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Linking marine epizootics to a specific aetiology is notoriously difficult.

Recent diagnostic successes show that marine disease diagnosis requires

both modern, cutting-edge technology (e.g. metagenomics, quantitative real-

time PCR) and more classic methods (e.g. transect surveys, histopathology

and cell culture). Here, we discuss how this combination of traditional and

modern approaches is necessary for rapid and accurate identification of

marine diseases, and emphasize how sole reliance on any one technology or

technique may lead disease investigations astray. We present diagnostic

approaches at different scales, from the macro (environment, community,

population and organismal scales) to the micro (tissue, organ, cell and geno-

mic scales). We use disease case studies from a broad range of taxa to

illustrate diagnostic successes from combining traditional and modern diag-

nostic methods. Finally, we recognize the need for increased capacity of

centralized databases, networks, data repositories and contingency plans for

diagnosis and management of marine disease.

1. Introduction
Marine diseases may have important ecological, economic, conservation and

human health impacts [1–4]. An increase in the reported frequency and severity

of marine diseases [5,6] demands that complementary tools and approaches be

used for rapid and effective diagnosis. Such tools are also critical to establish

the essential baseline data (box 1) necessary for comparative investigations of

marine epizootics [6,16,17]. Technologic approaches have recently advanced by

leaps and bounds, providing exciting new diagnostic tools such as high-through-

put sequencing, -omics (e.g. genomics, proteomics and metabolomics), optics,

analytical chemistry and molecular biology. However, to fully understand the

disease process and to place it within an ecological context, results from these

novel methods must be interpreted alongside data collected by more classic or tra-

ditional means such as gross observation of lesions, transect surveys, microscopic
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Box 1. Surveillance is necessary for detection: the case of VHSV in the Pacific Northwest.

In 1988, two Washington fish hatcheries were surprised to find their returning Chinook salmon Oncorhynchus tshawytscha and

Coho salmon O. kisutch tested positive for viral haemorrhagic septicaemia virus (VHSV; figure 1), a disease previously

known only from freshwater. The industry destroyed 3.8 million salmon eggs in an attempt to contain the virus [7,8]. Sub-

sequent testing of marine species such as Pacific cod Gadus macrocephalus and Pacific herring Clupea pallasii demonstrated

their infection with VHSV in wild populations [9–11]. Molecular tools led to a better understanding of the differences

among different VHSV strains, including virulence and host susceptibilities. The combined tools of the epidemiologist

and the molecular virologist have clarified transmission dynamics of this pathogen and its rhabdovirus cousins, infectious

haematopoietic necrosis virus and spring viraemia of carp virus [12–14]. Risk-based surveillance has controlled disease in

aquaculture settings, resulting in the elimination of VHSV from Denmark’s rainbow trout O. mykiss farms [15].

Figure 1. Internal lesions of VHSV-infected Oncorhynchus mykiss. Diffuse, multi-
focal haemorrhaging of liver, testes, intestine, swim bladder, skeletal muscle and
perivisceral adipose tissue visible. Inset: Transmission electron micrograph of rhab-
dovirus. (Photo by Aquatic Animal Health Program, Cornell University.)
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observation of cellular changes, disease transmission assays in

experimental conditions, histopathology and microbiology

[18,19]. An effective approach for disease diagnosis and identi-

fication also requires examination of the problem at multiple

levels of biological complexity (figure 2), starting with an

environmental assessment and continuing to the genome

level. In an effort to improve research and mitigate future dis-

ease events, we outline a series of approaches to effectively and

comprehensively evaluate marine epizootics, and provide case

studies to emphasize the utility and context of different

approaches.

(a) Past and current marine disease diagnoses: lessons
from mass mortalities of echinoderms

In January 1983, a mass die-off of the Caribbean sea urchin

(Diadema antillarum) started in Panama and swept through

the Caribbean, causing 85–100% mortality in local popula-

tions [20–22]. This massive decline contributed to a phase

shift from corals to macroalgae-dominated reefs [22–24] and,

until recently, this epizootic was unparalleled in the immediate

and cascading destruction it caused to a marine ecosystem.

