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Humans cooperate in large groups of unrelated individuals, and many authors

have argued that such cooperation is sustained by contingent reward and

punishment. However, such sanctioning systems can also stabilize a wide

range of behaviours, including mutually deleterious behaviours. Moreover,

it is very likely that large-scale cooperation is derived in the human lineage.

Thus, understanding the evolution of mutually beneficial cooperative behav-

iour requires knowledge of when strategies that support such behaviour can

increase when rare. Here, we derive a simple formula that gives the relatedness

necessary for contingent cooperation in n-person iterated games to increase

when rare. This rule applies to a wide range of pay-off functions and assumes

that the strategies supporting cooperation are based on the presence of a

threshold fraction of cooperators. This rule suggests that modest levels of relat-

edness are sufficient for invasion by strategies that make cooperation

contingent on previous cooperation by a small fraction of group members.

In contrast, only high levels of relatedness allow the invasion by strategies

that require near universal cooperation. In order to derive this formula, we

introduce a novel methodology for studying evolution in group structured

populations including local and global group-size regulation and fluctuations

in group size.
1. Introduction
Unlike other mammals, humans cooperate in large groups of unrelated individ-

uals. Examples include warfare, the construction of roads, canals and other

capital facilities, and risk buffering behaviours such as food sharing and

mutual aid. It seems likely that our ability to cooperate played a crucial role in

the rapid growth and spread of human populations over the past 50 000 years

[1,2]. Beginning with Trivers’s seminal paper [3], many authors have argued

that human cooperation is explained by reciprocity and other forms of contingent

behaviour. Because people can recognize a sizable number of individuals and

remember their previous behaviour, selection leads to a psychology in which

the behaviour of actors is contingent on the previous behaviour of others. Individ-

uals help only those who have helped them in the past, or punish those who do

not cooperate in mutually beneficial activities. If, in the long run, benefits of sus-

tained cooperation exceed the short-term benefits of defection, then contingent

strategies supporting cooperation can be evolutionarily stable. Such equilibria

can explain the persistence of cooperation among unrelated individuals.

However, showing that cooperation can persist is not enough. Under plausible

conditions, contingent strategies can stabilize virtually any behaviour including

non-adaptive and maladaptive behaviours [4,5]. A complete explanation must

explain why contingent cooperation is a likely evolutionary outcome. Moreover,

contingent cooperation, especially in sizable groups, appears to be very rare

among primates [6], and thus it is very likely that the ancestral condition in the

human lineage is non-cooperative. This means it is not enough to explain the stab-

ility of contingent cooperation [7–10]; we must also explain how contingent

strategies supporting cooperation can increase when rare. This is problematic

because such strategies are altruistic when rare. Because other group members

are unconditional defectors, rare contingent cooperators pay the cost of cooperation
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and benefit others, but do not gain any long run benefit. In a

similar way, strategies that punish contingent on others punish-

ing, must punish or make a costly signal of intent to punish in

order to determine how many punishers there are in the group.

For reciprocity among pairs, kinship provides an easy solu-

tion to this problem. If interactions are repeated many times, the

benefits to reciprocity can be very large. This means that rare

reciprocators can increase even if they have only a small

chance of interacting with another reciprocator, and thus even

low levels of relatedness can allow reciprocating strategies to

increase [11]. Since population structure often leads to low but

positive background levels of relatedness, there is a plausible

explanation for the evolution of pairwise reciprocity.

It is not clear whether relatedness can play a similar role in

the evolution of contingent cooperation in larger groups. Boyd

and co-workers [8,12] have presented models which suggest

that the effect of relatedness diminishes rapidly with group

size. However, these models assumed that groups are formed

by sampling individuals with a constant relatedness to each

other. Basic models of population structure are not consistent

with this assumption because the biological processes that gen-

erate relatedness lead to interdependencies, so that knowing

that two individuals share a gene by common descent increases

the probability that other members of the group also share that

gene by common descent. For a given relatedness, this increases

the likelihood that groups will contain enough cooperators to

sustain cooperation. As a result, existing work underestimates

the possibility that contingent cooperation can increase when

rare as a result of assortment due to population structure [13,14].

Here, we derive a rule (5.7) that gives the relatedness neces-

sary for contingent cooperation in n-person iterated games to

increase when rare. This rule applies to a wide range of pay-

off functions, but requires that the strategies supporting

cooperation are based on a threshold. Such strategies are

common in the literature [5,7,12,15,16]. For example, in the iter-

ated public goods game, a plausible strategy is to cooperate

during the first period, and then cooperate if at least a fraction

u of the n individuals in the group cooperate. The derivation

of this rule also assumes that groups are very large, that related-

ness is low and generated by an elastic island model population

structure [14], or by budding viscosity population structure [17]

(propagule dispersal with group competition [18], two-level

Fisher–Wright [13]). We will present numerical results which

suggest that this rule provides also useful estimates when

some of these assumptions are relaxed and the demographic

parameters are in the biologically relevant range, including

levels of relatedness in the range from 2% to about 10%. In

order to derive this rule in §5, we will, in §3 and §4, introduce

a novel methodology for studying evolution in group struc-

tured populations including local and global group-size

regulation and fluctuations in group size. This methodology

is also useful for studying other problems and provides new

insights about how migration and local regulation affect the

evolution of cooperation and altruism.
2. The model
Individuals live in groups of a size that may fluctuate, but is

usually close to a common value n. During a life cycle, they

interact T times, and in each interaction they can express

either a cooperative behaviour A or a non-cooperative behav-

iour N. Let dvx be the incremental effect of an interaction on
the fitness of an individual expressing A given that a fraction

x of the individuals in the group express A. By fitness, we

mean the expected number of adult offspring of an individual.

