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Marine protected areas can prevent over-exploitation, but their effect on

marine diseases is less clear. We examined how marine reserves can reduce

diseases affecting reef-building corals following acute and chronic disturb-

ances. One year after a severe tropical cyclone, corals inside reserves had

sevenfold lower levels of disease than those in non-reserves. Similarly, disease

prevalence was threefold lower on reserve reefs following chronic exposure

to terrestrial run-off from a degraded river catchment, when exposure dur-

ation was below the long-term site average. Examination of 35 predictor

variables indicated that lower levels of derelict fishing line and injured

corals inside reserves were correlated with lower levels of coral disease in

both case studies, signifying that successful disease mitigation occurs when

activities that damage reefs are restricted. Conversely, reserves were ineffect-

ive in moderating disease when sites were exposed to higher than average

levels of run-off, demonstrating that reductions in water quality undermine

resilience afforded by reserve protection. In addition to implementing

protected areas, we highlight that disease management efforts should also

target improving water quality and limiting anthropogenic activities that

cause injury.
1. Introduction
Mitigating disease threats is challenging in marine environments [1–4]. Managers

confronted with controlling disease outbreaks on land have several tools avail-

able, including quarantine and culling to restrict contact between healthy and

infected individuals, vaccination, chemical and biological controls, vector elimin-

ation or regulation, and genetic breeding for disease resistance or tolerance [5–7].

However, inherent difficulties associated with implementing such disease control

methods in natural aquatic environments limit their applicability for marine

species [3,4].

Multiple threats have degraded reefs around the world [8], jeopardizing

the US$375 billion in goods and services coral reefs provide each year [9].

Degradation of coral reefs worldwide has led to widespread establishment of

marine protected areas. Protected areas might influence disease in coral popu-

lations, although influences could be either beneficial or detrimental to coral

health. For example, protected areas might facilitate the spread of disease by

increasing densities or cover of susceptible coral hosts [10,11], or by increasing

densities of fishes that are either vectors for coral pathogens or cause feeding

injuries that increase coral susceptibility to opportunistic pathogens [12,13].

Conversely, high densities of herbivorous fish within reserves could limit the

growth of algae [14], which have been reported to act as reservoirs of patho-

gens on reefs in the Caribbean and Indo-Pacific [15,16]. Moreover, exclusion

of activities that injure corals inside marine reserves, for example,
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fishing methods and gears that directly damage corals (e.g.

[17,18]) and high-intensity tourism [19,20], is likely to

mitigate disease by reducing entry points for opportunistic

coral pathogens [20–23].

Evidence from studies testing the efficacy of marine

reserves as management tools for preventing disease in coral

populations varies. For example, no-take marine reserves

have been shown to mitigate coral disease by maintaining

functionally diverse fish assemblages [13] and by reducing

direct damage associated with fishing activities and derelict

gear [24]. However, other studies have found little evidence

that protected areas mitigate coral disease [25–27], although

authors have cautioned that either poor compliance with fish-

ing restrictions or the presence of environmental influences that

permeate reserve borders could have negated reserve effective-

ness in their studies. In the light of global efforts to increase

marine protected areas, evaluation of their potential to enhance

the health of reef-building corals and their resilience to major

disturbances is required.

The effect of marine reserves on infectious disease depends

on whether disease is driven by density-dependent trans-

mission or environmental stressors. Protection from fishing

and other extractive activities can benefit targeted populations

and enhance biodiversity within marine reserves [28,29]. As a

result, some infectious agents can thrive within dense popu-

lations of protected species [30] and selective culling of

diseased individuals may benefit the fishery [31]. Alterna-

tively, the complex interactions within food webs mean that

protection of predators in reserves can decrease prey densities,

which can indirectly reduce epidemics in those prey [32]. It is

less clear if reserves are effective at alleviating stressors beyond

reserve boundaries, such as extreme climate events or pollu-

tants. Proponents have assumed that marine protected areas

enhance the resilience of populations to such stressors because

of overall improved health of the ecosystem (e.g. [33,34], but

see [35]); however, studies testing the ability of protected

areas to defend marine populations following acute and

chronic environmental disturbances have reported mixed out-

comes [34,36–39]. Studies that have reported lower levels of

disease inside reserves suggest that protected populations

may be more resilient to additional disturbances that transcend

reserve boundaries than previously assumed, although this

has never been explicitly tested.