Even now, 30 years later, D. antillarum populations and the

reefs that depend on them have yet to recover [25,26], and

Caribbean coral reef ecosystems are in continuous decline due

to synergisms with stressors including overfishing, hurricanes,

declines in water quality, thermal stress and disease [3,5].

Published records of the D. antillarum mass mortality

included photographs and descriptions of gross lesions, and
some local environmental data, host behavioural changes and

host population densities [21,27,28]. The disease was not corre-

lated with temperature or salinity, and other urchin species

stayed healthy, suggesting a host-specific pathogen or condition

as the culprit [20]. The rapid spread also suggested a water-

borne agent [28], with a possible source in ballast waters

transported from the Pacific Ocean to the Caribbean Sea by

ships traversing the Panama Canal [20]. Because the scientific

community failed to diagnose the disease at the time and did

not properly preserve samples for later analysis, the pathogen

and environmental circumstances that transformed Caribbean

coral reef communities were never determined.

Three decades after the Diadema die-off, a massive marine

disease event occurred in the northeast Pacific ocean and

now rocky intertidal populations along the west coast of the

USA are at the precipice of a transformation similar to that

observed in the Caribbean coral reefs. Beginning in June

2013, a disease known as ‘sea star wasting disease’ (SSWD)

caused mass mortality in 20 sea star species [29]. The number

of host species affected, geographical range, time scale and

associated death is unprecedented [30–32]. Cascading large-

scale ecological impacts may occur as a consequence of this

event. For example, the loss of ochre (Pisaster ochraceus) and

sunflower (Pycnopodia helianthoides) sea stars could lead to mas-

sive shifts in the intertidal and subtidal communities [24,33].

In contrast to the Caribbean urchin die-off, the response to

the SSWD event was rapid and coordinated. Supported

by emergency funding, scientists identified a potential causa-

tive agent and its ecological context using classic (gross

examination, microbiology, histopathology and transmission

electron microscopy (TEM)) and modern (high-throughput

sequencing metagenomics and quantitative real-time poly-

merase chain reaction (qPCR)) diagnostic techniques, coupled

with transmission experiments to identify a virus associa-

ted with SSWD [29]. Also, citizen scientists used social

media to document baseline conditions and disease spread

(C. M. Miner 2015, personal communication (to C.A.B.)). The

SSWD event exemplifies how scientists can proactively evalu-

ate an ongoing disease event, at multiple scales of biological

complexity, using a union of modern and classic methods.
2. Systems-based and iterative approach to
disease diagnosis

(a) Environment
Changing environmental factors can have major effects on

disease [3]. This is especially true for the marine environment



population/community

organism
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Figure 2. Disease diagnosis concentric ring. The many layers of disease diagnoses include the environment, population/community, organism, cell and gene. Photos
by Morgan Eisenlord (environment), Drew Harvell ( population/community), and Gary Cherr/Nature McGinn (cell/tissue).
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in which host health is intimately tied to the quality and charac-

teristics of their aquatic habitat. Shifts in water temperature or

salinity can lead to thermal or osmotic stress; low dissolved

oxygen can lead to catastrophic die-offs or chronic poor health

[34,35]; and pollutants can affect immune-competency [36,37].

For these reasons, environmental parameters such as habitat

type, temperature, salinity, dissolved oxygen, pH, substrate

and depth might indicate anomalies associated with disease,

or allow investigators to rule out alternative hypotheses

(box 2). For example, marine mammal strandings can be

caused by storm events, harmful algae blooms (e.g. Pseudo-
nitzschia spp (box 3)), oil spills, boat strikes, or fishing bycatch

or discards. Such covariates, if recorded, can give insight

into the cause of death, injury or disease. Furthermore, human

activities might affect disease risk, and metadata can acknowl-

edge these correlations by, for example, determining if the

collection location is affected by fishing, industry, sewage

(box 4) or agriculture. If environmental physical or chemical vari-

ables cannot be measured during an outbreak, at minimum an

accurate date and location reference will facilitate downstream

analysis of concurrent long-term, broad-scale datasets from

nearby monitoring programmes that include variables such as

salinity, temperature and aerial imagery, or even data on species

densities and community composition.
(b) Community and population
The resident community of organisms can act as potential hosts

or vectors and may affect disease outbreaks and/or provide a

mechanism of transmission to a particular host or vector. Iden-

tifying disease spillover from an alternative host might help
explain precipitous declines in a focal host [67]. Non-native

species can amplify an endemic pathogen, increasing trans-

mission to the native host or introduce exotic pathogens [68].

