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Erol Akçay1,† and Jeremy Van Cleve2,†

1Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
2Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA

EA, 0000-0001-8149-7124; JV, 0000-0003-3656-4257

Inclusive fitness has been the cornerstone of social evolution theory for more

than a half-century and has matured as a mathematical theory in the past

20 years. Yet surprisingly for a theory so central to an entire field, some of

its connections to evolutionary theory more broadly remain contentious or

underappreciated. In this paper, we aim to emphasize the connection

between inclusive fitness and modern evolutionary theory through the

following fact: inclusive fitness is simply classical Darwinian fitness, aver-

aged over social, environmental and demographic states that members of

a gene lineage experience. Therefore, inclusive fitness is neither a generaliz-

ation of classical fitness, nor does it belong exclusively to the individual.

Rather, the lineage perspective emphasizes that evolutionary success is

determined by the effect of selection on all biological and environmental

contexts that a lineage may experience. We argue that this understanding

of inclusive fitness based on gene lineages provides the most illuminating

and accurate picture and avoids pitfalls in interpretation and empirical

applications of inclusive fitness theory.
1. Introduction
In the half-century since its initial development [1], inclusive fitness theory has

played a central role in behavioural and evolutionary ecology and now forms

the core of the interdisciplinary field of social evolution. Yet, this period also

saw repeated controversies over the theory’s status and interpretation. Much

of the early criticism came from theoretical population genetics (e.g. [2,3]),

which helped identify the limitations of the initial models of inclusive fitness

theory and led to generalizations (e.g. [4]) and integration with population

genetics and evolutionary game theory (e.g. [3,5,6]). As a result, modern inclus-

ive fitness theory is a well-integrated and central component of broader

evolutionary theory and population genetics (see [7–9], for reviews).

Curiously, the theoretical developments in inclusive fitness theory and its

integration with evolutionary theory over the past half-century seem to have

had limited impact on how the theory is understood and used, particularly

by empirical researchers. This is likely in part because much of the mathemat-

ical theory remains inaccessible to many empirical researchers and sometimes

appears disconnected from empirical issues. In this article, we wish to highlight

an important theme in the modern theory of inclusive fitness that we believe is

underappreciated: rather than a generalization of Darwinian fitness, inclusive

fitness is a tool for measuring Darwinian fitness in a social context. We argue

that this notion of inclusive fitness has important consequences for its biological

interpretation and tests of Hamilton’s rule. We propose that using a ‘lineage’s

eye view’ of inclusive fitness may help to avoid some of these pitfalls of

interpretation and may help highlight important biological considerations

when measuring inclusive fitness.

We begin by discussing different concepts of fitness and arguing against the

commonly held view that inclusive fitness is a generalization or extension of

classical Darwinian fitness. Instead, the modern theory of inclusive fitness

shows that it is precisely classical Darwinian fitness averaged across the
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social environments and demographic states in which mem-

bers of a lineage may find themselves. Both direct effects

on the fitness of focal individual due its own behaviour

and any indirect fitness effects due the behaviour of other

individuals are accounted for in this averaging process.

A few corollaries of this view of inclusive fitness immediately

follow. First, inclusive fitness cannot be construed as an indi-

vidual-level quantity; rather, it belongs to the gene lineage.

This view is close to the ‘gene’s eye view’ of selection

[10,11]; we discuss parallels between the ‘lineage’ view and

the gene’s eye view in §6a. Second, Hamilton’s rule (in its

general form), by measuring whether or not a mutant lineage

has a higher expected fitness than an alternative allele, is

simply an expression of whether an allele is adaptive or not.

Finally, measuring Hamilton’s rule is as complex as measur-

ing fitness and requires properly averaging over relevant social

environments and demographic states. Thus, there is no single

Hamilton’s rule that is suitable for all empirical systems. While

this is well-known theoretically, there has been a tendency in

the empirical literature to use the ‘canonical Hamilton’s rule’,

which is based on additive costs and benefits and lacks demo-

graphic structure, and therefore applies only for a very specific

scenario. To quantify Hamilton’s rule or inclusive fitness using

field or experimental data, one needs to carefully specify the

structure of the social interaction, which will determine the

relevant condition to be met for the trait in question to be adap-

tive. We illustrate these complexities using the example of

cooperative courtship in wild turkeys [12].
2. Fitness
Many different definitions of fitness exist, designed for differ-

ent aspects of evolutionary analyses and used in different

conceptual frameworks (e.g. [11, ch. 10]). In this section, we

review several standard notions of fitness and clarify how

they are connected by considering how each concept emerges

from theoretical evolutionary analyses. Although the various

points we make in this section hold more generally, we focus

for simplicity of presentation on haploid populations and on

the condition for increase of a rare mutant allele. This basic

scenario is commonly used to characterize evolutionarily

stable states, which can be viewed as adaptations [13].

(a) Invasion fitness: the growth rate of a mutant
lineage

One of the standard problems in evolutionary theory is to

predict the fate of a mutant allele or trait in a population com-

posed of some resident allele or trait. If a resident trait resists

invasion by any alternative mutant trait, then this trait charac-

terizes an evolutionarily stable state. Such states are likely to

be observed in a population over the long term. This type of

long-term analysis underlies most social evolution theory,

e.g. models of the evolution of sex ratio [14], dispersal [15],

interspecific mutualism [16], to name just a few.