Here, d � 0 is a constant that gives the strength of selection and

that we will always suppose to be small (weak selection).

The cooperative behaviour may also affect the fitness of individ-

uals in the group that do not cooperate; let dv0x be the

incremental effect of an interaction on the fitness of an individ-

ual not expressing A given that a fraction x of the individuals in

the group express A. Non-cooperators neither produce benefits

nor experience any personal cost, so that v00 ¼ 0: For technical

reasons, we also assume, without restricting the applicability

of the model, that vx and v0x are piecewise continuous and

always continuous from the right. And we suppose that

v0 ¼ limx!0 vx , 0, meaning that social interaction reduces

the fitness of an individual behaving cooperatively in a group

in which few others behave cooperatively.

There are two heritable strategies. Cooperators express be-

haviour A during the first interaction and continue to express

A during future interactions if the fraction of individuals in

the group expressing A during the previous interaction is

greater than or equal to u. This means if the fraction of coopera-

tors in the group is at least u, cooperators behave cooperatively

during all T interactions. We assume that vu . 0 so that such

sustained cooperation is mutually beneficial to the cooperators.

Defectors never express the cooperative behaviour.

When cooperators are rare and groups are formed at

random, virtually all cooperators are in groups without any

other cooperators. Thus, cooperation cannot increase because

cooperators experience a reduction in fitness in the first round

compared to defectors, and thereafter the two types behave

identically and receive no pay-off.

Cooperators can increase when rare only if groups are

formed assortatively so that there is some chance that they

benefit from long-term cooperation. This means that related-

ness in the groups is key to the evolution of cooperation.

However, knowing the coefficient of relatedness within

groups (R) alone is not, in principle, enough to determine

whether cooperation can increase because the fitness func-

tions that we are considering are nonlinear functions of the

frequency of cooperators in a group. To calculate the expected

fitness of rare cooperators, the entire probability distribution

of frequencies is required [13,14,19]. This distribution

depends on the population structure.

Here, we assume non-overlapping generations and that

groups are linked by migration so that each generation each

individual migrates with probability m. And we assume

one of the following two kinds of population structure.

(1) Groups form an island model with group size elasticity.

This population structure was introduced in [14] under

the assumption of purely local regulation. Here, we will

extend it to include also global regulation and call it ‘islands

with local and global regulation’ (ILGR). The population

structure and the relevant results will be summarized in

§3. More detail and self-contained derivations that extend

the results from [14] are provided in the electronic sup-

plementary material. (This differs from the inelastic island

model [20] which assumes completely fixed group sizes

and thus cannot accommodate average fitness different

from 1. Other approaches to the effects of group elasticity

on the evolution of cooperation can be found, for instance,

in [21–23] and references therein.)
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(2) Groups compete among themselves for the production of

new groups in the next generation. This is the ‘budding

viscosity’ population structure of Gardner & West [17],

called ‘propagule dispersal with group competition’ in

[18], and ‘two-level Fisher–Wright’ (2lFW) in [13]. The

idea is that cooperators, at a cost to themselves, help

their group in its competition with other groups.

After discussing these population structures in the next

section, we will indicate why we conjecture that the results

and methods that we use should apply to a broader class of

population structures.
il.Trans.R.Soc.B
371:20150099
3. Population structures: general results
First, we describe ILGR and summarize the main results

derived in the electronic supplementary material. In ILGR,

the population consists of g groups with a common carrying

capacity n0. We will assume that g and n0 are large. In the

absence of selection, when all the groups have n0 individuals,

the individuals have fitness 1. When the total population size

differs from gn0 ¼ N0, fitnesses are modified through global

regulation, and when the size of a group differs from n0, fit-

nesses of its members are also modified through local

regulation. We model these effects, including also selection,

by setting the absolute fitness (expected number of adult

offspring) of a focal individual of type * (there are two

types, A and N) as

w�ðx, s, SÞ ¼ Hðs, SÞ þ dhðsÞv�x, ð3:1Þ

where x is the fraction of types A in the focal’s group, s ¼ n/n0 is

the scaled size of the focal’s group, assumed to currently have

size n, and S ¼ N/N0 is the scaled size of the complete popu-

lation, assumed to currently have size N. The pay-off hðsÞv�x
indicates how the fitness of the focal individual is modified

by the behaviour of types A and N in its group, and we

assume that vN
0 ¼ 0, h(s) is differentiable and h(1) ¼ 1. We

assume that Hðs, SÞ is strictly decreasing in s and in S, is

continuously differentiable, takes the value 1 at ðs, SÞ ¼ ð1, 1Þ
and that its partial derivatives at this point, @Hðs, SÞ=@s ¼ �l
and @Hðs, SÞ=@S ¼ �lg satisfy l � 0, lg � 0, lþ lg � 1:

These assumptions mean that Hðs, SÞ describes local regulation,

with strength l, towards group size n0, and global regulation,

with strength lg, towards average group size n0. Note that in

the absence of selection (when d ¼ 0), all the individuals have

fitness given by Hðs, SÞ, and that if s and S are close to 1,

then Hðs, SÞ � 1� lðs� 1Þ � lgðS� 1Þ, so that ðs, SÞ ¼ ð1, 1Þ
is a stable equilibrium. The fitness (3.1) is the expected

number of adult offspring of each individual, and a full specifi-

cation of the model must include the choice of the offspring

distribution with this mean (e.g. Poisson).

