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Ecological traps: current evidence
and future directions

Robin Hale and Stephen E. Swearer

School of BioSciences, University of Melbourne, Parkville 3010, Australia

Ecological traps, which occur when animals mistakenly prefer habitats where

their fitness is lower than in other available habitats following rapid environ-

mental change, have important conservation and management implications.

Empirical research has focused largely on assessing the behavioural effects

of traps, by studying a small number of geographically close habitat patches.

Traps, however, have also been defined in terms of their population-level

effects (i.e. as preferred habitats of sufficiently low quality to cause population

declines), and this is the scale most relevant for management. We systemati-

cally review the ecological traps literature to (i) describe the geographical

and taxonomic distribution of efforts to study traps, (ii) examine how different

traps vary in the strength of their effects on preference and fitness, (iii) evaluate

the robustness of methods being used to identify traps, and (iv) determine

whether the information required to assess the population-level consequences

of traps has been considered. We use our results to discuss key knowledge

gaps, propose improved methods to study traps, and highlight fruitful

avenues for future research.
1. Introduction
Human activities have dramatically changed environments worldwide [1,2].

These changes are occurring at significantly faster rates (i.e. human-induced

rapid environmental change, HIREC [3]) than natural processes, and mean that

animals increasingly encounter conditions they have not experienced in their

evolutionary history. Initial responses by animals to HIREC are often behavioural,

and can help them adjust to new conditions [4]. Worryingly though, the rate at

which HIREC occurs can mean that animals fail to adapt and their fitness is

compromised when previously adaptive behaviours become maladaptive [5].

Many animals use environmental cues to select habitats that maximize their

fitness. HIREC can cause these cues to become uninformative of habitat quality;

one consequence is that ecological traps form when animals prefer habitats where

their fitness is lower than in other available options [6,7]. Ecological traps are

likely to increase local extinction risk [8], so understanding how they can arise,

how animals respond to them and how they can be mitigated are important

questions for conservation biology [9]. Despite significant efforts to develop

the theory underpinning ecological traps and to describe their potential effects

(e.g. [5,7,10,11]), there has been limited exploration of strategies for preventing

their formation or mitigating their impacts (but see [8,12,13]).

Three criteria must be met to demonstrate an ecological trap [7]: (i) individ-

uals prefer one habitat over another (a ‘severe’ trap) or equally prefer multiple

habitats (an ‘equal preference’ trap); (ii) fitness (or a reasonable surrogate)

differs between habitats; and (iii) fitness is lower when animals exploit the

(equally) preferred habitat. In two comprehensive reviews, Robertson and co-

workers [5,7] identified studies that meet these criteria and assessed many of

the characteristics of traps. This work has provided a solid framework for asses-

sing maladaptive responses to HIREC and important insights including: (i) a

broad array of anthropogenic activities can cause traps; (ii) most studies are

of ‘severe’ traps, potentially reflecting a reporting bias against ‘equal preference’

traps; and (iii) changes in both cue sets and resource values cause severe traps

in most cases [5].
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To build on the findings of Robertson and co-workers

[5,7], we present the results of a systematic and quantitative

review of the ecological traps literature. A solid foundation

of relevant evidence is required to ensure conservation

decisions are science-based [14], and an improved library of

empirical studies is vital to inform our understanding of

the underlying mechanisms behind maladaptive responses

to HIREC, and the conditions under which ecological traps

might occur [7]. Our goal was to use this review to identify

key knowledge gaps and suggest best-practice methods for

future research.

Our first aim was to assess where and with which taxa eco-

logical traps have been studied. If research efforts have been

restricted geographically or taxonomically, scientific inference

can be biased, and there may be uncertainty about the degree

to which findings from a particular study system apply more

generally. Conservation efforts can be hindered when knowl-

edge gaps from taxonomic or geographical biases exist; for

example, if the most threatened ecosystems/species are those

that are most poorly understood [15]. Furthermore, the ‘ecologi-

cal trap’ concept was originally formulated on studies with

birds, and while a wide range of taxa are affected [5], is this

diversity studied commonly? Animals may differ considerably

in terms of the likelihood of maladaptive responses to HIREC

[3], and taxonomic biases in research effort may mean we under-

stand only a subset of this variability. Neither the taxonomic nor

geographical distribution of ecological traps research has been

examined, but doing so will help identify if a re-distribution of

future research efforts should be encouraged.