‘Fitness’ in this context is the measure that determines the

invasion of a mutant trait and is therefore called invasion fit-

ness. Because evolution is a dynamical (and stochastic)

process, the characterization of evolutionary stability and the

computation of invasion fitness is usually carried out using

methods from dynamical systems and stochastic processes

[7,17,18]. In this framework, the proper measure of invasion
fitness (assuming the population is censused at discrete inter-

vals) is the expected geometric growth rate of a rate mutant

trait in the population, which we denote by r. When the geo-

metric growth rate of a lineage is greater than one, r . 1, a rare

mutant will increase in frequency and invade.

The invasion fitness r takes into account all relevant biotic

and abiotic factors that may affect the growth rate of a mutant

when rare in a population. Insofar as fitness should be a single

number allowing one to predict the fate of a mutant, r is the

most comprehensive measure of fitness, and it is the relevant

quantity for predicting the long-term outcome of evolution.

However, being a mathematical object that describes the

outcome of a complex dynamical system, it is frequently

hard to interpret in biological terms. Therefore, it needs to be

unpacked and related to what we can measure and observe

more easily, which is the reproductive success of individuals.

(b) Individual fitness
Behavioural and evolutionary ecology often defines fitness as

the number of offspring of an individual that survive to

reproductive age and uses this definition as a measure of

how individual behaviours and other traits are adapted to

the environment. This is the classical Darwinian notion of fit-

ness. The fitness of any given individual depends on all

relevant biotic and abiotic factors that affect the survival

and reproduction of that individual. In general, these factors

are stochastic, so evolutionary theorists almost always work

with expected (or averaged) individual fitness, which we

denote by w, and drop the word ‘expected’ from the phrase

hereafter. Since we are usually interested in how the genetic

composition of the population affects individual fitness, the

expectation is taken over all other biological and environ-

mental factors affecting fitness and is conditioned on the

genetic composition of the population at the beginning of

the life cycle (i.e. genotypes may vary among individuals in

the population but individual genotypes are assumed to

take fixed or ‘realized’ values). It is also important to empha-

size that w is the number of surviving offspring after

a complete life cycle, not just offspring produced by an

individual (although the latter is usually what is practically

measured in the field). In other words, we assume that off-

spring are counted after processes such as competition for

limited local resources [19] have affected the recruitment of

juveniles to the adult stage.

(c) Inclusive fitness
Given a focal individual’s genotype, the only remaining

source of variation in individual fitness w comes from the

genotypes of an individual’s social partners. These social

partners form the ‘social environment’ of the focal individual.

Suppose that we write the fitness of a mutant individual as a

linear function of the frequency of the mutant allele among

the social partners of that mutant individual, pn:

wm ¼ 1� cþ bpn þ e, ð2:1Þ

where c is the direct fitness effect of the mutant’s own genotype

on its own fitness, b is the effect of others’ genotypes on the

mutant individual’s fitness, i.e. the indirect fitness effect, and

e is an error term. The first term, ‘1’, reflects the baseline fit-

ness of the resident genotype. We can always write down

such an expression by defining c and b as average effects

(i.e. partial regression coefficients; [4,20–22]), with the error
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Figure 1. Simulations of the fates of lineages founded by a single mutant in an additive social dilemma (i.e. when b ¼ b and c ¼ c from equation (2.2) with b and c
constant). In each of the panels, the grey lines represent one instance of the invasion process, whereas the thicker red line is the average of 500 simulations. When a grey
line disappears below vertically, the mutant lineage has gone extinct. In all panels, r ¼ 0.2. In the top row, there is no class structure and c ¼ 0.2. The top left has
b ¼ 1.1 and top right b ¼ 0.9. The two benefit values straddle the threshold for the invasion fitness r to be greater than one (i.e. satisfying Hamilton’s rule, or
equivalently, the mutant trait being adaptive). These figures demonstrate that while plenty of lineages either increase or go extinct in each case, Hamilton’s rule predicts
the average behaviour of many such invasions, hence the expected outcome of the evolutionary process. In the bottom row, we simulate a case with two classes of
individuals, subordinates and dominants (as described in §3) with s ¼ 1=2, where subordinates forgo almost all reproduction (s ¼ 0.01) to help the dominants and
pay a cost cs ¼ 0:99, while dominants do not help subordinates, bs ¼ cd ¼ 0: In the bottom left panel, the benefit to the dominant is bd ¼ 0:2 and in the bottom
right, it is bd ¼ 0:01: As in the non-class-structured case, individual lineages might increase or go extinct, and the class-structured version of Hamilton’s rule (equation
(3.1)) predicts the expected success of the lineage in the bottom left and extinction in the bottom right. (Online version in colour.)
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terms absorbing any deviations from linearity such that

E½e� ¼ 0 (which is given by the method of least squares).