Furthermore, observations of the entire community could help

determine why a disease has emerged at a particular place

and time. For example, identification of Pseudo-nitzschia spp.

frustules and domoic acid (DA) in sea lion prey were necessary

for initially identifying acute DA toxicity in California sea

lions (box 3). A more subtle example is the link between

predator and prey species, where a loss of a key predator

leads to increases in host density of the prey species followed

by a density-dependent disease outbreak [69].

Disease transmission can be sensitive to host population

density and demography. Dense host populations often

result in more host–host contact, which can facilitate disease

spread. Hence information on host density might help

explain why some populations seem to experience disease

more than others. As an example, bacterial epizootics in sea

urchins are more likely at sites with many sea urchins [69].

Population connectivity and demography can be important

for disease spread and host recovery. Information about popu-

lation connectivity can assist in indicating the likelihood of

disease spillover to susceptible populations and how long it

will take decimated populations to recover after an epizootic.

Populations may vary in susceptibility to a pathogen or disease

due to local adaptation and or environmental conditions; gen-

etic and population connectivity data for a given species are

often lacking or limited (e.g. [39,70–72]). Population-

level data are also essential for proper management of disea-

se-affected individuals or when restoring depleted species

within and outside disease zones [73].



Box 2. Understanding the epidemiology and pathogenesis of withering syndrome caused by ‘Candidatus Xenohaliotis californiensis’: a symphony of modern
and classic.

The disease withering syndrome (WS) results from a complex relationship among its abalone hosts, the bacterial pathogen (a rick-

ettsia-like organism ‘Candidatus Xenohaliotis californiensis’ (WS-RLO, [38]), and the environment (temperature anomalies) [39–

43]. A recently discovered bacteriophage hyperparasite further complicates the disease dynamics in this system [44]. Although

first observed 30 years ago in one abalone species, the black abalone (Haliotis cracherodii) [42,45], the aetiology of WS was not accu-

rately identified until 2000, 15 years after its discovery. Initial losses of abalone were attributed to starvation and high temperature

during an El Niño event in 1983 [42], but disease spread over time suggested an infectious disease [46]. Subsequently, a previously

unknown renal coccidian parasite was suspected [47] as the aetiology of WS but was later shown to be non-pathogenic for adult

abalone [48]. Several factors led researchers down the wrong road in diagnosing this disease: (i) available diagnostic tools were

limited to light and electron microscopy and field observations; (ii) background information on abalone health was lacking;

(iii) understanding of abalone physiology and biology was rudimentary; and (iv) the physiology of WS pathogen (uncultivable,

long incubation period, thermal range and wide host infectivity but varying host pathogenicity) was not known.

Only when a suite of classic methods including field observations, histology and transmission studies (with and without

antibiotics) were used in combination was it determined that WS in susceptible host species is caused by the RLO at high

seawater temperatures [40,42,43,49]. However, taxonomic placement of the WS-RLO required sequencing of the 16S gene

[38,50]. Sequencing paved the way for development of PCR [51], ISH [50] and qPCR [52] methods to help better understand

field dynamics. These modern methods have allowed us to better understand the transmission and field dynamics of WS

[41,53–55].

Identification of the WS-RLO phage was prompted by microscopic observations of what appeared to be a novel RLO

based on its size, shape and staining characteristics. However, PCR and ISH suggested that the newly observed RLO was

the WS-RLO. Electron microscopy was needed to discover that the WS-RLO was infected by a phage [38] (figure 3).