Our second aim was to describe how the strength of the

effects of traps on preference and fitness vary. Traps can

have a variety of causes [5], and their fitness costs range

from 100% mortality [16] through to more subtle effects

such as reduced reproductive output [17]. We present the

first evaluation of how the magnitude of changes in prefer-

ence and fitness might vary among different causes of traps

and affected taxa. Both the relative attractiveness and fitness

costs of traps will influence how they affect animals [5], and

we also examined if traps that are most attractive to animals

are those with the greatest fitness costs. Examining the

relationship between fitness and preference could shed light

on the mechanisms causing traps that have the most severe

consequences for animals and provide opportunities for

better targeting of conservation actions.

Our third aim was to assess if suitable methods are being

used to identify traps. Difficulty in adequately demonstrating

preference was highlighted as a major impediment to identify-

ing traps nearly a decade ago [7]. We assess if correlative

approaches, which can provide ambiguous information

about whether observed patterns are due to preference, or

experimental methods, which provide the most definitive evi-

dence of preference, are more commonly used to assess traps.

We also assess if before–after control-impact (BACI) principles

are being considered in ecological trap studies. These designs

are widely used in environmental impact assessment monitor-

ing [18], and eliminate the possibility that observed differences

between sites simply reflect underlying patterns of spatial

variability rather than a disturbance. While it may be impos-

sible to predict the formation of some traps, others, such as

those arising as unintended consequences of management

activities, may be more predictable [13], making these designs

possible (e.g. [19]), and in fact the most unambiguous way to

determine if a trap has formed.
(a) The landscape-scale consequences of ecological
traps

Traps were originally defined as behavioural phenomena

(i.e. as habitats that animals prefer where their fitness is com-

promised) [6,7]. Reflecting this, most studies evaluate traps at

only a small number of geographically close habitat patches.

Traps, however, have also been defined as population-level

phenomena (i.e. as low-quality but preferred habitats that

cannot sustain a population; e.g. [20]) and act as ‘attractive

sinks’ [21]. Given that effective habitat management depends

on considering how local patches fit within the mosaics of habi-

tat present across the landscape [22], examining the effects of

traps for metapopulations will be important [10]. This will

require behavioural studies to determine if a trap has formed

and, if so, further studies to understand the potential conse-

quences (e.g. in terms of population/metapopulation growth

rate and persistence) for animals across the landscape [9,10].

Traps that are highly attractive and severely reduce fit-

ness are likely to compromise metapopulations, especially

when they represent a large proportion of available habitat

[10,23,24], but there has been little consideration of what is

required to assess such landscape-level consequences. Recently,

we proposed that these landscape consequences are likely to be

related to: (i) the probability that dispersing animals encounter

traps; (ii) the likelihood that they select them; (iii) how and by

how much traps reduce fitness; and (iv) the susceptibility of ani-

mals to these fitness costs [10] (table 1, columns a–d). However,

each of these criteria encapsulates the effects of a range of factors

acting at both local and landscape scales (table 1, columns a–d).

Our fourth aim was to determine which of these factors are

being considered in current attempts to study ecological traps,

in order to identify where data are likely to be deficient.

2. Material and methods
(a) Basic search protocols
We searched the Web of Science database using the same search terms

(‘ecological trap*’ OR ‘evolutionary trap*’ OR ‘maladaptive’ OR

‘behavioural/behavioral mismatch’) and methods (electronic sup-

plementary material) as per the two reviews by Robertson and

co-workers [5,7]. We identified 29 studies that met the criteria for

demonstrating a trap (hereafter ‘demonstrated trap’ studies; see the

electronic supplementary material, table S2 for full details of these

studies). We identified an additional 98 studies that tested for but

did not find a trap, or speculated that a trap had been found but

failed to meet the required criteria. We classified these as studies

where a trap had not been demonstrated (hereafter ‘undemonstrated

trap’ studies).