The quantity on the right-hand side of equation (2.1) is still a

random variable because the frequency of the mutant allele

among the social partners of any specific mutant individual

will vary stochastically as those social partners are typically ran-

domly sampled from the individuals that might interact with

the mutant. To predict the expected fate of a mutant’s lineage,

we need to take an expectation of the mutant fitness in equation

(2.1) over all possible values of the frequency of the mutant allele

among social partners, pn, where the likelihood of a particular

value of pn is determined by the population structure and demo-

graphy.1 Effectively, this expectation can be calculated by

averaging replicates of the evolutionary process, just as one

sets up replicate lines in microbial evolution experiments

(see figure 1 for more detail). Taking this expectation of wm,

we obtain the inclusive fitness wIF:

Em½wm� ¼ wIF ¼ 1� cþ br, ð2:2Þ

where

r ¼ Em½ pn� ð2:3Þ

is the probability that the randomly drawn neighbour of a

local gene lineage (mutant or resident) will be of the same

lineage; that is, the probability that the lineages are identical

by descent. We put the subscript m on the expectation oper-

ator to emphasize that the expectation is over replicate

mutant lineages.

Equation (2.2) is a general measure of inclusive fitness con-

ditional on the current frequency of the mutant allele since

the partial regression coefficients b and c capture average fit-

ness effects [8,25,26]. When fitness effects are additive or the

mutant is rare in the population, the benefit b and cost c are

constants independent of mutant allele frequency, and

equation (2.2) boils down to inclusive fitness as originally

defined by Hamilton [1]. When fitness effects are non-additive
and the mutant is not vanishingly rare, the benefit and cost

coefficients are frequency dependent, which can lead to

additional complexity in analysing the dynamics of selection

on behaviour [9,27]. We provide an example of this in §5c.

We can now connect inclusive fitness with invasion fit-

ness. During the initial stage of the invasion, the mutant

remains rare and mutant fitness will be linear in mutant

allele frequency. This means that Em½wm�, which is averaged

over replicates of the evolutionary process, is the mean

expected number of offspring of the invading mutant lineage

and therefore corresponds2 to the expected invasion fitness r

(figure 1) [23]:

r ¼ wIF ¼ 1� cþ br: ð2:4Þ

Thus, the growth rate of the mutant is the inclusive fitness of

a mutant lineage member. Since a mutant is favoured by

selection when r . 1, we have that the mutant spreads in

the population if �cþ br . 0: Equation (2.4) also connects r

as the comprehensive measure of invasion success and the

behavioural ecology notion of individual fitness w. As our

derivation above makes clear, the growth rate r, or equiva-

lently the inclusive fitness wIF, is simply the expectation of

individual fitness, taken over both any biological and

environmental factors that affect fitness and over replicates

of evolutionary process.

We note that the derivation above, although perhaps pre-

sented slightly differently than is usual, does not contain a

novel extension or generalization of inclusive fitness. Instead,

we present it to emphasize two general points about the

nature of inclusive fitness and how to measure it. The first

point is that inclusive fitness is not an extension of classical

Darwinian fitness in the sense that the former does not add

or subtract anything from the latter. Rather, inclusive fitness

is simply the expected individual fitness of individuals

belonging to a gene lineage. Regardless of social interactions

or population structure, the relevant quantity for an allele to
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increase is the invasion fitness r, which is the expectation

given in equation (2.2). Second, although expressed in

terms of individual fitness, inclusive fitness is not an ‘individ-

ual-level’ property. The key to this point is in the phrase

‘expectation taken over replicates of the evolutionary pro-

cess’. This means that we need to consider all potential

situations in which a member of a mutant lineage might

find itself (e.g. different genetic backgrounds for the focal

individual, groups of different sizes with different genotype

compositions and different classes of individual, etc.), calcu-

late the expected probabilities of each such situation and

compute the average individual fitness weighted by these

probabilities. Inclusive fitness as the quantity resulting from

this exercise therefore cannot be ascribed to any single indi-

vidual, or even to a given class of individuals, except as an

approximation or average. Inclusive fitness is thus inherently

tied to the dynamics of a lineage and how its members tran-

sition from one social and demographic situation to another.

It is worth noting that Hamilton was aware of the nature of

inclusive fitness as an average from the start [1, p. 8], even

though he proposed the individual-based view as a heuristic

(see Discussion for more on this issue).
3. Fitness in heterogenous populations: the
importance of reproductive value

In the simple derivation of invasion and inclusive fitness

above, we assumed that the only thing distinguishing individ-

uals was their own genotype and that of their interaction

partners. In other words, we assumed that demographic fac-

tors such as age and life stage do not affect survival or

fertility. This assumption also precludes the existence of differ-

ent reproductive classes or castes such as workers and queens

in eusocial insects since such classes have systematic differ-

ences in survival and/or fertility as a result of different

developmental trajectories. The simple framework above

might apply for the evolution of some phenotypes in some

species, such as adult phenotypes in semelparous plants and

animals. However, many of the most interesting social pheno-

types, such as eusociality and cooperative breeding, have

evolved in species with age, stage or class structure. These

sources of biological variation create variation in the individ-

ual fitness of each stage or class, and this variation must be

properly averaged using reproductive value in order to pro-

duce the invasion fitness of a given allele [23,28–30]. This is

because invasion fitness looks at what happens to the lineage

over many generations as the mutant either invades the popu-

lation or goes extinct. Therefore, different demographic classes

need to be weighted by their relative contributions to the line-

age far in the future, which is their reproductive value.