Some disease epizootics have been linked to both acute and

chronic environmental stressors. For example, the passage of

intense tropical storms is associated with subsequent disease

in organisms as diverse as plants [40], urchins [41] and reef

corals [42]. Furthermore, other marine disease outbreaks are

linked to chronic exposure to pollutants, such as sewage [43],

terrestrial sediment or agricultural herbicides [44,45], nutrients

and fertilizers [46,47], and aquaculture [48]. Given that pres-

sures on marine biodiversity are projected to escalate

adjacent to polluting population centres and coastlines [9]

and with predicted increases in the number of intense tropical

storms [49], it is imperative to further assess the potential role

protected areas could play in managing marine diseases

subject to environmental disturbances.

Here, we evaluate whether assemblages of coral diseases

differ inside versus outside well-established no-take marine

reserves in the Great Barrier Reef Marine Park 1 year follow-

ing a severe tropical cyclone (acute disturbance) and annual

flood run-off from a degraded coastal catchment (chronic

disturbance).
2. Material and methods
(a) Study locations and protected areas management
We conducted this study on fringing inshore coral reefs in the

Palm Islands (188340 S, 1468290 E) and Keppel Islands (238100 S,

1508570 E), both of which are located between approximately

12 and 15 km from the mainland of Australia (figure 1). The

islands and surrounding reefs are popular for reef recreation

in the Great Barrier Reef Marine Park [50]; thus recreational

hook and line fishing pressure on the narrow fringing reef

communities is high [51]. In each island group, reefs in two man-

agement zones (characterized as reserves or non-reserves) were

surveyed to assess the efficacy of reserves as tools for mitigating

coral disease (figure 1). Marine National Parks (MNP) are no-

take reserves (‘reserves’) where extractive activities, including

fishing and collecting, are prohibited. Habitat Protection (HP)

zones (non-reserves) are open to hook and line fishing, spear

fishing and collecting. Reserves surveyed in this study were

zoned in 1987 (25 years of protection at the time of the surveys),

while non-reserve study sites have always been open to fishing.

Additional comprehensive regulations and protection for each

zone can be found in the electronic supplementary material

and at www.gbrmpa.gov.au.

In the Palm Islands, we surveyed 14 long-term survey sites

within MNP reserves (42 transects) and 12 long-term HP sites

open to fishing (36 transects) during the middle of the austral

summer in February 2012 (figure 1b). To aid in distinguishing

between disturbance caused by the cyclone and longer term dis-

turbances caused by recreational activities, sites were further

categorized as either windward sites that were exposed to cyclonic

winds or leeward sites that were sheltered from wave damage (see

[52]). There were eight leeward and six windward MNP sites and

six HP sites in each leeward and windward location. These sur-

veys were conducted approximately 12 months after the passage

of a severe category 5 cyclone in early February 2011 (see [52,53]

for specific details of Cyclone Yasi and figure 1d).

In the Keppel Islands, we surveyed 11 long-term monitoring

sites within MNP reserves (33 transects) and 10 long-term HP

sites open to fishing (22 transects) at the end of the austral

autumn in May 2013 (figure 1c). The adjacent Fitzroy River

catchment is prone to periodic, large-scale flooding events [54],

with flood plumes inundating Keppel Island reefs [36]