These observations highlight the danger in using nucleic acid-based tests alone and the need for classical, visual methods

in diagnosis. Recently, shotgun metagenomics were used on phage-infected samples, to identify the presence of a phage

and to characterize its genome (S. Langevin and C. S. Friedman 2015, unpublished data).

(a) (b)

(c) (d)

Figure 3. Withered black abalone, Haliotis cracherodii ( photo by David Arm-
strong); and the WS-disease causing RLO (insets: light (a) and transmission
(c) micrographs) and the phage microparasite of the RLO (insets: light (b) and
transmission (d) micrographs). (Photos by Carolyn Friedman.)
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(c) Organism
The first indication of an epizootic is often through obser-

vation of abnormalities on the organismal level. Abnormal

behaviour or physical appearance might be noted via direct

observation, and gross pathology noted during necropsy.

Notable examples include seizure activity in California sea

lions [56,73] (box 3), spinning behaviour in menhaden [74]

or white spots on the carapace of penaeid shrimp [75]. Such

observations will guide sample collection for micro-scale ana-

lyses including clinical pathology, toxicology, microscopy,

genomics and microbiology. One step in exploring causality

is showing that a proposed disease-causing agent is present
in diseased animals but absent in healthy tissues and

animals. Hence macro- and micro-scale data should be col-

lected from both affected and apparently unaffected tissues,

animals and locations. The collection of such data also

helps in tracking the spread of the disease within hosts and

among locations. Data associated with the collected samples

should include metadata such as body size, sex and other

phenotypic attributes. Advancements in digital technology

and real-time communication provide field biologists and

citizen scientists a means to contact experts for guidance in

sample and data collection, and also provide a means of accu-

rately ‘describing’ disease signs through photography, even

when the collectors lack the precise descriptive termino-

logy of experts [76,77]. Modern digital tools also create a

‘digital paper trail’ that contributes to the necessary aetiologi-

cal history during a diagnostic investigation. The SSWD

epizootic is an example of how disease spread can be docu-

mented using every-day modern technology. As sick sea star

images became available online, it became easy for citizen

scientists to correctly identify and systematically record

observations of the event in real time.
(d) Tissues and cells
Visual signs may indicate a specific disease, but not all diseases

show clear pathognomonic signs such as lesions, behaviours or

tissue discoloration, and further diagnostics are necessary for a

definitive diagnosis. Light microscopy of samples such as fixed

and stained tissues, tissue scrapings, tissues squashes or circu-

lating cells may show cellular-level damage or infection and

has been the gold standard for disease diagnosis (and some-

times, the only diagnostic tool) for many decades [78,79]. It

remains an essential tool. Light microscopy may also discern



Box 3. A non-infectious disease example: identifying domoic acid toxicosis in California sea lions.

Multidisciplinary collaboration and integration of data from several sources (figure 2) were necessary to first identify acute DA

toxicosis in stranded California sea lions (CSL: Zalophus californianus) [56,57] (figure 4). In spring 1998, a cluster of CSLs strand-

ing along the central California coast were experiencing seizures but were in good body condition [56,57]. Comprehensive

diagnostics on these animals, including serology, culture, histopathology with special stains and PCR, revealed no infectious

or traumatic aetiology [57]. However, histopathology did reveal brain lesions similar to those seen in rodents and primates

experimentally exposed to DA, a potent neurotoxin [58]. Analytic procedures (liquid chromatography mass spectrometry/

mass spectrometry (LC-MS/MS), high performance liquid chromatography-ultraviolet and microplate receptor binding) ident-

ified DA in serum, urine and/or faeces of some CSL, as well as in plankton and a primary CSL prey item, collected from the

same time and region as the strandings. Also coincident with the strandings was a bloom of Pseudo-nitzschia australis, a DA

producing diatom, detected using Pseudo-nitzschia species-specific DNA probes. Pseudo-nitzschia australis frustules were detected

via scanning electron microscopy in DA-positive faeces from stranded CSLs, and in prey viscera [58,59]. Although DA was not

detected in all CSLs with neurologic disease, based on the evidence presented above, collected through multidisciplinary efforts

and using both modern and classic methods, the cluster of CSL stranding with neurologic disease was attributed to acute DA

toxicosis [57]. While identification of DA in consumed food or in body fluids provides a definitive diagnosis for acute DA tox-

icosis, rapid clearance of DA [60] and rapid gastrointestinal transit of digesta in CSL [61] often preclude this. Therefore,

technological developments since 1998 have focused on improving diagnosis and have resulted in modern approaches such

as matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) peptide profiling and neural networks to detect

cases of acute DA toxicosis [62]. Improvements of more classic approaches include the development of a solid-phase extraction