The model assumes non-overlapping generations, and

random migration at rate m after reproduction in each gener-

ation, meaning that with probability m each individual born

in this generation leaves its group once it reaches adulthood

and relocates in a randomly chosen group. Since larger

groups produce more migrants, migration as well as local

regulation drive groups towards the average size n0. The

comparison between these two forces, quantified by m and

l, is crucial in the results described below. Selection will be

assumed to be weak, meaning that d is positive but small

(the precise conditions are discussed in §5 of the electronic

supplementary material). This implies that regulation and
migration act faster than selection and drive the system to a

quasi-equilibrium in which the distribution of group sizes

varies little over time (at any time s ¼ 1þOðdÞ), while the

fraction p of types A changes at a rate of order d, and

therefore may change substantially in the long time-scale 1/d.

In the electronic supplementary material, we study how

in quasi-equilibrium p changes over one generation. We

show that

Dp ¼ dpqFðpÞ þ oðdÞ ð3:2Þ

and

FðpÞ ¼
ð1

0

betaðxjlpþ 1, lqÞðvA
x þQ�vxÞdx

�
ð1

0

betaðxjlp, lqþ 1ÞðvN
x þQ�vxÞdx, ð3:3Þ

where q ¼ 1� p, betaðxja, bÞ is the probability density of a

beta distribution with parameters a and b, l ¼ (1/R) 2 1

(recall that R is group relatedness), �vx ¼ xvA
x þ ð1� xÞvN

x , and

Q ¼ �1

1þ 2me=l
, ðILGRÞ, ð3:4Þ

with me ¼ mðð1�m=2Þ=ð1�mÞ2Þ (which is close to m when m
is small). The condition for p to increase is F( p) . 0, and in par-

ticular, by taking the limit p! 0, we obtain the condition for

types A to proliferate when rare asð1

0

betaðxj1, lÞðvA
x þQ�vxÞdx . 0: ð3:5Þ

Table 1 and figure 1 provide support for the conclusions

summarized above, based on numerical simulations. In our

simulations, group sizes were chosen in the range from 20

to 320 and offspring distributions were Poisson. This last

assumption implies relative variability of group sizes from

generation to generation of the order of
ffiffiffiffiffi
n0
p

=n0, which

could be as large as
ffiffiffiffiffi
20
p

=20 � 22%: Such conditions proved

to be compatible with the theoretical approximate beta distri-

bution of x, required in the derivation of (3.3), provided we

used for relatedness in the groups the empirical value of

Fst ¼ ððVarðxÞÞ=pqÞ, so that l ¼ ð1=FstÞ � 1: This is natural

since, when the frequency of cooperators in the population

is p, the distribution of x is approximately beta with

parameters pl and ql, which has mean p and variance

ððpqÞ=ð1þ lÞÞ, implying that the empirical Fst should be

1/(1 þ l ). As expected, the agreement with the beta distri-

bution, the value of Q and the predicted evolution of p
improve with increasing n0. But agreement is still very

good even for the smaller values of n0.

The quantity Q is an important population parameter

that, in the ILGR setting, measures the relative strength of

local regulation and migration in keeping group sizes close

to n0. Its appearance in the formulae above can be explained

qualitatively as follows. Observing the type of a focal individ-

ual tells us something about the composition of its group, not

only at the present time, but also in the recent past, since the

lineage of the focal must have been in the group for a time of

order 1/m generations. This implies that the average pay-off

�vx in the recent past correlates with the type of the focal.

Hence, the current size of the group also correlates with the

focal’s type through a term of order d�vx: And this affects

the fitness of the focal individual through a term of the

same order, as a result of group regulation. The computation
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Figure 1. Simulation and predicted ILGR results compared for two models. In the top panel, carrying capacity was n0 ¼ 80 and the pay-off functions were linear
(vA

x ¼ x � 0:0625 and vN
x ¼ x) and in the lower panel n0 ¼ 20 and pay-offs were a threshold function of the frequency of A in groups (for x , 0:2,