(figure 1e). These surveys were conducted two months following

14 weeks of exposure to flood plumes and subsequent primary

productivity from flooding of the degraded Fitzroy River

watershed (137 757 km2). Additional specific details of the flood

plumes are described in [36].
(b) Coral disease surveys and visual census of reef fishes
At each of the 47 sites, we surveyed coral health on three 15 � 2 m

belt transects. Transects corresponded to the first 15 m of concur-

rent transects for underwater visual census (UVC) of fish

communities (briefly described below). Within each 30 m2 belt

transect, we identified each coral colony over 5 cm in diameter to

genus and further classified each coral as either healthy (no disease

observed) or affected by one or more of six common Indo-Pacific

coral diseases: black band disease, skeletal eroding band, brown

band disease, white syndromes, atramentous necrosis or growth

anomalies [55]. As an estimate of the intensity of site use, we

recorded other indicators of coral health, such as physical injury

(recently exposed skeleton from breakage), the abundance and

health status of corals entangled in derelict monofilament fishing

line, apparent tissue death due to sediment accumulation, bleach-

ing, and cuts and scars from predation by crown-of-thorns starfish

and corallivorous marine snails [19,20,55]. We determined benthic

coral and macroalgal cover using standard line-intercept surveys

along each 15 m transect.

http://www.gbrmpa.gov.au
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We used a modified UVC technique to survey 261 species of

diurnal, non-cryptic reef fish, from 17 families, according to

methods described in [24,39] and the electronic supplemental

methods. Briefly, we deployed five replicate belt transects at

each site on reef slopes, parallel to the reef crest and within a

depth range of 3–10 m, depending on the reef slope topography

at each site. We conducted fish community UVC surveys on

SCUBA, using two observers who swam in close proximity to

each other. The first three transect tapes deployed at each site

at the completion of the fish UVC were left in place for the

coral community and disease surveys, described above.

(c) Water quality exposure frequency
In both the Palm Islands and Keppel Island region, we mapped

water types and flood plumes using Moderate Resolution Imaging

Spectroradiometer (MODIS) true colour satellite imagery [56]. We

acquired daily MODIS Level-0 data from the NASA Ocean Color

website (http://oceancolor.gsfc.nasa.gov) and converted them

into true colour images with a spatial resolution of 500 � 500 m,

using the SeaWiFS Data Analysis System (SeaDAS) [57]. We cre-

ated 22 weekly composite images from daily images covering

the period 1 December to 30 April in wet seasons for each of

8 years (2006–2013) to minimize the amount of area without

data due to masking by clouds [56]. We spectrally enhanced the

true colour images (from red-green-blue to hue-saturation-

intensity colour system), and classified them into plume water

types corresponding to one of three GBR water types (primary,

secondary and tertiary) through a supervised classification using

spectral signatures from GBR river plume waters [54,58].

For the purposes of this study, we applied the ‘primary’ and

‘secondary’ water type classifications to quantify the frequency at

which monitoring sites were exposed to highly turbid water from

flood plumes and subsequent re-suspension during the 2006–

2013 wet seasons (December–April inclusive). The primary

water type represents high turbidity [54], as typically found
close to river outflows, with high levels of coloured dissolved

organic matter and total suspended sediments (TSS) [59]. TSS

and the diffuse attenuation coefficient for photosynthetically

active radiation (kdPAR) in the primary water type are typically

approximately 36.8+ 5.5 mg l21 and 0.73+ 0.54 m22, respect-

ively [56]. The secondary water type is typically found more

distant to river outflows and is characterized by elevated

chlorophyll-a concentrations, with TSS concentrations reduced

due to sedimentation closer to coastlines. We assigned each of

the 22 weekly composite images per wet season (2006–2013) a

presence/absence (0/1) value for the primary and secondary

water types in each pixel (500 � 500 m resolution). We then cal-

culated a z-score to capture the frequency of exposure to

primary and secondary water during surveys in 2013, relative

to the mean primary and secondary water exposure each site

had experienced in the years 2006–2013. A z-score value above

zero means that exposure for the 14 weeks (wet season) leading

up to surveys in 2013 was greater than the 2006–2013 mean for

the site, while a z-score below zero means that exposure was

lower than the 2006–2013 mean for the site.