LC-MS/MS method allowing for DA determination at previously undetectable trace levels in seawater and marine mammal

samples [63], thus increasing diagnostic sensitivity.

More recently, a syndrome characterized by epilepsy and caused by chronic DA toxicity [64,65] has been described and

named DA epileptic disease. CSLs affected by chronic DA differ in presentation from those with acute toxicosis as they

have intermittent seizures, are asymptomatic between seizures, exhibit unusual behaviours and strand individually (versus

in clusters as with acute DA cases). Diagnostics reveal no traumatic or infectious aetiology [64,65], but do reveal characteristic

lesions in the brain using MRI of live animals or histopathology of dead animals (revealing hippocampal atrophy). These

chronic DA cases have raised questions about what other effects chronic DA exposure might have and how these might

affect CSL health on both individual and population scales [64,65]. Identifying chronically affected animals can be difficult

(MRI is expensive and brain histopathology is only possible on those already dead); therefore, current efforts focus on devel-

oping more sensitive, cost-effective, non-invasive diagnostic methods. Examples using more modern diagnostic techniques

include an enzyme linked immunosorbent assay (ELISA) to detect a DA-specific antibody in chronically exposed CSLs [59]

and proteomic analysis of CSL plasma to detect chronic DA toxicosis [66].

Figure 4. California sea lion (Zalophus californianus), and the DA producing
diatom, Pseudo- nitzschia australis. (Photo by Jan Rines, University of Rhode
Island.)
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parasite identity in conjunction with differential staining used

to elucidate subcellular components linked to a specific taxon.

Although viral morphology cannot be observed using light

microscopy, microscopic observations of cellular changes

may suggest a specific aetiology such as a specific viral infec-

tion [80,81] or suggest viral type [75]. Pathogen presence can
then be confirmed using additional special stains or molecular

methods (described below) and morphology can be confirmed

using electron microscopy [82]. Just as for macro-scale obser-

vations, micro-scale observations benefit from comparison

with normal healthy tissue. Therefore, sampling tissues in

addition to the lesion is critical because the aetiologic agent

can be at the lesion margin or in the surrounding healthy

tissue, not in its necrotic or visually damaged centre. For

example, bacterial lesions, such as those caused by Aeromonas
salmonicida infection of fish skin, are rapidly invaded by

opportunists making culture of the primary pathogen difficult

unless early lesions or the leading edge of a lesion are cultured

[83]. In some instances, samples from sessile invertebrates can

be obtained for some diseases without removing the animal

itself. For example, pathogens that cause diseases of corals

have been isolated from coral surface mucus layers (SMLs)

collected in situ using sterile syringes [84–86] (box 4), while

other diseases have required extraction of tissue from collected

coral fragments [98,99].

With advancements in molecular methods, the gold stan-

dard of disease diagnostics is changing. Modern approaches

often now pair histology with an antigen-based or nucleic

acid assay to confirm pathogen identification [79]. By linking

histological techniques with more modern methods such as

immunohistochemistry [100] or in situ hybridization (ISH),

one can confirm the identity and abundance of a pathogen



Box 4. Insights into changing disease dynamics from long-term ecological monitoring: the case of white pox disease in elkhorn coral.