(b) Extraction of information
We extracted basic information about each study (e.g. location,

methods used to assess preference, if the study spanned the

period before and after traps), supplementing information in

[5,7]. The process causing the trap was classified into the categories

used in [5]: agriculture and forestry, exotic species, human struc-

tures (e.g. buildings), hunting and fishing, and restoration. We

used the log response ratio [30] as an effect size to quantify the

attractiveness and fitness costs of traps, calculated as ln(response

variable in traps/response variable for non-traps) where the

response variable reflects the measure of preference or fitness

being used. Effect sizes were calculated based on the measures

used by authors to identify traps, and from the one with the largest

effect size if multiple measures were used. Studies that did not pro-

vide data that could be used to calculate effect sizes were excluded
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Figure 1. The (a) ecosystems (b) continents and (c) focal taxa where ecological traps have been demonstrated (D) and studied but not demonstrated (ND).
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when these values were required. Nine studies did not provide

data but either explicitly stated or implied that mortality was

100% in traps (eight examining egg laying by insects on artificial

structures, plus [16]). Because mortality in non-trap habitat is

unknown for these studies, we calculated three potential effect

sizes assuming a 5-, 10- or 20-fold reduction in survival, which

are likely to be conservative estimates based on effect sizes

observed in other studies. All quantitative analyses were per-

formed with each of these effect sizes in turn and excluding

these studies to ensure they did not bias our findings.

It is unreasonable to assess studies undertaken at the patch scale

against all of the patch- and landscape-scale criteria outlined in

table 1, given that studies were not implemented to assess effects

at the latter scale. We therefore selected nine parameters (table 1,

column e) that patch-scale studies could reasonably be expected to

consider, and determined if any of them were considered in the

127 studies. This assessment was done across both ‘demonstrated’

and ‘undemonstrated’ categories so we could compare if studies

meeting the criteria to identify traps generally collected more of

the required information that those that did not. The required

levels of evidence for our qualitative scores are outlined in the

electronic supplementary material, table S1.
3. Results and discussion
(a) Where and with which taxa have traps been

studied?
Traps affect a variety of taxa [5] and studies are published in a

range of journals (electronic supplementary material, table S2),

but traps have mainly been identified for birds (reflecting the

initial development of the concept), especially in Europe and

North America (figure 1). The geographical and ecosystem dis-

tributions we observed are consistent with other similar

assessments [31,32]. Other than the compelling evidence of

the attraction of insects to artificial structures, only three

studies have demonstrated a trap in freshwater ecosystems,

and none in marine environments. However, rates and extent

of habitat transformation have been considerable in aquatic

environments (e.g. [2,33]), making it likely that traps remain

undetected due to, at least in part, less research being

undertaken in these ecosystems (e.g. [31]).
(b) Do the effects of traps on preference
and fitness vary?

The likelihood that animals respond maladaptively to environ-

mental changes [3], and the magnitude of the effects of traps

on fitness and preference, clearly vary depending on the cause

of the trap and which taxa are affected (figure 2; electronic sup-

plementary material, figure S1). Discussing the mechanisms

underlying this variability is difficult given the small number

of available studies, and the fact that particular causes of traps

have been studied with only a subset of taxa (e.g. arthropods

and human structures, birds and agriculture, forestry and restor-

ation). However, maladaptive behaviours are most likely when

the environment changes dramatically and animals are exposed

to conditions that are fundamentally different from those that

shaped their traits [3]. Whether animals prefer ecological traps

is likely related to their sensory ability and behaviour. For

example, animals with larger brains might be more flexible or

innovative, facilitating more effective adjustments to HIREC

(e.g. [34]). Furthermore, animals capable of more complex beha-

viours (e.g. use of multiple habitat selection cues, multiple

sensory modalities) may be less susceptible to making mistakes

when selecting habitats [10]. Traps that greatly reduce fitness,

especially those that cause death, are likely to have worse conse-

quences for animals, especially when they have life-history traits

that increase their susceptibility to these fitness costs [8]. One of

the most common, and compelling, cases of ecological traps is

insects tricked into laying eggs on artificial structures on the

basis of polarized light [7]. This form of HIREC results in insects

experiencing habitats that are very different to those under

which their evolutionary traits have developed (i.e. buildings

versus wetlands/streams), and have amplified cues (polarized

light) that make them supernormally attractive. In comparison,

the apparent decreased susceptibility of birds and mammals to

traps might be due to their greater cognitive ability, enabling

more complex habitat selection behaviours.
(i) The benefits of widening the focus of ecological traps research
Ecological traps have been studied in an ad hoc, species- and

system-specific manner, reflecting the relative infancy of this
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subfield. We suggest that a wider taxonomic, geographical

and ecosystem focus could have three important benefits.