(d) Statistical modelling
We used a multivariate distance-based linear regression model

[60] to identify the strength and significance of the relationships

between the prevalence and patterns of coral disease types

and 35 predictor variables (electronic supplementary material,

table S2). This model is robust to zero-inflated datasets and

makes no assumptions about the distribution of the response

variable. We calculated coral disease prevalence (response vari-

able) for each 30 m2 belt transect by dividing the number of

colonies with disease or other signs of compromised health by

the total number of colonies present. Biodiversity indices

included as predictor variables in the model were calculated

according to the lowest taxonomic group, using the total

number of individuals surveyed per transect area (coral genera

http://oceancolor.gsfc.nasa.gov
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30 m22 and fish species 200 m22). Prior to inclusion in the model,

we grouped each fish species into one of 12 broad functional

roles in coral reef habitats [39] (electronic supplementary

material, table S3). Fish abundance values were down-weighted

using a fourth-root transformation to account for clumped distri-

butions of abundant schooling species [61]. As regression-based

models can be sensitive to variables that are correlated, variables

with correlations greater than 0.70 were identified using drafts-

man’s plots and excluded from the final analysis (excluded

variables are specified in electronic supplementary material,

table S2 [62]). Individual predictors were transformed on a

case-by-case basis to meet test assumptions and then fitted con-

ditionally in a stepwise manner using tests based on 9999

permutations of the residuals under the reduced model [60,61].

Owing to the large number of predictor variables, we based

model selection (to obtain the best-fit model while maintaining

model parsimony) on Bayesian information criterion (BIC) [63].

To visualize each best-fit model, we used distance-based

redundancy analysis (dbRDA) [60] based on the prevalence pat-

terns between independent observations. The optimal predictor

variable vector(s) (model base variables) was overlaid on a bi-

plot [61]. In addition, variables that might be responsible for any

differences detected in the dbRDA plots were investigated by cal-

culating Pearson correlations with redundancy analysis axes.

Differences in the structure of coral disease assemblages between

reserves and non-reserves were detected using a permutational

multivariate analysis of variance [61]. The analysis was based on

a type III partial sums of squares, and 999 random permutations

of the residuals under the reduced model. Where differences in

disease assemblages were detected, the type contributing the

most to the dissimilarity was identified using similarity of percen-

tages analyses. Multivariate analyses and modelling were based

on zero-adjusted Bray–Curtis similarity or Euclidean distance

matrices and analyses performed using Primer v. 6 [61].

Significant variables identified in the multivariate distance-

based linear model were compared between reserve and non-reserve

sites using a Welch’s unequal variance t-test or an exact Poisson

test. Differences between reserve status and coral disease prevalence

were analysed using generalized linear mixed-effects models with a

binomial error distribution and logit link function (glmer function

of the lme4 package). Reserve status was treated as a fixed effect,

while transect was nested into site and treated as a random effect.

We compared each model to the null model using a likelihood

ratio test. Pairwise post hoc comparisons between groups were

tested using general linear hypothesis tests (glht function in

multicomp package). Analyses were conducted using R v. 3.2.3 [64].
3. Results
Surveys of 36 104 corals at 47 sites (4230 m2 reef area) revealed

that assemblages of coral diseases (assessed by composition

and abundance) differed significantly between reserves and

non-reserves, 1 year following the acute disturbance of the

tropical cyclone passing over the Palm Islands (mean dissimi-

larity of disease assemblage ¼ 62.2%, pseudo-F1,24 ¼ 16.4,

p , 0.001; figure 2) and two months following a chronic

disturbance caused by terrestrial run-off from flooding of the

degraded watershed adjacent to the Keppel Islands (mean dis-

similarity of disease assemblage ¼ 53.9%, pseudo-F1,19¼ 4.0,

p ¼ 0.03; figure 3).