In October 1996, a citizen scientist observed novel disease signs on elkhorn coral, Acropora palmata, at a reef near Key West,

FL, USA (figure 5). The citizen contacted coral reef scientists who initiated an investigation of the outbreak by photographing

affected colonies, describing gross signs and collecting tissue samples [87]. Photographic monitoring of the affected reef and

other reefs in the Florida Keys continued and aetiology investigations were initiated. SMLs were collected from lesions and

apparently healthy tissue on affected host corals and from apparently healthy host corals at locations throughout the Carib-

bean including the Florida Keys, Bahamas and Mexico. Culturing followed by modern redox chemistry biochemical

characterization (Biolog analyses) identified four bacteria species associated with lesions and not with apparently healthy

tissue. These suspect pathogens were used in challenge experiments with the host coral to satisfy Koch’s postulates. These

classic techniques identified the bacterium, Serratia marcescens, as a pathogen responsible for white pox disease (WPX)

signs [86]. Thus, when this bacterium is confirmed from A. palmata exhibiting WPX, the disease is specifically diagnosed

as acroporid serratiosis [86]. Source tracking investigations, combining classic culture and modern molecular techniques,

identified human wastewater as a source of S. marcescens [88,89] contributing to initiation of upgrades (in-ground-waste

to central sewer systems with at least secondary treatment) in sewage treatment Florida Key-wide, with a completion date

in late 2015 [90]. qPCR has since been developed to more rapidly detect the S. marcescens pathogen from SMLs of affected

hosts [91,92].

Today WPX is common throughout the Caribbean [93–95]. Affected A. palmata populations are monitored extensively,

and, when checked, S. marcescens is found (diagnosing acroporid serratiosis) in some, but not all disease cases

[86,88,92,93,96]. These findings suggest an additional, unknown WPX agent and classify acroporid serratiosis as one form

of WPX [97]. Long-term A. palmata monitoring in the Florida Keys shows a shift from high whole coral colony death in

the mid-to-late 1990s and early 2000s to low whole coral colony death since the mid-2000s suggesting decreased pathogen

virulence, altered aetiology or increased host resistance [97].

This case study illustrates how multi-decadal ecological monitoring can give insights into changing disease dynamics.

Investigations of WPX now combine classic and modern approaches to assess spatial and temporal variation in individual

host corals and candidate pathogens (e.g. histopathology, SML whole microbial community, genomics) and to assess how

water quality and temperature affect disease.

Figure 5. Caribbean elkhorn coral, Acropora palmata, colony affected with white
pox disease. White pox signs are characterized by circular, oblong or pyriform
lesions of tissue loss that are located randomly and coral colony wide and
are multifocal to coalescing in distribution (Photo by James W. Porter). The bac-
terium Serratia marcescens (SEM inset) is a pathogen that causes white pox
signs. Pathogen identification from white pox lesions diagnoses acroporid serra-
tiosis. (Photo by Shawn Polson.)
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[50,101]. This is especially important for parasites that cannot

be visualized by light microscopy using standard tissue

stains (e.g. viruses) or do not have distinctive, confirmatory fea-

tures (e.g. most bacteria and many protists). For example, some

protists, such as haplosporidia, have plasmodial stages that

lack defining characteristics. Until the development of ISH

assays for these pathogens, co-infection of two haplospori-

dians, Haplosporidium nelsoni and H. costale, were not known

to be common and oyster (Crassostrea virginica) disease
outbreaks may have been incorrectly diagnosed [102]. Another

exciting advancement is laser capture micro-dissection devel-

oped to capture specific pieces of tissue from histology

sections from which DNA or RNA can be extracted for poly-

merase chain reaction (PCR) [53,103] or high-throughput

sequencing. This advance truly represents the successful pair-

ing of classic techniques with modern technological advances

in robotics and computing.