First, studying a wider range of ecosystems and taxonomic

groups may provide new insights to complement the knowl-

edge collected largely with European and North American

birds. For example, birds commonly experience traps caused

by predation (e.g. [35]), but aquatic taxa may be susceptible

to traps that arise in other ways (e.g. pollution [36]). A wider

focus could allow the degree to which findings from particular

studies might transfer to other sites and systems to be assessed,

which is a key component of a general, predictive understand-

ing of ecology [37]. In addition, understanding the potential

intricacies of traps in different systems could inform the

development of management options tailored to address

the underlying cause—for example, should management

efforts be focused on reducing habitat attractiveness (e.g. by

removing tree species that birds prefer [12]), improving

habitat quality (e.g. treating polluted sediment in urban storm-

water wetlands [13]) or excluding animals from potential traps

(e.g. using fencing)?

Second, a wider geographical focus may mean that more

research is conducted in areas where landscape changes are

most rapid, and traps most likely to form [8]. While conserva-

tion research in human modified landscapes is likely to be

most important in areas where human pressure is greatest,

these areas are also the least studied [32]. There has been

much interest in understanding the biodiversity impacts of

land-use change in the tropics (e.g. [38]), but little consider-

ation of the potential for ecological traps in tropical

ecosystems. Many biodiversity studies use species richness

as an indicator of responses to land use (e.g. [38]), but this

will not allow traps to be detected until they cause decreases

in the number of species at a site. By working in systems that

are human-dominated (e.g. in urban areas) or in geographical

areas where habitat transformation is greatest, we may find

that traps are more common, or their effects significantly

stronger, than previously documented.

Third, more replication of trap studies with different

causes and affected taxa will improve current understanding

of variability in maladaptive responses to HIREC, and pro-

vide information that could help prioritize when managing

traps is important. Interspecific differences in life-history

traits and behaviours will affect the likelihood and fitness
consequences of selecting traps (e.g. [8,10]). By studying ani-

mals with differing traits/behaviours and examining how

they respond to traps that vary from those that cause only

minor changes to the environment through to completely

novel conditions will allow ‘high-risk’ activities and highly

susceptible taxa to be identified in the future. An improved

library of empirical studies could also help inform attempts

to examine the likely impacts of traps, for example, through

simulation models that are parametrized with demographic

data informed from field studies. Ultimately, such studies

will hopefully enable the effects of traps on animals to be

compared with other conservation threats, and to identify

when the management of traps should be prioritized.
(ii) Preferences for traps and their fitness consequences
are strongly related

Traps that are more attractive also have the most deleterious

fitness costs (figure 3). This suggests that severe traps pose

the most serious demographic threats to animals, and that

removing these is likely to be more important than removing

equal preference traps. However, removing traps depends on

understanding the mechanism(s) underlying the relationship

between fitness and preference. The simplest explanation is

that one HIREC activity simultaneously alters the quality

and attractiveness of habitats (e.g. electronic supplementary

material, figure S3a); for example, dragonflies die after

being attracted to and landing on oil spills in lakes [27]. How-

ever, the underlying mechanisms could be more complicated.