(a) Influence of protected areas on coral disease
following an acute disturbance

Overall, total coral disease levels at Palm Island sites 1 year fol-

lowing a severe cyclone were sevenfold lower inside reserves
(mean+ s.e. ¼ 1.0+0.3%) than in non-reserves (7.4+0.9%,

z ¼ 2878.5, p , 0.001, sample size ¼ 26 sites, figure 2a). Four

of the five diseases recorded had significantly lower levels

inside reserves: white syndromes (10-fold), brown band

(sevenfold), skeletal eroding band (sixfold) and black band

(fivefold lower; electronic supplementary material, table S4).

No cases of atramentous necrosis were recorded at Palm

Island sites. Within each of the reserve and non-reserve

groups, total mean prevalence of the five diseases was not

influenced by windward versus leeward location of sites

when included as a fixed effect in in the model (Exposure:

z ¼ 21.4, p ¼ 0.17; Exposure � Reserve Status: z ¼ 20.56,

p ¼ 0.56), although sites located on the windward sides of

islands had considerably greater apparent impacts from the

cyclone than leeward sites (figure 2c,d). None of the sites

were exposed to primary or secondary water run-off during

the wet season surveyed (all water quality values ¼ 0).

Three factors explained 45.9% of the variability in the

structure of coral disease assemblages among sites in the

Palm Islands: prevalence of recently exposed coral skeleton

from physical damage, abundance of derelict fishing line and

macroalgal cover (best-fit distance-based linear model, BIC¼

10.4, R2 ¼ 0.46, d.f.¼ 22; figure 2b). As visualized using the

dbRDA, disease assemblages were clearly demarcated by

reserve status, driven by correlations with coral damage

and fishing line along axis 1 (Pearson correlations ¼ 20.90

and 20.40, respectively), with significantly higher levels

inside non-reserves (mean damage+ s.e. ¼ 3.8+0.7%

versus 1.1+0.4%; mean pieces of derelict fishing line+
s.e. ¼ 1.7+0.7 versus 0.6+0.2 m22; electronic supplementary

material, table S7). All five coral disease types were closely

associated with non-reserve sites (strong negative correlations

with axis 1, Pearson r . 0.5). Partial correlations (r) with axis

1 revealed that higher levels of two ciliate diseases, skeletal

eroding band disease (r ¼ 20.67) and brown band disease

(r ¼ 20.60), in combination with white syndromes

(r ¼ 20.61) were predominantly driving the separation

between reserve and non-reserve sites. This effect was best

explained by higher levels of coral damage and the abundance

of derelict fishing line at non-reserve sites (figure 2b,e).

Macroalgal cover did not differ significantly between

reserves (1.1+0.5%) and non-reserves (1.8+ 1.0%, electron-

ic supplementary material, table S7); however, strong

correlations with axis 2 suggest that cover of macroalgae

(r ¼ 0.7) and the abundance of derelict fishing line

(r ¼ 20.6) structures coral disease assemblages across all

sites, regardless of reserve status (figure 2d ). A partial correl-

ation (r) with axis 2 illustrates that black band disease

(r ¼ 20.33) is most strongly associated with higher levels

of macroalgal cover and pieces of discarded fishing line

across all sites (figure 2b,f ).
(b) Influence of protected areas on coral disease
following a chronic disturbance

The spatial extent of the secondary water plume in the

Keppel Islands during the 2013 wet season was 4256 km2

(figure 3a), with sites exposed to secondary water for an aver-

age of 13.6 weeks out of a possible 22 weeks. The maximum

spatial extent of the primary water plume during the 2013

wet season was 2861 km2 (figure 3b), with a mean weekly

coverage of primary water of 5.4 weeks over the 8 years.
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We found no association between primary and secondary

water exposure at the sites (r ¼ 0.23, p . 0.05).

