
diverse pathogens. The expanded C1qDCs show diverse
expression profiles with some responding to bacterial and
viral pathogens and others to abiotic stresses [118,128,136].
Although incomplete, other components of the complement
pathways such as C3, factor B, membrane attack complex and
perforin domain containing proteins have been identified
[129,146], pointing to the presence of an ancient but complex
complement system in bivalve molluscs.
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(e) Cytokine receptors and apoptosis

Cytokines such as TNFs and interleukin 17 (IL-17) and their
receptors are important regulators of immunity, inflammation
and apoptosis [147]. Several TNF, TNFR and downstream
TRAF genes of C. gigas are upregulated by bacterial and/or
OsHV-1 challenges [118,128]. TNFs promote apoptosis, but
the activation of TNF pathway by OsHV-1 in C. gigas coincides
with significant upregulation of several inhibitors of apoptosis
[128,148,149]. The complex regulation of apoptosis may reflect
dynamic competition for control between the host and patho-
gens [150]. Several IL-17 and downstream genes are highly
upregulated by OsHV-1 infection in C. gigas [128]. A putative
IFN-like gene (CGI_10023118) has been identified in C. gigas
[151]. However, this gene did not respond to OsHV-1 chal-
lenge, while several downstream genes such as JAK, STAT,
IRFs and IF44Ls are highly upregulated [128]. It is still uncer-
tain if IFN exists in molluscs or if its role is assumed by IL-17
as the two cytokines share downstream pathways (figure 2).

(f) Scavenger receptors

Scavenger receptors (SR) are PRRs that recognize modified
low-density lipoproteins and participate in the scavenging
or removal of foreign macromolecules [152]. Like sea urchins,
bivalve molluscs have many SR-like genes: 71 in C. gigas
genome and 62 in C. virginica transcriptome, compared
with 16 in humans [115,118,121]. Several C. wvirginica SR
transcripts are upregulated by R. crassostreae [153]. One of
C. gigas SRs is upregulated by OsHV-1 infection, but two
are downregulated [128].

(g) G-protein-coupled receptors

G-protein-coupled receptors (GPCRs) are a large family of
seven-transmembrane domain receptors that regulate diverse
cellular processes by sensing molecular cues outside the cells
including light-sensitive compounds, odours, hormones and
neurotransmitters. OsHV-1 infection of C. gigas induces upregu-
lation of a large number of GPCR genes, including those coding
for prostaglandin E2 receptors, FMRFamide (Phe-Met-Arg-Phe)
receptors, cholecystokinin receptors, melatonin receptors,
prolactin-releasing peptide receptors, adenosine receptors and
dopamine D2-like receptors [128]. These results suggest
GPCRs play an important role in the oyster’s immune response.
In scallops, several neuroendocrine signalling systems may be
involved in immune response or regulation [130].

(h) Immune effectors

The recognition of pathogens by receptors triggers immune
responses and the production of effectors that directly act on
pathogens and foreign substances for their destruction and
removal. A large number of immune effectors have been identi-
fied in molluscs including diverse antimicrobial peptides
or proteins (AMPs), lysozymes, proteases, ribonucleases and
oxidases [6,129-131].

Diverse cysteine-rich AMPs have been reported in mus-
sels including defensins, big defensins, mytilins, myticins,
mytimacins, mytimycins, myticusins and mytiCRPs [129].
Defensins [154,155], big defensins [156], proline-rich peptides
(Prp) [157] and bactericidal / permeability-increasing proteins
(BPI) [158,159] have been identified in oysters [131]. Most of
these AMPs have shown antimicrobial activities in vitro.
Oyster AMPs are highly diverse and variable in copy

number [160], with different AMPs differing in antimicrobial m

potency [157].

Lysozymes degrade bacterial cell walls by hydrolysing
glycosidic bonds in peptidoglycans. Several lysozymes have
been identified and implicated in antibacterial defence
in M. galloprovincialis [129]. Recombinant lysozymes from
C. gigas and C. farreri inhibit bacterial growth [161,162].

Proteases may play an important role in the degradation of
foreign proteins as part of the immune system. In C. gigas
infected by OsHV-1, several metalloproteinase genes are
upregulated, and several genes encoding tissue inhibitors of
metalloproteinases and serine protease inhibitors are down-
regulated [128], suggesting proteinase activity is heightened,
probably for the destruction of viral proteins or damaged
host proteins. Parasites may use proteases during the infection
process. Two serine protease inhibitors of C. virginica, named
cvSI-1 and cvSI-2, have strong affinity and inhibitory effects
on proteases of P. marinus [163-165].

Several ribonuclease genes are upregulated and ribonuclease
inhibitor genes downregulated in C. gigas infected by OsHV-1,
probably in a concerted effort to destroy viral RNAs [128],
which together with the high upregulation of RNA sensing
RIG-1/MDAS5 receptors supports the idea of the destruction of
viral RNAs as a major antiviral response in C. gigas.

Oxidative burst is an important component of immune
response where reactive oxygen species such as superoxide
anion (O;), nitric oxide (NO) and hydrogen peroxide (H;O,),
are created by oxidases and act to degrade invading cells and
macromolecules. In C. gigas infected by OsHV-1, several
oxidase genes including cytochrome P450, multi-copper and
spermine oxidases are highly upregulated, while antioxidant
genes such as extracellular superoxide dismutase, glutathione
peroxidase and glutathione S-transferase are downregulated,
suggesting a concerted effort in creating an oxidative burst
for host defence [128].