One HIREC activity could create two agents of change that

independently act on fitness and habitat selection (e.g. elec-

tronic supplementary material, figure S3b). For example,

fishing could cause an ecological trap for spiny lobsters

(Panulirus argus) attracted to small artificial structures

known as casitas, and killed once captured [39]. In this

instance, the lobsters are attracted to the casita and another

agent of change (fishing) reduces fitness. Animals could also

encounter multiple HIREC activities that affect preference

and fitness via independent pathways (e.g. electronic sup-

plementary material, figure S3c). This will be most likely

when covariance in HIREC activities occurs, with particular

locations likely to be stressed in multiple ways. For example,

catchment disturbance, water resource development and
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(dashed grey line) and a 20 times reduction (dashed black line)—see the
methods section for further details. Linear regression models for each of these
effect sizes and when these studies were removed all p , 0.01, R2 . 0.50.
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pollution are spatially well correlated in rivers [2]. Animals that

encounter multiple forms of HIREC or agents of change are

likely to face complex challenges [40,41]. Given these potential

complexities, a more mechanistic approach is required to

understand why more severe traps are worse for animals, in

terms of identifying the cues used to select habitats, and exam-

ining how different HIREC activities/agents of change affect

preference and fitness in isolation and in combination.
(c) Are appropriate methods being used to study
ecological traps?

(i) Preferences for traps should not be inferred from correlative
data alone

Identifying preference as opposed to habitat association

requires specific tests to demonstrate that the observed distri-

butional patterns are due to behaviour [42], rather than other

explanations (e.g. differential post-settlement motality [43]).

Ambiguities with assessing preferences were identified as a

major impediment to ecological trap studies nearly a decade

ago [7,8], yet more than 70% of studies that demonstrated a

trap used observational methods alone to infer preferences.

This could result in uncertainty in accurately identifying

traps, raising the possibility that some remain unidentified

or alternatively that some non-trap habitats are mistakenly

classified as traps.

Confidence in detecting ecological traps will be greatly

enhanced if experiments are used to demonstrate preference

whenever possible. There will undoubtedly be cases when

this is impossible (e.g. when working with very large animals).

In such instances, a number of methods exist to collect indirect

evidence of habitat preference, which differ in terms of their

likely suitability for different species/systems (e.g. [7]). Alterna-

tive explanations for observed patterns other than preference

will need to be considered, however, when using these methods.
For example, arrival time could be a useful proxy for migratory

species that select breeding habitats each year, but could be a

poor indicator of preference if alternative habitat selection strat-

egies exist within populations (e.g. among age classes), or if

variability in habitat use between years reflects changing phys-

iological needs [7]. When preference cannot be demonstrated

experimentally, several observational measures should be

used to provide multiple lines of evidence indicating animals

probably exhibit preference [7].

(ii) Traps are rarely studied both before and after they form
Monitoring before and after an environmental disturbance is

a critical element of BACI designs. We found only one study

that spanned the periods both before and after the formation

of a trap. Rotem et al. [16] illustrate how knowledge of

temporal changes in the relationship between preference

and fitness can yield important insights, by demonstrating a

temporal shift from ideal density-dependent habitat selection

to an ecological trap in reptiles.

The vast majority of studies have been implemented with

the ‘control-impact’ approach, which is not recommended for

environmental monitoring since it is impossible to distinguish

a treatment (i.e. disturbance) effect from inherent differences

between sites [18]. Large numbers of control and impact sites

can improve inferential strength using this approach, but the

level of replication required is typically lacking in ecological

trap studies. While some traps might arise unexpectedly, pre-

cluding any ‘before’ studies, the majority of traps are caused

by human activities, which involve significant planning

and lead-in times (e.g. restoration, building of structures—

electronic supplementary material, table S2). Researchers

may be able to work with managers to predict how manage-

ment activities might alter habitats, and to monitor potential

changes in fitness before and after the activity has commenced

[13]. If fitness is decreased, studies could be undertaken to

assess if poor quality habitats are preferred. Adopting prin-

ciples of BACI designs, coupled with studies of habitat

selection will result in greater confidence that differences

between sites are caused by traps. Bro et al. [19] present a

useful example of how monitoring fitness of grey partridges

can be used to identify potential ecological traps resulting

from replanting vegetation.

(d) Assessing the landscape-level consequences of
ecological traps

(i) Are we collecting the right information?
All ‘demonstrated’ studies collected information about the

attractiveness of traps and their fitness costs (figure 4: T. att

and T. fit), which is required to meet the three criteria for docu-

menting a trap [7]. By contrast, studies that did not demonstrate

a trap only rarely assessed preference (less than 10% of studies;

figure 4). The majority of both types of studies generally con-

sidered habitat selection behaviour (H. Sel), life-history traits/

fitness (Traits), and the size of trap and non-trap habitats

(Size), although slightly more so in ‘demonstrated’ studies.