Although we recorded 50% fewer cases of disease

inside reserves in the Keppel Islands, there was not a clear differ-

ence in total disease prevalence inside reserves (mean+ s.e.¼

1.4+0.7%) compared with non-reserves (3.4+1.0%, z¼ 22.3,

p¼ 0.02, sample size¼ 21 sites) in the Keppel Islands. We did

not record any derelict fishing line in the 11 sites we surveyed

inside protected areas, and we observed four diseases out

of six commonly recorded in the Indo-Pacific (no cases of

black band disease or atramentous necrosis). The abundance of

derelict fishing line, number of fish functional groups rep-

resented, exposure to secondary water (z-score), and density of

reef fish explained 61.8% of the variability in disease assemblages

(best-fit distance-based linear model, BIC ¼ 27.8, R2 ¼ 0.56,

d.f.¼ 17; figure 3c). Visualized differences in the structure and

abundance of coral disease assemblages demonstrated a con-

siderable separation between reserve and non-reserve sites

(figure 3c). The differentiation between reserves and non-

reserves was strongly linked to correlations with abundance of

derelict fishing line and number of fish functional groups

along axis 1 (Pearson correlations¼ 20.71 and 20.61, respect-

ively). Of the two variables, levels of derelict fishing gear

outside reserves were elevated compared with inside reserves

(1.5+0.4 m22 versus 0, respectively); however, reserve status

did not influence the mean number of fish functional groups

represented (9.0+0.4 m22 versus 8.9+0.3 per 200 m2, elec-

tronic supplementary material, table S7). Mirroring results in

the Palm Islands, partial correlations (r) with axis 1 revealed
that higher levels of the two ciliate diseases, skeletal eroding

band disease (r¼ 20.82) and brown band disease (r ¼ 20.68),

in combination with white syndromes (r¼ 20.56) were predo-

minantly driving the separation, which is best explained by

higher abundances of derelict fishing line and fewer represented

fish functional groups (figure 3c).

Reserve and non-reserve sites were not differentially

exposed to secondary water (reserve mean z-score+ s.e. ¼

0.7+0.2, non-reserve ¼ 0.8+0.2, electronic supplementary

material, table S7); however, significant variation among sites

within the respective zones (electronic supplementary

material, table S4) and strong correlations with axis 2 suggest

that secondary water exposure (r ¼ 20.9) structures coral dis-

ease assemblages across all sites, regardless of reserve status

(figure 3c). A partial correlation (r) with axis 2 illustrates that

white syndromes (r ¼ 20.4) were most strongly associated

with reefs that experienced anomalous exposure levels to sec-

ondary water (figure 3c). Moreover, white syndromes

comprised the dominant diseases observed in the Keppel

Islands and were responsible for the greatest dissimilarity in

disease assemblages between reserves and non-reserves

(41.7%, similarity percentages analysis). We found threefold

lower mean prevalence of white syndromes in reserves than

in non-reserves for sites exposed to levels of secondary water

that were lower than the long-term average (z-score , 0),

whereas no difference in white syndromes was found between

reserves and non-reserves for sites that experienced higher

levels of secondary water exposure (figure 3d; electronic

supplementary material, table S8).
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4. Discussion
Our results show that no-take marine reserves can reduce

coral disease following an acute disturbance from a severe

cyclone and also following chronic exposure to terrestrial

run-off when exposure duration was lower than the long-
term site average. Conversely, reserves were not effective in

lowering disease levels when sites were exposed to higher

than average levels of run-off, indicating that reductions in

water quality undermine the efficacy of protected areas to

alleviate disease. Even though large-scale disturbances such
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as cyclones and run-off cannot be mitigated by reef protec-

tion itself, our results suggest that resilience afforded by

complete protection from fishing activities can moderate

coral reef health compared with areas that remain heavily

fished (figure 4a). We suggest effective disease management

efforts should target improving water quality and limiting

anthropogenic activities that cause injury (figure 4b).