Invasion fitness using reproductive value to account for class

structure then leads to a general version of Hamilton’s rule

that predicts the direction of selection on the underlying

gene. Importantly, this class-structured view of fitness and

Hamilton’s rule resolves some persistent conceptual con-

fusions regarding inclusive fitness and the evolution of

helping by subordinates in cooperatively breeding species or

altruistic helping by sterile workers in eusocial species.

Rather than presenting invasion fitness and Hamilton’s

rule for the most general case of class-structure, we will illus-

trate how these two expressions differ from the symmetric

case in a simple scenario where there is one class of
individuals (dominants) that consistently reproduces more

than another class (subordinates). Dominants could be coop-

eratively breeding vertebrates (e.g. [31,32]) who produce

more offspring than subordinates. For every surviving off-

spring of the dominant, assume that the subordinate gets

only s offspring, where s , 1; further assume that the

chance of becoming a subordinate individual is s and is

independent of whether the parent was a dominant or subor-

dinate. Given this class structure, we can determine when an

allele that results in an increase in cooperation by the subor-

dinate or the dominant will invade the population. Suppose

that the dominant gets an indirect fitness benefit bd from

the change in behaviour by mutant subordinates and the sub-

ordinate gets bs for the change in behaviour by mutant

dominants. The change in behaviour by the mutant also

incurs a direct fitness cost of cd for the dominant and cs for

the subordinate. Theory for evolution in class-structured

populations [6,29] shows that the allele for this change in

cooperation between dominants and subordinates will

increase in frequency when

ð1� sÞ½�cd þ rbd� þ ss½�cs þ rbs� . 0, ð3:1Þ

where r is the genetic relatedness between a dominant and

subordinate individual (this result can be derived using the

methods of Taylor & Frank [6]). The brackets in equation

(3.1) are the inclusive fitness effects for the subordinates and

dominants. Each inclusive fitness effect is then multiplied by

the proportion of individuals of each class, 1 2 s and s for

the dominant and subordinate, respectively. The inclusive fit-

ness effect of the subordinate is further multiplied by its

reproductive value relative to the dominant s. This reveals

immediately the crucial role of reproductive value. As s
decreases, the subordinate systematically contributes fewer off-

spring to the population and its fitness costs and benefits

contribute less to invasion fitness. In the case of sterile subor-

dinates (analogous to sterile female workers in eusocial

insects), s ¼ 0 and these individuals can contribute to any fit-

ness benefit bd received by the dominant at any direct cost cs

to themselves. This is analogous to the case of somatic cells

in a multicellular organism that contribute no ‘offspring’ and

may benefit the germ cells at any cost to themselves.

The essential role of reproductive value in averaging

inclusive fitness effects across different classes of individuals,

such as subordinates and dominants, in equation (3.1) high-

lights the fact that invasion fitness cannot ‘belong’ to any

one individual since individuals belong to only one class at

a time. Rather, fitness can only be measured at the gene line-

age level where gene lineages pass through each class over

time as they are transmitted repeatedly from parents to off-

spring. Thus, statements regarding the inclusive fitness of

any single class of individual, such as a worker or queen,

are necessarily incomplete as they cannot determine whether

a gene is under positive selection resulting in the corres-

ponding trait becoming better adapted. This suggests that

arguments that the ‘individual organism is the privileged

unit of adaptation’ (e.g. [33,34]) are problematic since one

cannot, for example, view solely the queen or the worker in

an insect colony as adapting to their environment. Instead,

one must view the expression of a gene lineage expressed

in both queens and workers as adapting to its environment.

Such a view could correspond to a ‘gene’s eye view’ [10,11]

if invasion fitness is used to measure evolutionary success

(for more on this connection, see §6a).
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4. Inclusive fitness and adaptedness
Our definition of fitness in §2 based on gene lineages gives us a

very general ruler with which we can measure the adaptedness

of a phenotype or trait produced by a given gene. Mutant alleles

with higher fitness than residents (when in competition with

residents) will invade the population and increase in frequency.

In the long run, those alleles whose fitnesses are high enough so

that no mutants can invade are evolutionarily stable and pro-

duce phenotypes that are ‘adaptations’ ([13]; see [35] for

alternative notions of adaptation). Thus, measuring fitness is

really a way of measuring a gene’s adaptedness for a given dis-

tribution of abiotic, biotic and social environments. Genes that

are adaptive will tend to increase in frequency when rare due

to positive selection, whereas maladaptive genes will tend to

go extinct due to negative selection. Since, as we emphasize

above, inclusive fitness is simply a way of writing down fitness

where ‘direct’ effects are separated from ‘indirect’ effects and

genetic relatedness, measuring inclusive fitness is also just a

way of measuring the adaptedness of a gene. Thus, in principle,

all that is required for measuring inclusive fitness is an accurate

measurement of individual fitness (as defined in §2c) that

averages across all potential abiotic and biotic (individual and

social) environments. Such a measurement may not require the

delicate accounting necessary for measuring separately direct

and indirect fitness effects. This relationship between adapted-

ness and inclusive fitness is obscured when inclusive fitness is

described as an ‘extension of the concept of Darwinian fitness’