vA
x ¼ �0:0625 and vN

x ¼ 0, and for x � 0:2, vA
x ¼ 1� 0:00625 and vN

x ¼ 1). The functions Hðs, SÞ and hðsÞ are as in table 1, with r0 ¼ 1,
a ¼ 0:5, m ¼ 0:05 and p0 ¼ 0:1: The left panels compare the simulated trajectory of pt , the frequency of A in the population, with the frequency calculated
by iterating the recursion for pt given in (3.2) and (3.3), where the betas are calculated using l ¼ 1=Fst � 1 for period t, and Q is given by (3.4), beginning at
time 100 (to allow for demographic quasi-equilibrium) with p100 equal to the value calculated from the simulation at time 100. The Q ¼ 0 line was produced in the
same way, but with Q ¼ 0, to contrast with the proper prediction and highlight the need for Q. The right-hand panels compare the probability that the frequency
of x in a group is greater than or equal to u (the upper tail, G(u)). The observed values are calculated from the simulated distribution of x in the population at the
end of the simulation (t ¼ 1100) and the predicted values are derived using the beta(lp, lq) distribution for the values of p and l ¼ 1=Fst � 1 calculated from the
empirical distribution of x at t ¼ 1100.
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of this effect in the electronic supplementary material leads

to the term Q�vx that appears in (3.3) and (3.5). Thus Q is an

ecological parameter that tells us how much a small change

in average fitness of group members in the past affects their

current fitness by affecting group size. Note that lg is

absent in (3.3) and (3.4). Global regulation affects all the

groups in the same way and therefore does not produce cor-

relations between group composition or focal type and group

size. Global regulation does play an important role, though,

in restraining average group size variability as p changes

(see §5 of the electronic supplementary material).

To elaborate further on the intuitive meaning of Q in

ILGR, we assume now that types A are cooperators that pro-

vide some costly benefit to the members of the group, in the

sense that �vx increases with x and vA
x , vN

x : When l� m,

groups with more cooperators are driven to the typical size

n0 mostly by migration, i.e. by producing more emigrants.

The average fitness of members of such groups remains
larger than 1 in quasi-equilibrium. The frequency of coopera-

tors may increase or decrease in time, depending on how the

average values of vA
x and vN

x compare, and this is precisely

what (3.2) and (3.3) entail in this case, as Q � 0. We call

this regime the ‘Hamilton regime’. But when l is comparable

to m, a high level of cooperation in a group increases the size

of the group to an equilibrium slightly (meaning order d)

above n0, in which local regulation reduces the effects of

further cooperation. In the extreme case m� l, groups

with more cooperators are larger, but are in an equilibrium

produced primarily by group regulation, in which its mem-

bers have average fitness 1. Cooperators are then selected

against as, in groups with both types, their fitness must be

less than 1, while that of non-cooperators must be larger

than 1. Again, this is precisely what (3.2) and (3.3) entail,

as now Q � �1 and hence F( p) , 0. We call this regime

the ‘crowded regime’. (For more on the intuition in this

paragraph, see [14].)
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We turn now to the population structure 2lFW. We provide

a brief description of the model and the results from [13,14] that

will be needed and refer the reader to these papers for further

details. In 2lFW, generations are again non-overlapping, and

the number of groups in each generation is again fixed as g.

Groups have exactly the same size n. In each generation, each

group selects independently a group from the previous gener-

ation to be its parent group, with probabilities proportional to

the average fitness of members of each group in the previous

generation. The membership in each group in the new gener-

ation is determined then by each member of the group

selecting independently a member of the parent group with

probabilities proportional to the fitnesses of these individuals.

Once reproduction has occurred in this fashion and all the

new g groups have been created, a fraction m of the individuals,

chosen at random, is removed from their groups and relocated

at random, preserving the size n of the groups. We suppose that

there are two types, A and N, that the relative fitnesses of the

individuals depend on the fraction x of types A in the group,

being given by w�relðxÞ ¼ 1þ dv�x, and that offspring inherit

the type of the parent. (The absolute fitnesses are simply the

relative ones divided by the average value of the relative ones

in the whole population. This average value has the form

1þOðdÞ, and therefore the absolute fitnesses have the form

w�ðxÞ ¼ w0 � dc1A þ dbxþOðd2Þ, where w0 is a common

value for all individuals in the population in each generation.)

In [13], we studied invasion in this setting, under strong or

weak selection. In the relevant case for us here, in which

groups are large, migration m low and selection is weak, we

showed that the condition for invasion to occur is precisely

(3.5), with Q ¼ 0 (see display (3.3), [13]). We also explained in

[14] that not only (3.5), but also the more general (3.2), (3.3)

holds for 2lFW, with Q ¼ 0.

Intuition about why the same beta distribution turns out

to be relevant in the case of ILGR and 2lFW is as follows [14].

When one tracks the lineages of the members of a group back

in time, in these two distinct settings, one obtains the same

coalescent process, and that determines the distribution of

x, which is known to be beta with parameters lp and lq
[24]. Even when groups are smaller and group size fluctu-

ations are relevant, we observe the beta distributions in

computer simulations as good approximations (even with

n0 as small as 10). And even in simulations of population

structures in which groups split, or groups become extinct

at a low rate and recolonized, we have observed the betas.

This can be explained by the fact that the relevant time-

scale of the coalescent is given by the typical time 1/m
needed for a lineage to exit the group. When m is small,

this time-scale is much longer than the time-scale at which

groups fluctuate in size and we obtain the same kind of

coalescent, with rates of coalescence of lineages given by

averages over the time-scales of the fluctuations in size.

Intuition about why Q¼ 0 in the 2lFW case is as follows.