Our analyses indicate that lower abundances of derelict

fishing line and recently injured corals inside reserves were

the primary mechanism for lower coral disease prevalence in

both island groups. Many studies link fishing with increased

coral breakage [18,65]; therefore, moderating activities that

damage corals is postulated to reduce disease levels by limiting

injuries that facilitate an entry point for coral pathogens

(i.e. [20–23]). Tissue abrasions and injuries have been shown

to promote disease development by providing a primary site

for the invasion of pathogens in a wide variety of taxonomic

groups, such as humans and terrestrial mega-fauna [66],

plants and trees [67], insects [68], fishes [69] and marine

invertebrates like sponges and corals [70]. For corals, ciliate

infections causing brown band disease have been associated

with tissue injury from tourists [19], as well as predation by

the crown-of-thorns starfish [23,71] and a coral-feeding snail

[22]. Likewise, lacerations on coral tissues increase suscepti-

bility to colonization by the ciliate that causes skeletal

eroding band disease [20,21]. Here, ciliate-mediated tissue

loss from both skeletal eroding band and brown band disease

accompanied higher levels of derelict fishing line. We hypoth-

esize that fishing line not only causes coral tissue injury and

skeleton damage, but it also provides additional surfaces for

potential pathogens to colonize, increasing their capacity to

infect wounds. The dominance of ciliate diseases outside

reserves observed in this study, coupled with parallel con-

clusions reached by Lamb et al. [24], provide further evidence

that protected areas are effective for moderating diseases that

are associated with fishing activities.

In many instances, reefs subject to chronic stress from fish-

ing have failed to recover from natural disturbances such as

tropical storms [72], which could also suggest that corals located

outside reserves in our study may have been slower to recover
from cyclone damage. Invertebrate immune responses are

known to be depleted during regeneration of wounds, resulting

in reduced capacity to develop an immune response following

exposure to a foreign substance and reinforcing the likelihood of

disease development [70]. Complete regrowth of tissues during

wound repair can take several months in normal circumstances;

therefore, persistent disturbances from fishing activities in

non-reserves could facilitate infections well beyond the cyclone.

Macroalgal cover appears to be a significant driver of coral

disease assemblages regardless of reserve status, particularly

for black band disease. Benthic algae are common reservoirs

for a variety of potential coral pathogens. While physical con-

tact with a certain macroalga can trigger a virulent reef-coral

disease [15], initial damage or stress to the coral may also be

a prerequisite for transmission of alga-associated microbes

[73]. Moreover, black band disease is composed of complex

and diverse polymicrobial mats that are capable of infecting

injured corals transplanted downstream [74]. This suggests

that mechanical damage could increase both the likelihood of

dislodgement and transmission of marine pathogens.

Elevated exposure to secondary plume water is an

important driver of coral disease assemblages and appears

to undermine the potential of protected areas to alleviate

tissue loss from white syndromes, a devastating group of dis-

eases [45]. Secondary waters are characterized by finer

sediment fractions and higher chlorophyll-a concentrations

that reflect enhanced phytoplankton biomass from nutrient

enrichment [54]. Nutrient enrichment can lead to blooms of

toxic microalgae. While intense algal blooms that cause mor-

tality via anoxia or toxic exposure have obvious immediate

effects on marine populations, chronic hypoxia or exposure

to algal blooms could be equally detrimental in the develop-

ment of disease. For instance, nutrient enriched primary

productivity is linked with increases in the severity of amoebic

gill disease affecting multiple fish species [75], promotion of

the debilitating tumour-forming disease fibropapillomatosis

in sea turtles [76], and pathogenic infection in amphibians

[77]. Furthermore, nutrient enrichment increases the preva-

lence and severity of multiple coral diseases in controlled

laboratory and field settings [47,78].
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Because exposure to secondary water did not differ

between reserves and non-reserves, it is possible that the

combined effects of exposure to finer sediment fractions

and mechanical damage, led to more white syndromes out-

side reserves. Several white disease outbreaks have

accompanied mechanical damage. Disease-causing rapid

tissue loss was associated with colony fragmentation and

physical contact with sediment in multiple coral species fol-

lowing a hurricane [42], inferring a direct link with

sediment and injury. Not only are fine sediment fractions

the most difficult for corals to expel and remove [79], but

fine sediments are also often positively correlated with total

organic carbon content [80]. In experimental studies, disease

development was enhanced by elevated organic carbon,

suggesting that coral pathogens are carbon-limited [81]. The

extensive breadth of evidence outlined above suggests that

physical disruption of coral tissues by fishing activities,

paired with costly energy expenditure required for sediment

removal and wound-healing processes, increase the

probability of disease.