[36, p. 192] or a ‘generalization of Darwinian fitness’

[37, p. 417]3 or when the direct fitness component alone is

referred to as ‘classical Darwinian/Fisherian’ fitness

[38, p. 13]. Obscuring this direct relationship between adapt-

edness and inclusive fitness could be the source of some of

the confusion about how inclusive fitness relates to natural

selection [25,39].
5. Identifying the correct condition for
adaptiveness: a case study

As we argue in §4, quantifying adaptedness of a behaviour

does not necessarily need quantifying direct and indirect fit-

ness effects, provided that one averages classical fitness

appropriately. Nonetheless, in many cases quantifying the

direct and indirect fitness effects and putting them together

into some version of Hamilton’s rule may be easier or concep-

tually more illuminating than alternative methods [40,41].

The problem then is that how one empirically measures the

direct and indirect effects depends on assumptions about

the structure of the social interaction, where different

assumptions can give dramatically different answers as to

the adaptiveness of a trait or behaviour.

To be more specific, despite many elaborations on the orig-

inal Hamilton’s rule (e.g. [42]), the overall tendency in the field

is to use the ‘canonical’ Hamilton’s rule, the inequality

rb� c . 0, with b and c defined as additive fitness effects

and r the pairwise relatedness. Most debate over empirical

quantification of Hamilton’s rule is about how to measure r, b
and c properly [43]. We argue that a more fundamental problem

is the assumption that the canonical Hamilton’s rule applies

without considering whether its assumptions apply. The cano-

nical Hamilton’s rule applies when the social interaction is

symmetric, fitness effects of the behaviour are additive, and
there is no class structure. These assumptions are unlikely to

apply to many interactions in nature for which the canonical

Hamilton’s rule is used. While some authors (e.g. [43]) do expli-

citly recognize the specific assumptions behind the canonical

Hamilton’s rule, they also assert that this form of Hamilton’s

rule nonetheless represents a good approximation to many

interactions in nature. This assertion, to our knowledge, remains

untested empirically. Worryingly, the conclusions from the

same data can be very different depending on whether or

not these assumptions hold, even if the costs, benefits and

relatedness are quantified properly. We illustrate our point

by considering a seemingly straightforward case, that of

cooperative courtship of wild turkeys [12].
(a) Cooperative male courtship in wild turkeys
Wild turkeys have a lek-like mating system where males

defend small territories close to one another and females

visit these territories to mate with males. Many of these

males display to females by themselves, but some form pairs

(or rarely, bigger groups) that jointly display and defend

females from other males. One of the males in these pairs

(the dominant) gets many or all of the matings and offspring,

whereas the subordinate often gets few or none. This kind of

cooperative courtship system has been documented in several

bird species in addition to wild turkeys including manakins

[44,45], ruffs [46] and Tasmanian native hens [47,48].

An early account of cooperative courtship in wild turkeys by

Watts & Stokes [49] documented that males in pairs tend to be

brothers, which suggests that indirect benefits might help to

explain why subordinates forgo their own reproduction in help-

ing dominants. This idea was not tested quantitatively until

Krakauer [12] measured the reproductive success of males in

singletons and pairs along with the relatedness of males

within a pair. In particular, he measured the average siring suc-

cess of singleton males and the dominant male in pairs. He

assumed that the siring success of singletons represents the

opportunity cost of being a subordinate, corresponding to c in

Hamilton’s rule, while the difference between the success of

dominants and singletons is the benefit provided by the subor-

dinate to the dominant, i.e. b. He used mean relatedness in pairs,

r, to calculate the canonical version of Hamilton’s rule, obtained

rb� c ¼ 0:42� 6:1� 0:9 ¼ 1:7 . 0, and concluded that kin

selection does indeed explain the evolution of cooperative

courtship in wild turkeys.

We wish to use this case to highlight the fact that the

‘correct’ condition to check for adaptedness, and therefore

the conclusions from empirical data, depends non-trivially

on assumptions about how the social interaction works. We

focus on two issues: accounting for class structure and repro-

ductive value and the potential for non-additive pay-offs. We

leave aside other important issues, such as local competition

between kin that might negate some or all of the inclusive fit-

ness effects, since that issue has been already discussed in the

literature at some length [19,50,51].

Consider the well-known model that underlies canonical

Hamilton’s rule: two individuals have the option of providing

a fertility benefit B to each other while forsaking some per-

sonal fertility C as the cost of helping. C in this matrix is the

additional fertility a player can get if it defects (relative to

when it cooperates), in other words, the opportunity cost of

cooperation. In wild turkeys, helping would correspond to

joining a courting pair (hence giving up reproducing singly)
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and acting cooperatively towards females, abstaining from

within-pair conflict, etc. We can summarize this game using

the pay-off matrix given in (5.1), where C denotes the coopera-

tor strategy, D the non-cooperator (defector) and the entries

are the fertility pay-offs to a player whose strategy is given

by the row when the partner’s strategy is given by the column.