Classic methods are still used to isolate a pure culture of a

putative pathogen. Culture takes advantage of the organism’s

ability to grow on or metabolize specific substrates and allows

for observation of different life-history stages (e.g. growing

cysts and spores) and examination of morphology, taxonomy

and physiology of the pathogen. The ability to culture an

organism is a prerequisite for efforts to fulfil Koch’s (or

for viruses, River’s) postulates to confirm that the isolated

pathogen is the causative agent of the disease in controlled

experiments [104,105]. However, a lack of suitable marine

invertebrate cell lines to isolate and propagate viruses, plus

the inability to culture obligate intracellular bacteria, and

other obligate intracellular parasites, can hinder diagnosis

[106,107]. For non-culturable microorganisms, filtration is a

useful method to separate microorganisms based on their

size. Recently, filtration has been used to separate viruses

from larger microbes (bacteria, fungal or protists) for use in

challenge studies and led to the identification of a viral aetiol-

ogy for SSWD [29] and the molluscan (or ‘ostreid’) herpesvirus

OsHV-1 [82,108,109]. However, filtration or culture needs to be

paired with complementary techniques to confirm pathogen

identity and disease causation. For example, Burge et al. [82]

paired modern-specific qPCR and reverse transcriptase (RT)

qPCR with classic electron microscopy to confirm OsHV-1

aetiology in the Pacific oyster in California.



Box 5. Molecular tools are most powerful when combined with traditional tools, the case of infectious salmon anaemia virus in the Pacific Northwest.

Infectious salmon anaemia virus (ISAV) is the cause of a deadly disease of Atlantic salmon; it has caused a considerable

impact on marine aquaculture productions in Norway, Chile, and on the East, but not the West, coasts of the USA and

Canada [79]. One of the challenges in managing this pathogen lies in the difficulty in propagating the virus using cell

lines, which is the traditional method for fish virus detection [79,116]. Some of the low virulence strains of the virus have

been resistant to cell culture [117]. Molecular methods have been developed and are an integral part of ISAV detection

and management [78,79], although confirmation of ISAV requires a rigorous combination of cell culture, histology, PCR

and sequencing.

In 2011, there was an uncoupling of the traditional methods from the modern during an investigation for the presence of

ISAV on the west coast of Canada. Genetic material suggestive of ISAV was reported in free-ranging sockeye salmon using

only RT qPCR [117]. Though these results were not confirmed by other methods, the concerns these initial findings raised led

to the initiation of an extensive follow-up study employing cell culture, PCR and sequencing. No evidence of disease or virus

was detected in seven species of salmonids in the Pacific Northwest from Oregon to Alaska [117]. These results confirm dec-

ades of routine monitoring using traditional methods in the Pacific Northwest. This case study is an example of how the use

of modern, cutting-edge technologies can be key in pathogen investigations, but that the most effective and efficient approach

does not disregard traditional methods, but instead integrates all of the tools that are available.
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(e) Gene
(i) Use of marker genes for pathogen identification and

surveillance
When it is not possible to fulfil Koch’s postulates, gene-sequence

technology can be used to help identify pathogens associated

with disease, and or assist in building a body of cumulative

evidence suggesting a particular aetiology [110,111]. Modern

diagnostic laboratories use gene- and genome-based methods

for pathogen identification and surveillance [112,113].

These methods involve sequence analysis and discovery

(i.e. sequence-dependent; e.g. 16S clone or amplicon analysis

or metagenomics) or detection and or quantification of a

target sequence (sequence-independent; e.g. ISH and quantitat-

ive PCR) or of a broad suite of sequences (e.g. microarrays).

Despite the nuanced differences among these methods, all

target one or more known pathogen genes for analysis. Most

sequence-independent methods target a single pathogen to

detect its presence or absence (e.g. PCR and microarrays)

[113,114]. Others use highly sensitive, DNA-based quantifi-

cation (copy number) of a target gene or genes (i.e. qPCR) or

RNA-based gene expression (RT qPCR) [82]. Although the

term ‘sequence-independent’ implies that no DNA sequencing

is conducted during these techniques, these methods do require

a priori knowledge of genome sequence homologies. For

example, fluorescent ISH (FISH) and qPCR methods that

target complementary gene sequences for quantitative fluor-

escent labelling each require that researchers know the

sequence of the gene they target in order to develop an

appropriate probe/primer set.
(ii) High-throughput sequencing approaches for novel pathogen
discovery

Recent technological advances in sequence-dependent

methods have significantly increased the efficiency and rate

of pathogen detection, while substantially reducing the cost.