Information about the type * of the focal individual affects our

knowledge of its current fitness w in two ways. One is

� ! x! w; the first arrow is mediated by relatedness R, and

this is the basis of Hamilton’s work. The other is

� ! ½�w	rp ! n! w, where ½�w	rp is the average fitness in the

group in the recent past. In ILGR, n is elastic and this channel is

important and is mediated by Q. In population structures that

have a fixed group size, this channel is absent, or equivalently,

Q ¼ 0 ðpopulation structures with fixed group sizeÞ: ð3:6Þ
A number of previous readers of this paper felt tempted to

take a limit l! 1 in ILGR, in order to produce a model with

‘infinite rigidity’ meaning fixed group sizes, and were puzzled

by the fact that the right-hand side of (3.4) is then converging to

21 rather than to 0. In fact, if one violates the assumed conditions

of ILGR, which requirel , 1, and considers the case of very large

l, one runs into a situation in which ðs, SÞ ¼ ð1, 1Þ becomes an

unstable fixed point, and our analysis of ILGR, including (3.4),

does not apply.

The two channels discussed above lead to a decompo-

sition FðpÞ ¼ FHamiltonðpÞ þ Fextra�HamiltonðpÞ, with the first

term corresponding to the first channel and the second

term to the second channel and including the factor Q. The

discussion above and in [14], and the computation of

Fextra�HamiltonðpÞ in the electronic supplementary material

suggest that (3.2) and (3.3) should apply to a broader class

of population structures, including the possibilities of

groups splitting or becoming extinct and being recolonized.

The fashion in which Q relates to population parameters

(migration rate, regulation rates, rates of group extinction,

etc.) must be population-structure-dependent (in the same

way that the relatedness R is). But we conjecture that (3.2)

and (3.3) will apply quite broadly, with R and Q fully sum-

marizing the role of the population structure in affecting

the direction and speed of selection.
4. Linear public goods game: comparison with
some of the related literature

In the case of a linear public goods game, vA
x ¼ �cþ bx,

vN
x ¼ bx, �vx ¼ ðb� cÞx, and (3.2) and (3.3) become (see the

electronic supplementary material)

Dp ¼ dpqð�cþ ðbþQðb� cÞÞRÞ þ oðdÞ: ð4:1Þ

The condition for types A to increase in frequency is then

RðbþQðb� cÞÞ . c: This is deceptively similar to the con-

dition in display (16) of Gardner & West [17], with their

parameter a in place of our 2Q (see pages 1711–1713 in

that paper for background on that condition and its relation

with their display (10)). But the meaning of 2Q and a are

completely different, as one can see from the fact that their

population structures have a fixed size and therefore the

quantity that we call Q is 0 in their setting (see (3.6)). More-

over, our db and dc are (Hamilton’s) fitness costs and

benefits (when the population is in quasi-equilibrium, and

up to errors of order d2), while theirs are vital rates that

relate only indirectly to fitnesses. We explain these two

claims next.

In our setting, consider first ILGR with h(s)¼ 1. In this case,

the absolute fitness (3.1) is given by w�ðx, s, SÞ ¼Hðs, SÞ �
dc1A þ dbx, where the symbol 1A takes the value 1 when * is

A and 0 when * is N. This means that the behaviour of each

type A increases the absolute fitness of all members of its

group (self-included) by db/n, and additionally decreases its

own fitness by dc. In the case of ILGR with arbitrary h(s), we

know from the electronic supplementary material that in

quasi-equilibrium s ¼ 1þOðdÞ, and therefore also hðsÞ ¼ 1þ
OðdÞ, so that (3.1) becomes w�ðx, s, SÞ ¼ Hðs, SÞ � dc1Aþ
dbxþOðd2Þ, justifying again our claim above. Similarly,

in the case of 2lFW, we again have absolute fitnesses

w�ðxÞ ¼ w0 � dc1A þ dbxþOðd2Þ, justifying our claim.
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The fact that the parameters c and b that appear in [17,20], and

related models are typically not fitness costs and benefits is well

known and is discussed in detail in [18], but since it is a pivotal

issue in our discussion, we explain it again in the context of

Taylor [20] (similar analysis applies to the more elaborate

models of [17], which extend the model of Taylor [20]). The popu-

lation structure introduced in [20] has fixed-size groups.

In each generation, adults produce a very large (ideally infinite)

number of offspring, given (in our notation, and with L as a

large number) by f�ðxÞ ¼ Lð1� dc1A þ dbxÞ: A fraction m of

the juveniles disperses to randomly chosen groups. Competi-

tion among the juveniles in each group eliminates most of

them and leaves exactly n of them in each group. They grow

to adulthood and start the next cycle. A computation of

the absolute fitness (e.g. [18]) gives w�ðxÞ ¼ 1� dc1Aþ
dðb� ðb� cÞÞxþOðd2Þ ¼ 1� dc1A þ dcxþOðd2Þ: This means

that the behaviour of each type A increases the absolute fitness

of all members of its group (self-included) by dc/n, and addition-

ally decreases its own fitness by dc. The parameter b has no effect

on fitness. This is very different from the situation in our setting,

as discussed above. In [20], Q ¼ 0, since groups have fixed size,

but types A will be eliminated by selection whenever R , 1, as

Dp ¼ dpqð�cþ cRÞ þ oðdÞ , 0:

In [14], we had referred to the regime of ILGR in which Q is

close to 21, as the ‘Taylor regime’ because of similarities

between the results of Taylor [20] discussed above, and what

happens in our setting, in this regime. (In our case, we also

have Dp ¼ dpqð�cþ cRÞ þ oðdÞ , 0, from (4.1), but note that

the cancellation of b occurs not at the level of the computation

of fitness components, but only at the level of the computation

of Dp.) We were aware of the important differences stressed

above, but considered that name as appropriate if the differ-

ences were also kept in mind. Remarks by the referees

convinced us that that name would rather produce confusion,

and we changed it here to ‘crowded regime’. In this regime,

types A find themselves in groups in which the effect of their

ancestors in the same group increased the group density

(made it crowded), so that local regulation now cancels the fit-

ness effect that they still have at the current time on their group

members. The cancellation that occurs here happens through

the effects of past types A on the local ecology (crowding),

while in [20] the cancellation is in the computation of the effects

of the behaviour of the current types A on fitness.

The referees recommended that we compare our approach

with that introduced in [21], and further applied in [22].

There are several distinctions to make. First, Rousset & Ronce

[21] analyse the evolution in time not of p, but of a weighted

average of reproductive values of the types A an N. The direc-

tion in which this quantity changes is also an indication of the

direction in which p varies, but its analysis is, in principle,

harder. In [21], the quantity denoted by S plays a role similar

to our F( p), giving the direction of selection. In displays

(23), (24) and (25) of that paper, they provide a partition

S ¼ Sf þ SPr that is worth comparing with our partition

FðpÞ ¼ FHamiltonðpÞ þ Fextra�HamiltonðpÞ: In addition to being par-

titions of different quantities, their SPr reflects future effects on

the fate of the types A and N, due to distinct reproductive

values of offspring in different groups in the next generation.

In contrast, our Fextra�HamiltonðpÞ reflects the effects from the

past actions of types A and N on their current differences in

absolute fitnesses. In other words, we are considering different

objects, and partitioning them in ways that are conceptually

different. Second, in [21,22], the assumption of additive gene
action is made, which restricts the pay-off function to that of

the linear public goods game. (Technically, this assumption is

made as the assumption that fitness functions are differentiable,

an important restriction that we discuss in detail in [25].) As our

main interest in this paper is in iterated games with behaviour

contingent on threshold number of participants, gene action

across individuals is non-additive. For instance, the fitness

effects of having 20% of types A in a group are not necessarily

twice that of having 10% of types A in the group. Therefore, we

needed to develop a methodology that would not require addi-

tive gene action. And this flexibility in our methodology (v�x is

arbitrary in (3.3)) is indeed one of its qualities. Third, and per-

haps even more important in the context of the comparison

with [21,22], Lehmann et al. [22, p. 1142] concede that in situ-

ations in which group size is variable, they cannot compute

SPr explicitly, and rather analyse only its sign. One of the

most relevant contributions in the current paper is the explicit

computation of both terms in F( p), with the extra-Hamilton

one yielding the factor Q, that we explicitly computed as (3.4)

in the ILGR population structure that includes group size vari-

ability as a fundamental ingredient. The very simple expression

that we obtained for Q clarifies the competitive effects of

local group size regulation and migration in a quantitative

and transparent fashion.
5. Invasion in iterated games
In this section, we will apply (3.5) to the pay-offs discussed in

§2. This means that vA
x ¼ vx, if x , u and vA

x ¼ Tvx, if x � u;

vN
x ¼ v0x, if x , u and vN

x ¼ Tv0x, if x � u: Applying these to

(3.5), the condition for invasion isðu
0

betaðxj1, lÞv̂xdxþ T
ð1

u

betaðxj1, lÞv̂xdx . 0, ð5:1Þ

where v̂x ¼ vx þQðxvx þ ð1� xÞv0xÞ: The integrals in the above

equation are relatively simple, since betaðxj1, lÞ ¼ lð1� xÞl�1:

However, instead of integrating, we will exploit the fact that

when relatedness R is low, the exponent l� 1 ¼ ð1=RÞ � 2 is

large (the situation to keep in mind is R � 10%, which implies

l� 1 � 8), so that this density function decreases rapidly with x.

This means that the integrals put much more weight on the

values of v̂x when x is close to the left end of the integration

interval than on the values when x is further to the right. To

use this observation, care has to be taken with the normalization

when we restrict the distribution to an interval. For this pur-

pose, we define kv̂xlb
a as the average value of v̂x with respect

to the beta distribution conditioned to being in the interval

[a, b]. The conditional probability density, properly normalized,

is ½ð1� aÞl � ð1� bÞl	�1lð1� xÞl�1, and the steep decrease of

(1 2 x)l as x grows, implies that kv̂xlb
a � v̂a: (The rigorous state-

ment is liml!1 kv̂xlb
a ¼ v̂a.) Motivated by these observations, we

rewrite (5.1) as

½1� ð1� uÞl	kv̂xlu0 þ Tð1� uÞlkv̂xl1
u . 0, ð5:2Þ

and then use the approximation just discussed, and the fact that

v̂0 ¼ v0 þQv00 ¼ v0, to replace it with the approximate condition

½1� ð1� uÞl	v0 þ Tð1� uÞlv̂u . 0: ð5:3Þ

We now assume, as we did in §2, that v0 , 0. Then (5.3) implies

that invasion requires v̂u . 0, and T sufficiently large:

v̂u ¼ vu þQ½uvu þ ð1� uÞv0u	 . 0 ð5:4Þ



Table 2. Simulation results. In all simulation, there were g ¼ 100 000 groups each with carrying capacity n0 that exchanged migrants with all other groups at
a rate m. The global carrying capacity was n0g. As described in the text, the local share of population regulation was a, so a ¼ 1 means that regulation only
depended on group size. The initial frequency of A in all simulations was set to 0.001 and then the simulation was run for tsim generations. Fitnesses in a step
fitness function were given by v0 ¼ �0:5, vu ¼ 0:7 and v0u ¼ 1, and d ¼ 0:001: Averages of Fst and group size n were taken over the last tsim2 50
generations, to allow for quasi-equilibrium. This average value of Fst was used to compute l ¼ 1=Fst � 1 that was used in two ways. (i) To calculate the
predicted critical values of T using (5.7), labelled Tsf (for ‘simple formula’). (ii) Using (3.3), to numerically calculate the value of T for which F(0.001) ¼ 0. This
value is labelled Tb. Finally, the observed average fitness difference between A and N types over the last tsim 2 50 generations were fit to a straight line using
linear regression and the intersection with the x-axis is reported as the observed critical value of T, labelled T0. Negative values of T indicate that A cannot
invade for any positive value of T because the population is in the crowded regime.

tsim u m r0 a n0 n Fst Tsf Tb T0

1000 0.2 0.05 0.1 1 80 76 0.116 9.0 7.4 7.7

100 0.2 0.1 0.5 0.1 80 80 0.063 25.0 23.9 29.6

1000 0.2 0.05 0.5 1 80 79 0.114 237.8 241.1 232.4

100 0.2 0.1 0.1 1 80 77 0.066 27.3 26.7 35.3

100 0.2 0.1 0.1 0.5 80 78 0.064 23.4 22.6 26.9

1000 0.2 0.1 0.1 0.5 80 78 0.064 23.4 22.4 26.3

1000 0.2 0.1 0.5 0 80 80 0.062 19.8 18.9 22.9

100 0.2 0.1 0.05 1 80 77 0.064 23.4 20.8 24.8

100 0.1 0.1 0.1 0 200 200 0.027 31.1 28.2 42.7

100 0.15 0.1 0.1 1 120 116 0.044 39.9 39.2 48.2
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and

T .
�v0

v̂u
eT, where eT ¼ ð1� uÞ�l � 1: ð5:5Þ

When the pay-offs are given, (5.4) becomes a condition on

Q. It is interesting to observe that (5.4) can be satisfied even

with a negative vu, provided that Q , 0 and v0u is sufficiently

negative. This situation characterizes spiteful behaviour by

the cooperators, in which at a cost to themselves the cooperators

harm the non-cooperators. We defer a detailed analysis of this

case, observing only that in this situation, the more negative

Q is, the better for the spread of cooperators. We assume from

now on, as we did in §2, that vu . 0: If v0u , vu, then when

Q ¼ 0, we have v̂u ¼ vu . 0 so that (5.4) is satisfied, and

when Q [ ½�1, 0Þ, we have v̂u . vuð1þQÞ, and (5.4) is also

satisfied. And if v0u � vu, then the square bracket in (5.4) is posi-

tive and this condition becomes

Q . Qc ¼
�vu

uvu þ ð1� uÞv0u
: ð5:6Þ

In summary, assuming v0 , 0 and vu . 0, invasion happens

when

ðv0u , vu or Q . QcÞ and T .
�v0

v̂u

eT: ð5:7Þ

The impossibility of invasion when vu � v0u and Q � Qc

extends the crowded regime. And when v0u , vu, or

Q . Qc, the condition on T provides intuition on when the

underlying game, the threshold u and the relatedness R as

well as Q (those two being the only inputs determined by

the population structure) allow for invasion. The effect of Q
in this inequality is restricted to the presence of v̂u, rather

than vu there. To understand its effect, observe (see (5.4))

that v̂u is a linear function of Q in the interval [Qc, 0],

which takes the value 0 at Qc and the value vu at 0. This

means that if Q is close to Qc (only possible if vu � v0u ),

then T will have to be very large for cooperation to invade.
But if Q is far from Qc, the effect of Q on the order of magni-

tude of the needed T is small. For instance, if Q [ ½0:1Qc, 0	,
then v̂u [ ½0:9vu, vu	, and having v̂u in (5.5) instead of vu,

amounts at most to a factor of about 1.1 in the needed T.