C D
C B 0
D Bþ C C

ð5:1Þ
rg
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(b) Reproductive value
The problem with the model given (5.1) is that it is prima facie

inconsistent with what we know about wild turkeys: each indi-

vidual in a cooperative pair gets fertility pay-off B; in other

words, there is no skew within cooperative pairs. One way

to make the model compatible with the observation of com-

plete skew within groups is to assume the game is played

between two individuals from different classes. Watts &

Stokes [49] observed in the Rio Grande population that domi-

nance hierarchies within and among male courtship groups

(i.e. pairs, triplets or quartuplets) are established early in life

and remain unchanged until death. They report rigid adher-

ence to both within- and between-group hierarchies for

displaying and mating (although in other populations, per-

haps due to environmental stress, social roles might be

reversed; A. Krakauer 2015, personal communication). Thus,

it seems probable that dominant and subordinate members

of a pair belong to different social classes with different

expected matings and reproduction. Therefore, we need to

use a class-structured model such as the one given in equation

(3.1). Consider a simple model where all individuals are in

pairs and each pair has one dominant and one subordinate

male so that the proportion of subordinates in the population

is s ¼ 1=2. We further assume, to be consistent with the

observed pattern in wild turkeys, that dominants only receive

help and do not help the subordinates: bs ¼ cd ¼ 0. From

equation (3.1), the increase condition for cooperation becomes

rbd � scs ¼ rB� sC . 0, ð5:2Þ

where for ease of presentation, we equate the fertility benefit B
and cost C in the pay-off matrix to the fitness benefit bd and

cost cs, respectively, by ignoring local competition between kin.

Equation (5.2) is different from the canonical Hamilton’s

rule in that the cost term is weighted by s, the relative repro-

ductive value of the subordinates, which is also how many

offspring each subordinate produces relative to a dominant.

If s were close to one, the computations in Krakauer would

apply. For wild turkeys, however, we can expect that s is

much less than one, and may even be close to zero. If, as

described by Watts & Stokes [49], turkeys live in a rigid hierar-

chy set early in life, then subordinate males are likely to be kept

to low reproduction by social factors outside their control.

Furthermore, Krakauer reports that the distribution of repro-

duction for singleton males is bimodal, with most males

(70%; 10 out of 14) not reproducing. If these non-reproducing

males are those who would otherwise be subordinates in pairs,

then very few offspring would be produced per capita by sub-

ordinates relative to the dominants, i.e. s would be much less

than one. Consequently, viewed from the lineage’s perspec-

tive, any costs incurred by the subordinates are likely to be

of little consequence for the maintenance of cooperation once
a strict hierarchy and reproductive skew are established and

the relevant condition for adaptedness of helping is much

relaxed relative to the canonical Hamilton’s rule. One can

argue that this simply makes the original analysis conserva-

tive, which is true if we are interested in whether the

behaviour is adaptive or not, but not true if we are interested

in whether high relatedness is essential for cooperative court-

ship being adaptive. This is a biologically relevant point: the

class-structured model predicts that in species with similar

breeding systems, we should not see relatedness being the cru-

cial factor explaining the presence or absence of cooperative

courtship; rather it should be the social system that constrains

the outside options (and therefore the reproductive value) of

subordinates that should be operative. An example of this

might be found in occelated wrasses (Symphodus ocellatus),

where satellite males help territorial males in courtship and

territory defence [52], despite having only a small share of

paternity and not being related to the territorial males

(M. Taborsky 2015, personal communication). This is likely

due to the fact that in a size-structured population, satellite

males (who are smaller than territorial males) have little

chance of defending a territory themselves, which reduces

both their opportunity cost of helping and reproductive value,

though the latter may not be zero, since satellite males can

grow to be territorial in the next season [53].
(c) Non-additive pay-offs
As argued above, it is likely that class structure plays an

important role in wild turkeys. However, at least theoreti-

cally, one could observe different breeding success among

individuals in a cooperating pair even if the population

lacked class structure and the social interaction were initially

symmetric. Nevertheless, the correct condition for adapted-

ness will not in general be the canonical Hamilton’s rule.

To illustrate this point, suppose that when two cooperators

pair up, one is selected at random to be the helper (or the sub-

ordinate), the other the receiver (or the dominant). When a

cooperator pairs with a non-cooperator, the non-cooperator

gets all the pay-off. This could be, for example, because

non-cooperators fight to monopolize copulations while

cooperators avoid such competitive behaviours. The expected

pay-offs from different pairings are now:

C D
C ðBþ CÞ=2 0
D Bþ C C

: ð5:3Þ

The upper left entry reflects that an individual in a coopera-

tive pair obtains zero or ðBþ CÞ with equal probability. This

pay-off matrix represents a non-additive game: i.e. a game

where the benefit a cooperator gives to its partner depends

on the partner’s type. The condition for cooperation to

increase is given by [42,54,55]:

rB� C � ðrþ ð1� rÞpÞBþ C
2

. 0, ð5:4Þ

where the last term is not found in the canonical Hamilton’s

rule and is a result of cooperators receiving less benefit from

pairing with a cooperator than defectors receive from pairing

with a cooperator. This non-additive term depends on p, the

frequency of cooperators in the population. Importantly, the

definition (and measurement) of C and B in this model is

precisely the same as in the canonical model (and [12]).
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When cooperation is rare (p � 0), the condition for increase

becomes rðB� CÞ=2� C . 0, and when it is common

(p � 1), rB� C � ðBþ CÞ=2 . 0: Both conditions are harder

to satisfy than rB� C . 0: Using Krakauer’s estimates

(B ¼ 6:1, C ¼ 0:9 and r ¼ 0.42), the conditions for low and

high cooperator conditions evaluate to 0.192 and 21.838,

respectively, indicating that cooperative courtship would get

selected for at low frequency, but against at high frequency.