5. Genetics of disease resistance

Host immune response is complex and involves many genes,
and genetic variation in these genes can affect the effectiveness
of immune response or disease resistance. Understanding the
genetic variation in disease resistance is important for modelling
the dynamics of disease transmission [166]. Because many
marine molluscs are important aquaculture species, studies
on disease resistance, especially the identification of disease-
resistance markers, can contribute to the development of
disease-resistant stocks through marker-assisted selection [167].

Genetic variation in disease resistance has been demon-
strated through selective breeding of disease-resistant oysters
[6]. Selective breeding in oysters has improved resistance
against several diseases including MSX, Dermo and ROD in
C. virginica [167-170], QX disease in Sydney rock oyster [171]
and OsHV-1 infections in C. gigas [172]. The speed of improve-
ment varies, depending on host species and diseases, possibly
due to differences in infection mechanisms, host responses and
effective selection pressure.

Advances in molecular genetics and genomics have
enhanced our ability to identify disease-resistance genes and
understand genetics of disease resistance. Valuable resources
such as large numbers of genetic markers, genetic maps,
transcriptomes and whole-genome sequences have been devel-
oped in several marine molluscs [6,122]. Quantitative trait loci
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for OsHV-1 and Dermo disease resistance have been identified
and mapped [173,174]. Studies on host immune response
genes have led to the identification of genetic variations affect-
ing disease resistance. In C. virginica, variation in serine
protease inhibitor 1 (CvSI-1), which inhibits proteases from
P. marinus [163,164], is associated with P. marinus resistance
[175,176]. Variations in lysozyme and Cu/Zn superoxide dis-
mutase genes are associated with resistance to V. anguillarum
in scallops [177,178]. Variation in phenoloxidase is associated
with QX resistance in Sydney rock oysters [179]. Polymorphism
and variation in expression of AMPs may be associated with
summer mortality resistance in the Pacific oyster [180].

With the increasing availability of genomic resources,
advanced approaches such as genome-wide association
studies may facilitate rapid identification of disease-resistance
genes. The high polymorphism and diversity in immune-
related genes of molluscs provide a good opportunity for
studying immune gene function through association studies
as well as for understanding the genetics of disease resistance.

6. Conclusion and perspectives

An increasing number of infectious diseases have been
reported affecting marine molluscs. Some of the diseases
have caused mass mortalities in commercially important
molluscs. Although the route and mechanism of transmission
are not completely understood, essentially most diseases of
molluscs, and especially of cultured species, can be linked
to human activities that either introduced new pathogens to
naive populations or made environmental conditions condu-
cive to disease outbreaks (table 1). Human activities have led
to the introduction of pathogens such as H. nelsoni and Bonamia
spp. into new regions. Climate warming due to anthropo-
genic activities is associated with the range extension of
P. marinus-caused epizootics, and elevated temperature
promotes the spread of many other pathogens including
OsHV-1. Hatchery production and intensive farming place
molluscan larvae, juveniles and adults at extreme densities
and create incubators for bacterial and viral pathogens,
producing stress and amplifying what is found naturally in
the environment. High-density conditions at both local and
ecosystem levels in large-scale aquaculture along with ocean
warming may have contributed to the outbreaks of OsHV-1
in Chinese scallop. The possibility that large-scale aquaculture
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and the management of marine diseases [181].

Disease and mortalities are the outcome of complex host—
parasite interactions influenced by the environment. Our
ability to understand transmission dynamics and predict
future disease outbreaks depends on knowledge of host—
parasite interactions. Recent advances in genomics have pro-
vided insights into host and parasite genomes, and revealed
surprisingly sophisticated innate immune systems in mol-
luscs. All major innate immune pathways are found in
molluscs, and many immune receptors, regulators and effect-
ors are greatly expanded, providing remarkable diversity in
immune response genes. The great diversity in sequence,
structure and functions of immune response genes may be
key to molluscs’ defence against diverse pathogens in the
absence of adaptive immunity. Genetic variation associated
with disease resistance has been identified and used for
modelling disease processes [6,166].

Despite recent advances, our understanding of molluscan
immune systems and their interaction with parasites remains
limited. Further efforts are needed to answer some of the key
questions on the emergence of molluscan diseases and mortal-
ities, such as: (i) Where in Asia did the MSX pathogen,
H. nelsoni originate, how was it introduced into the USA, and
what is/are its alternative host(s)? (ii) Are OsHV-1 outbreaks
in oysters and scallops due to mutations in the virus or changes
in environmental conditions? (iii) How do environmental
factors such as temperature, salinity, ocean acidification and
stress affect host—parasite interaction and disease? and
(iv) How fast can a host develop resistance to a particular dis-
ease? Genomic and phylogenomic analyses of parasites are
needed to develop diagnostic tools for epidemiological studies
[182], determine possible transmission routes and identify
virulence factors. Also needed are in-depth studies on
genetic variations in both parasite and host that determine the
outcome of disease and permit better predictions on emerging
epizootics [183].
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