Protected area location is a key consideration for meeting

conservation goals [82]. Satellite-derived water quality data

were critical in assessing both the benefits and limitations of

reserves to moderate disease in this study, and offer potential

for identifying and forecasting locations that are at increased

risk of outbreaks [83]. Exposure to disturbances is a determi-

nant of the vulnerability of marine ecosystems [84] and such

disturbances are not often spatially uniform [59]. Therefore, it

is helpful to consider disturbances when establishing protected

areas for the management of marine disease. However,

exposure to disturbance is rarely considered in marine pro-

tected areas planning [85] (but see [86]) and debate surrounds

discussions about whether to protect high- versus low-risk

areas [85]. Our study emphasizes additional factors for

decision-makers to consider when using protected areas as

tools for moderating coral diseases in regions with variable

risks of exposure to run-off and cyclonic winds. It is likely

that marine organisms will be threatened by multiple disturb-

ances in the future; thus moderating outbreaks of disease

using protected areas will require additional pre-emptive man-

agement tools and techniques.

Our results indicate that although marine reserves were

only partially effective in mitigating disease prevalence fol-

lowing chronic exposure to land-based run-off, further

reductions in marine diseases are likely in protected areas

that encompass terrestrial, freshwater and marine environ-

ments (figure 4b). For example, the restoration or creation of

riparian zones and wetlands can increase nutrient and sedi-

ment residence time and allow for nutrient cycling (e.g.

[87]), and could also reduce levels of disease-causing pollu-

tants that enter coastal reefs. Mangroves and constructed

wetlands are often used as bio-filters for natural sewage

and fertilizer control [88]. Bivalves could have huge potential

for reducing transmission of disease to coral reefs from terres-

trial sources by filtering pathogenic microorganisms from the

water column [89]. Ecosystem filtration of toxins, nutrients and

pathogenic microorganisms provided by coastal mangroves,

seagrasses and bivalves has not yet been examined as a tool to

alleviate marine diseases. An important area for future research

would be to assess the level to which these habitats sequester pol-

lutants and alleviate marine disease impacts. More importantly,

marine and terrestrial environments are often regarded as two
separate ecosystems, and managed as independent entities

[90]. Significant benefits to marine organism health might arise

from investing conservation efforts into connecting marine and

terrestrial systems [36]. In some areas, this investment has led

to improvements in downstream and coastal water quality

(e.g. [91]).

Protected areas are likely to be inadequate for alleviating

marine disease under several conditions. For example, pro-

tected areas may be unsuitable for protecting highly mobile

mega-fauna and fishes that traverse boundaries. Displacing

impacts outside protected area boundaries commonly

occurs in terrestrial and marine environments [92], and

could further degrade adjacent ecosystems and override the

benefit of locally managed areas. Furthermore, range shifts

due to anthropogenic and climate-driven processes may

cause both pathogens and hosts to move out of protected

areas [93], potentially reducing the relevance of fixed spatial

locations as conservation strategies for moderating disease.

The benefits and limitations presented here represent only

some of the considerations needed to inform the develop-

ment of spatial management strategies for moderating

marine disease.

Overall, protected areas represent a promising conserva-

tion tool for reducing diseases promoted by activities that

increase physical injuries. Although protected areas have

been implemented in many ecosystems throughout the

world, this is the first study to demonstrate that the effi-

cacy of protected areas to alleviate coral disease can still

occur following both an acute and chronic environmental

disturbance. Our understanding of the pathogens that

cause most coral diseases is still unclear, especially com-

pared with diseases that occur on land. The openness of

the marine environment means that it is extremely difficult

to pinpoint the underlying disease-causing agent or agents.

Therefore, it is vital to determine which activities lead to

elevated disease levels, and moderate impacts that increase

susceptibility to infection.
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