Thus, cooperation in this case would not be unconditionally

selected, and we would expect a stable polymorphism of coop-

erators under this model (the stable equilibrium frequency of

cooperation can be calculated to be p � 0:095).

Overall, depending on how one assumes cooperation

plays out in the social setting, one can arrive at significantly

different conclusions as to whether and when cooperation

is adaptive using the same data. This is problematic, since

the canonical version of Hamilton’s rule is usually applied

without checking whether its assumptions hold in the

system. In many cases (like wild turkeys), the assumption

underlying the canonical Hamilton’s rule almost certainly

does not hold, and a different condition for adaptedness is

required. We emphasize that highlighting this issue in no

way detracts from the novelty or significance of Krakauer’s

study [12] in particular, which is a good example of the

painstaking work required to quantify the fitness conse-

quences of social behaviour in the wild. More generally,

this issue is not a reason to stop quantifying inclusive fitness

or Hamilton’s rule. Rather, the mismatch between real social

interactions and overly simple versions of Hamilton’s rule

emphasizes that the careful and painstaking empirical work

that measures fitness effects of a behaviour needs to be

coupled with some elementary modelling of the empirical

features of the social interaction in order to more accurately

construct a condition for the adaptedness of the behaviour.
6. Discussion
Although inclusive fitness is sometimes described as an ‘exten-

sion of Darwinian fitness’, we use a ‘lineage view’ to show that

inclusive fitness is in fact best understood as Darwinian fitness

averaged over the distribution of different social and environ-

mental states in which members of a lineage find themselves.

When there are different demographic classes, the expectation

also needs to be weighted by the relative contribution of each

class to the long-term persistence of the lineage (i.e. reproduc-

tive value). While these are well-known points in theory, their

ramifications for interpretation and empirical measurement of

inclusive fitness remain obscure in the field more generally.

For example, it is common to claim (and teach) that inclu-

sive fitness is an individual-level quantity, which is strictly

speaking false, as inclusive fitness is an expectation over

lineage-level properties. Hamilton himself pointed this out

multiple times [1,56]; however, he also consistently favoured

a perspective that imagines individuals maximizing their

inclusive fitness as a useful heuristic. This heuristic has indeed

been important in the development of the field as it provided

an important and easily accessible insight to the action of selec-

tion in complex interactions. Yet over time, the heuristic seems to

have taken on the status of the theory itself, being the only

exposure to inclusive fitness that most people have. This is pro-

blematic, since the individual-level heuristic can fail to account

for the inherent complexity of evolution in populations with
age and class structure where the fitness consequences of a

social behaviour may depend non-additively on the phenotypes

of individuals in the social interaction.

(a) Lineage’s eye or gene’s eye?
The lineage view of fitness given by the equation for invasion fit-

ness (2.4) is very close to the popular concept of the ‘gene’s eye

view’ of evolution [10,11]. In fact, we believe that the gene’s

eye view, properly understood, is coincident with the lineage

view, where the gene is the marker of a lineage. For example,

Dawkins [11, ch. 10] discusses five different notions of fitness.

Our expected individual fitness from §2b corresponds to

Dawkins’ ‘fitness[2]’ concept that measures the fitness of geno-

types.4 However, Dawkins does not explicitly discuss an

averaging process akin to the one leading to our equation

(2.4). The closest Dawkins comes to this is when he considers

his ‘fitness[3]’, by which he means the fitness of an organism

(as opposed to a genotype), and points out that the best fitness

measure is the number of descendants far into the future.

Although Dawkins applies this long-term measure to organ-

isms, this is the same perspective used in lineage fitness,

which is the expected long-term success of a lineage. The lineage

view combines the ‘gene’s eye view’ focus on the effect of selec-

tion on a single gene with a long-term perspective that measures

the success of that gene across all possible future social and

environmental states that the gene may experience. Both the line-

age and gene view emphasize that fitness (or inclusive fitness) is

best viewed as a property of the gene lineage rather than the

individual organism [11,57].

(b) Conflicts of interests in the lineage view
It is common in evolutionary biology and behavioural ecology

to talk about the conflicts between the fitness interests of differ-

ent classes of individuals (e.g. parents and offspring). At face

value, a lineage view of fitness could be seen to imply that con-

flicts of interest between individuals are epiphenomenal or

even non-existent. The lineage view does not negate the poten-

tial utility of analysing conflicts of interest at the individual

level; however, it does say that, properly understood, conflicts

of interests are not between individuals, but between roles in

an interaction where different genes may come to be expressed

in different roles. A role is a particular social or demographic

context that can be occupied by an individual in an interaction

(e.g. parent versus offspring or dominant versus subordinate).