If v0 and v̂u are of similar order of magnitude, then the order

of magnitude of T will be given by the factor eT, which does not

depend at all on the underlying game that is iterated. This factor

depends on the population structure only through the level of

relatedness R, which provides l ¼ 1=R� 1 and on the threshold

u. It is also very sensitive to these two inputs, as the following

examples show. To explore the effect that u has on eT, suppose

that R ¼ 0.07, which yields l ¼ 13:29: Then with u ¼ 0:2, we

have eT ¼ 18, with u ¼ 0:25 we have eT ¼ 45, with u ¼ 0:4 we

have eT ¼ 887, and with u ¼ 0:5 we have eT ¼ 10 015: And to

explore the effect of R on eT, suppose that u ¼ 0:1: Then with

R ¼ 0.02, we have l ¼ 49 and eT ¼ 174, with R ¼ 0:025 we

have l ¼ 39 and eT ¼ 60, with R ¼ 0:03 we have l ¼ 32:33 andeT ¼ 29, and with R ¼ 0:04 we have l ¼ 24 and eT ¼ 12: When

u� 1, additional intuition on the dependence of eT on R and

u can be obtained from the approximation eT � eul: For arbitrary

u, this becomes an inequality, eT � eul: The exponential form of

the dependence of eT on ul explains the strong sensitivity to the

values of R and u illustrated by the numerical examples above.

This is the reason why invasion is relatively easy when u is low

and very hard when u is large.

In the electronic supplementary material, we computed

the integrals in (5.1) for two kinds of pay-off functions: step

functions and linear public goods games. And we used the

resulting detailed formulae to analyse the conditions under

which the approximation in (5.3) and (5.7) is good.

We have performed numerical simulations, covering a

range of parameters (table 2). In these, (5.7) provides a

value of T that is reasonably close to the empirical results.

One should keep in mind that when p is very low (invasion

conditions), drift is a powerful force competing with selection

and adding randomness to the evolution. This noise is

reflected in the lesser accuracy of the predictions of the critical
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T as compared to the predictions in table 1, even when we

used the full theory (3.3) based on the beta distribution. Con-

sidering the biological reality of drift as a source of significant

noise when an invading gene still has low frequency (e.g.

[24], ch. 4), the level of agreement in table 2 is reassuring of

the value of the theory even in these extreme conditions.
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6. Discussion
Inequality (5.3) and the more detailed (5.7) give simple approxi-

mations for the conditions necessary for contingent cooperative

strategies to increase when rare. They do not depend on the

form of the underlying fitness function, but do depend on

various assumptions. (i) Contingent strategies that support

cooperation lead individuals to continue cooperating if the

number of cooperators exceeds a threshold. (ii) The assortment

necessary for cooperative strategies to increase when rare results

from an elastic island model population structure [14], (§4), or

from groups competing for the production of new groups

[13,17,18], or from other population structures for which (3.5)

holds, with a constant Q that depends on the population

structure. We conjecture that this is the case for many popu-

lation structures (see §3 and [14]). (iii) The derivation of (5.3)

and (5.7) also depend on the assumption that groups are very

large, migration rates are low, and relatedness in groups is

also low. However, numerical calculations suggest that they

also give useful approximations in a wide and reasonable

range of parameters.

The simple rule given by (5.7) provides a number of

insights. It shows the relative importance of the population

structure (through R and Q), of the pay-offs, of the threshold

u and of the number of iterations T.

It suggests that the evolution of contingent cooperation

is very sensitive to relatedness (R) and to the threshold

number of iterations necessary for cooperation to persist (u).

As long as jQj � jQcj and the fitness parameters v0 and vu

are of comparable order, the order of magnitude of the

threshold number of interactions necessary for contingent

cooperation to increase will be mainly determined by eT
which depends only on u and R. When u is large, under

realistic levels of relatedness, invasion will require unreason-

ably large numbers of iterations. For instance, if R � 0:1 and

u � 0:65, then eT � ð1� 0:65Þ�ðð1=0:1Þ�1Þ � 1 ¼ 12 686: On the

other hand, when u is small, invasion can occur at very low

levels of relatedness. For instance, if relatedness is 0.02, and

u ¼ 0.1, then eT ¼ 173:

This sensitive dependence of the required level of related-

ness on u suggests that the high levels of cooperation
observed in humans are more likely to have evolved by contin-

gent punishment than by contingent cooperation. Costly

contingent punishment that persists at a low threshold u

can invade much more easily than costly contingent

cooperation that persists only at a high threshold u. But even

a small fraction of punishers in a group can induce massive

group cooperation. In the model presented in [12], individuals

punish non-cooperators if enough other individuals in the

group are also willing to punish non-cooperators. Because

even a modest fraction of punishers can motivate others to

cooperate, such contingent punishment strategies can increase

when rare at relatively low levels of relatedness and still

stabilize cooperation at a high level. Strategies that continue

cooperating even when only a small fraction of others cooperate

typically reach a stable polymorphic equilibrium in which the

population displays a mix of cooperative and non-cooperative

strategies [7,8]. Strategies that tolerate more defectors achieve

lower frequencies of cooperators at equilibrium. Thus contin-

gent strategies that behave altruistically when a small fraction

of the group also behave altruistically can support ongoing

cooperation, but will produce equilibria in which most individ-

uals in the group do not contribute. Cooperation of this kind is

observed. For example, in the United States, public radio is

supported by voluntary contributions by a small fraction of

listeners—most free ride. However, such strategies cannot sup-

port the widespread cooperation observed in many contexts.

For example, virtually all Turkana men participate in warfare,

even though the Turkana lack formal coercive institutions

[26]. Our result is consistent with the idea that such widespread

cooperation is supported by coordinated punishment of non-

cooperators, by individuals that are willing to persistently

punish non-cooperators at a cost to themselves, provided a

small threshold number of punishers is achieved in the group.
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