Most (approx. 75%) of both types presented information

about the proportion of observed traps (T. pro). These results

were often not placed into context by considering the wider

distribution of habitats within the study region (H. avail).

This is an important knowledge gap, as effective manage-

ment needs to consider how patches fit within the intrinsic
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Figure 4. Assessing if studies consider the patch-level characteristics required to
assess the landscape-scale consequences of traps. Nine variables were scored
(table 1; electronic supplementary material, table S1) in 127 studies across
the four categories (indicated by colouring) likely to determine the severity of
traps [10]. The proportion of studies that considered a particular variable is
denoted for studies that demonstrated a trap on the y-axis (n ¼ 29), and
studies that did not demonstrate a trap on the x-axis (n ¼ 98). The dotted
line shows the 1 : 1 linear relationship to indicate when the two types of studies
provide comparable information. The area above this curve indicates when
studies that demonstrated a trap have considered a variable more frequently
than studies that did not demonstrate a trap.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

283:20152647

7

variations in habitat quality likely to occur across the landscape

[22]. Recent work mapping potential traps for Andean

bears demonstrates the advantages of such a landscape

approach [44].

How natal experiences or changes in disperser physiology

might influence habitat selection and thus the probability of

selecting a trap have rarely been considered (figure 4: Np,

Phys), probably due to the limited research that has been

undertaken in general about the effects of these factors on

habitat selection. However, recent empirical work demon-

strates that animals that select natal-like habitats can have

compromised fitness [28,29], which could exacerbate the

effects of traps [10]. Dispersers in poor physiological con-

dition or under time constraints may become less choosy or

more likely to choose sub-optimal habitats in general [45],

but the degree to which this results in ecological traps has

not been explored. More work is needed examining how

experiences in early life history might cause maladaptive

habitat selection later in life.

(ii) What additional information is required?
Many of the patch-level factors likely to determine the

landscape-level consequences of traps are currently being con-

sidered at least in some studies. It will be important though to

investigate the potential importance of the landscape-level vari-

ables not considered here. For example, landscape topology can
affect the persistence of metapopulations (e.g. [46]), but the

degree to which this is the case when traps are present remains

unexplored. Similarly, little is known about how variation in dis-

persal ability or perceptual range might influence the probability

that animals encounter traps.

We only assessed here whether the variables likely to affect

the landscape-level consequences of traps were being con-

sidered. Only a relatively small number of relevant studies

was identified, and many of the variables were frequently

not quantified (e.g. figure 4), preventing further quantitative

comparisons. Collecting quantitative data on all of these

would require a great deal of both desktop-based (e.g. GIS

and network analyses) and field/laboratory-based (e.g. sur-

veys and experiments) work (table 1, column f). Current

knowledge has highlighted the importance of some variables

(e.g. the proportion of habitat that are traps [10]), but further

studies are required to assess the likely importance of others

which are currently data limited. Another key consideration

will be the degree to which the common tenets of metapopula-

tion biology, landscape ecology and population demography

are directly applicable to studying traps. For example, in

some instances, traps that result in only minor fitness conse-

quences could still be important stepping stones that facilitate

connectivity [10], but in other cases, increasing landscape con-

nectivity could have poor outcomes for animals if they are

more likely to encounter traps [44]. Further work is needed

to begin exploring some of these complexities.
4. Conclusion
Given the unprecedented rate at which humans are altering

ecosystems, ecological traps are likely to become increas-

ingly common. To improve the growing library of ecological

trap studies, it will be important to: (i) study a wider variety

of ecosystems and species to develop a better generalized

understanding of ecological traps and their potential effects;

(ii) examine in more detail the mechanisms underlying

the relationships between habitat selection and fitness; and

(iii) ensure that appropriate methods are used to accurately

identify traps. Greater consideration also needs to be given to

the information required to assess the consequences of traps

at landscape scales, which are most relevant for management.

We hope these recommendations will help identify and under-

stand ecological traps and inform the development of

improved methods to manage their effects on animals.
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