Since the mid-2000s approximately a dozen new high-through-

put sequencing (HTS) platforms (e.g. Illumina, PacBio, Ion

Torrent) have become available and may provide more efficient

ways of finding new potential pathogens. Disease outbreak

investigations can employ one or both of the two standard

sequencing-dependent approaches that use HTS, namely
metagenomics and amplicon sequence analysis. Metagenomics

approaches use HTS and bioinformatics analysis to evaluate

microbial community composition and function to look for

associations between specific organisms and disease. For

example, Ng et al. [115] described an unknown anellovirus

responsible for the death of captive California sea lions.

Similarly, Hewson et al. [29] successfully used shotgun viral

metagenomics to develop the qPCR primer/probe combina-

tion used to identify a potential causative agent in the recent

SSWD event. Due to their power, metagenomic techniques

generate millions of sequences, presenting computational chal-

lenges [112]. Moreover, because metagenomic analyses depend

on sequence databases, new pathogens might not be identifi-

able by basic metagenomic annotation platforms [112] and

may require more advanced methods (e.g. kmer analysis and

self-forming map analyses). Amplicon analysis, or the highly

parallelized study of variations in a single marker gene, is a

tool distinct from metagenomics that can detect novel patho-

gens. Whereas metagenomics looks at random genomic

sequence from a community, amplicon analysis uses PCR to

amplify a target gene that is experimentally linked to a

known ‘tag’ sequence for sample identification. A single

marker gene is amplified among target organisms such as the

16S rRNA gene in bacteria and archaea, the 18S and ITS

for eukaryotic genes, and viral capsid DNA and RNA poly-

merases [113]. Both metagenomics and amplicon sequencing

allow detection of potentially novel pathogens, and can be help-

ful in identification of pathogens more rapidly during an

outbreak situation.
3. Merging the classic and the modern to
effectively study disease in the marine
environment

To effectively study disease in the marine environment

requires integration of multiple data-streams, including

results from both classic and modern techniques. The case

studies (boxes 1–5) included here illustrate the necessity of

a union of modern and classic techniques. We have discussed

multiple diagnostic methods in earlier sections. Some tools

are for pathogen discovery, such as the amplicon or
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metagenomics diagnostics, and must be paired with appro-

priate classic approaches to confirm diagnosis. Following

pathogen discovery, diagnostic assays can be designed to

detect specific pathogens, but proper validation is needed

before broad use [79], and uncoupling of classic methods

from the modern can lead to issues in disease diagnosis

(box 5). Validation should include: analytical sensitivity

(limit of detection) and specificity (ability to measure the

target and not others in a sample), diagnostic sensitivity

(rate of false negative detection) and specificity (rate of false

positive detection), reproducibility, and repeatability [79].

As part of assay validation, a gold standard, often light or

electron microscopy, is necessary (for calculation of diagnos-

tic sensitivity and specificity). We acknowledge the difficulty

in assay validation, and paired approaches for disease diag-

noses is a prudent approach.

(a) Final thoughts
We have reviewed classic and modern approaches for diag-

nosing marine diseases. For those interested in more details,

our electronic supplementary material contains key refer-

ences (books, websites, how-to-guides) on data and samples

to collect, storage and preservation methods, and diagnostic

tests. Outbreak response will further improve as new diag-

nostic tools are refined and taught. The development of

centralized databases, reporting networks and data reposi-

tories for marine disease observations will allow a more

rapid and comprehensive response. In addition, simple real-

time diagnostic tools for farmers, fishers or citizen scientists,

such as the Shrimple [118] or other future technological
advances, will make marine diagnostics commonplace. How-

ever, we hope that our various examples have shown that,

although advanced technologies have greatly improved our

ability to rapidly and accurate identify the aetiologic agents

of disease and epizootics in the marine environment, these

tools are only useful when combined with data from

more classic approaches. In addition, national contingency

plans for diagnosis and management of both current and

unexpected diseases are necessary [112,119]. Finally to under-

stand the importance of disease in the marine ecosystem,

we need long-term, baseline data with which to compare

findings during a disease investigation.
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