A conflict of interest (in the ‘battle-ground’ sense) between

roles exists when (a gene in) an individual in one role can

obtain a higher fitness only by lowering the fitness of

(a gene in) an individual in another role. For instance, in par-

ental care, one can speak of a conflict of interest between the

role of the parent and that of the offspring.5 The conflicts of

interests between roles will certainly play a role in deter-

mining the evolutionary outcome, and thinking about them

can yield important insights, as was the case for research

in parent–offspring conflict, which helps making sense of

phenomena such as costly begging or genomic imprinting.

At the same time, thinking purely at the level of individ-

ual conflicts of interests can lead to inaccuracies. Considering

again parent–offspring conflict, few studies account for the

passing of lineages both through parents and offspring

[58,59], which has led to an overestimation of the level

of conflict [59]. This example reinforces our view that

individual-level heuristics (including those based on conflict
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or alignment of interests) are useful but ultimately need to be

backed up with a full analysis of the evolutionary process, for

which the appropriate criterion is the lineage fitness.

(c) Quantitative genetics, regression and Hamilton’s rule
Although Hamilton’s rule provides an intuitive partition of the

effect of selection on social traits, its original derivation by

Hamilton [1] was and remains relatively inaccessible. Hamil-

ton simplified his derivation considerably in 1970 [60] by

using the Price equation [61], which is a general approach

for calculating mean trait change in a population and was

derived independently in the context of quantitative genetics

by Robertson [62]. Essentially, the Price equation expresses

the effect of natural selection as a covariance between fitness

and the trait of interest. Transforming this covariance into

Hamilton’s rule can easily be done using quantitative genetic

methods where fitness and traits can be expressed as linear

regressions on an underlying heritable genetic component

[4,20–22] in a manner similar to equation (2.1). Combining

these regressions with the Price equation yields a general

Hamilton’s rule where the fitness costs and benefits are partial

regression coefficients of fitness on focal and social partner

genotypes, respectively, and relatedness (in simple cases) is a

regression of social partner genotypes on the focal genotype.

This derivation of Hamilton’s rule emphasizes that the impor-

tant quantities in Hamilton’s rule can be viewed as regression

coefficients, which can be estimated via the well-developed

statistical tools of quantitative genetics [63].

In addition to its accessibility, this derivation also shows

that Hamilton’s rule can be interpreted as a quite general con-

dition in that it can summarize the potentially complex

genetic and social interactions in a population via their aver-

age additive effects. A recent controversy around Hamilton’s

rule and inclusive fitness centres around this generality and

questions whether Hamilton’s rule is a general tool for under-

standing natural selection or whether it is restricted and only

applies under some circumstances [25,39,64]. However, this is

not the first time divergent views have been expressed about

whether a rule of the rb� c . 0 structure is generally valid.

When Queller [42] extended Hamilton’s rule to account expli-

citly for non-additive interactions, Grafen [65] responded by

pointing out the additive version still holds defining the

costs and benefits as average additive effects and implicitly

invoked the regression approach described above. More

recently, Gardner et al. [25] explicitly invoked the regression

approach to argue that Hamilton’s rule is as general as ‘the

theory of natural selection itself’. In contrast, Allen et al.
[66] regard the regression formulation much less valuable

and argue that it conflates correlation with causality.

We do not take a strong position on the generality

of Hamilton’s rule, which to us seems mostly a matter of
semantics. We do find it non-trivial that, regardless of the pro-

cesses affecting fitness, one can decompose the response to

selection using linear regression coefficients on self and partner

genotypes. At the same time, we wonder if the debate regarding

the generality of Hamilton’s rule has had unintended conse-

quences where repeated affirmations of the possibility of

writing some rule of the form rb� c . 0 led to a sort of compla-

cency among researchers that kept using the simple, canonical

version without considering whether its assumptions hold. As

we have discussed, the canonical Hamilton’s rule is insufficient

in the presence of class structure and cannot reflect non-additive

pay-offs in a simple way without subsuming them into average

additive effects that are frequency dependent. These are

well-known facts in the theoretical literature, but we find that

empirical research has rarely used these elaborations on the

canonical Hamilton’s rule (with few exceptions, e.g. [67]).

Whatever the cause, this disconnect between theoretical

results and their application in empirical research hinders

progress in the study of social behaviour. We believe that

the lineage view of invasion fitness that we espouse here pro-

vides a useful and accurate biological interpretation of the

mathematical theory of inclusive fitness that will begin to

bridge this disconnect and stimulate progress in the field.
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1Technically, this expectation is taken over the stationary distribution
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2Up to a transformation with the average reproductive value of the
residents [23].
3See West & Gardner [33, p. R579] for a more accurate description of
Darwinian and inclusive fitness.
4An argument could also be made for a correspondence between our
expected fitness and Dawkins’ ‘fitness[5]’ concept that is equal to the
‘direct fitness’ [6] interpretation of inclusive fitness.
5In other, symmetric interactions, the roles might be defined only
through arbitrary labels such as player 1 and 2.
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