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Abstract

Motivation: The combination of liquid chromatography and mass spectrometry (LC/MS) has been

widely used for large-scale comparative studies in systems biology, including proteomics, glyco-

mics and metabolomics. In almost all experimental design, it is necessary to compare chromato-

grams across biological or technical replicates and across sample groups. Central to this is the

peak alignment step, which is one of the most important but challenging preprocessing steps.

Existing alignment tools do not take into account the structural dependencies between related

peaks that coelute and are derived from the same metabolite or peptide. We propose a direct

matching peak alignment method for LC/MS data that incorporates related peaks information

(within each LC/MS run) and investigate its effect on alignment performance (across runs). The

groupings of related peaks necessary for our method can be obtained from any peak clustering

method and are built into a pair-wise peak similarity score function. The similarity score matrix pro-

duced is used by an approximation algorithm for the weighted matching problem to produce the

actual alignment result.

Results: We demonstrate that related peak information can improve alignment performance. The

performance is evaluated on a set of benchmark datasets, where our method performs competi-

tively compared to other popular alignment tools.

Availability: The proposed alignment method has been implemented as a stand-alone application

in Python, available for download at http://github.com/joewandy/peak-grouping-alignment.

Contact: Simon.Rogers@glasgow.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Liquid chromatography, coupled to mass spectrometry (LC/MS) is

one of the most widely used techniques in untargeted proteomic and

metabolomic studies (Vandenbogaert et al., 2008). In proteomic or

metabolomic experiments, the input sample to the LC/MS in-

strument is a complex mixture of peptides or metabolites.

Compounds in the mixture are separated in time through liquid

chromatography (LC) and subjected to mass spectrometry (MS) ana-

lysis. The result of this process is a mass chromatogram: an intensity

surface across the mass-to-charge ratio (m/z) and retention time

(RT) dimensions. From this surface, it is possible to extract individ-

ual peaks (corresponding to ions in the mass spectrometry). In this

VC The Author 2015. Published by Oxford University Press. 1999
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 31(12), 2015, 1999–2006

doi: 10.1093/bioinformatics/btv072

Advance Access Publication Date: 2 February 2015

Original Paper

http://github.com/joewandy/peak-grouping-alignment
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv072/-/DC1
http://www.oxfordjournals.org/


article, we use the term ‘run’ to refer to the output from running any

biological sample through the LC/MS instrument once, and ‘feature’

to refer to a tuple of ðm=z;RTÞ values derived from a single peak.

Experiments in biology involve a comparison of multiple samples,

so a typical LC/MS dataset consists of data from several runs. In order

to compare peaks across these runs, they have to be matched, and

while the measured m/z of a particular peak tends to be conserved in

high-precision mass spectrometry, the RT is prone to drifting. These

RT shifts can be highly nonlinear (Podwojski et al., 2009) and are the

result of instrument-specific factors, such as the condition of the chro-

matographic column, gradient slope, and temperature (Christin et al.,

2008), or experiment-specific factors, such as instrument malfunctions

or columns that need be replaced mid-experiment. Due to this RT

variation, a single peak from one run can have several potential

matches in another run. The problem of matching peaks and correct-

ing RT shifts is broadly referred to as alignment. Errors during the

alignment can have a detrimental effect on the subsequent analysis.

In a comprehensive review, Smith et al. (2013) identify two broad

alignment approaches: warping and direct matching. In the warping

approach, an alignment tool seeks to fit an RT correction function

(typically a regression model) between runs. Once the RT shifts have

been corrected, the correspondence of peaks can be found through

any method that matches peak features across runs. Early warping

approaches, such as dynamic time warping (Sakoe and Chiba, 1978),

correlation optimized warping (Nielsen et al., 1998) and parametric

time warping (Eilers, 2004), are predominantly based on dynamic

programming, and use only the time information present in the Total

Ion Chromatograms (TIC), but recent warping approaches have

included the m/z dimension as well (Christin et al., 2008). In the alter-

native approach of direct matching, the goal of alignment is to skip

the warping step and directly match peaks across runs. Direct

approaches therefore require that the peak (i.e. feature) extraction

step has already been completed. The majority of direct matching

approaches consist of two stages: computing feature similarity and

using this similarity to match the features. A wide range of feature

similarity measures have been proposed to compare the m/z and RT

values of two peaks, including normalized weighted absolute differ-

ence (Pluskal et al., 2010), cosine similarity (Hoffmann et al., 2012),

Euclidean distance (Ballardini et al., 2011) and Mahalanobis distance

(Voss et al., 2011). Once similarity has been computed, feature match-

ing can be established through either a greedy or combinatorial

matching method. Since matching across all runs at once can be com-

putationally expensive (due to the exponential growth of features to

be considered), complete multiple alignment results are usually pro-

duced through some merging scheme of pair-wise runs.

Greedy feature matching methods work by making a locally opti-

mal choice at each step, in the hope that this will lead to an acceptable

matching solution in the end. RTAlign in MSFACTs (Duran et al.,

2003) merges all runs and greedily groups features into aligned peak-

sets within a user-defined RT tolerance. Join Aligner (Pluskal et al.,

2010) in MZmine2 merges successive runs to a master peaklist by

matching features greedily according to their similarity scores

within user-defined m/z and RT windows. Similarly, MassUntangler

(Ballardini et al., 2011) performs nearest-distance matching of fea-

tures, followed by various intermediate filtering and conflict-

resolutions steps. Recent advances in direct matching methods have

also posed the matching task as a combinatorial optimization prob-

lem. Simultaneous Multiple Alignment (SIMA) (Voss et al., 2011)

uses the Gale-Shapley algorithm to find a stable matching in the bi-

partite graph produced by joining peaks (nodes) from one run with

peaks from another run that are within certain m/z and RT tolerances.

Wang and Lam (2013) explore the application of the classical

Hungarian algorithm to find the maximum weighted bipartite match-

ing. Bidirectional best hits peak assignment and cluster extension

(BIPACE) (Hoffmann et al., 2012) establishes correspondence by find-

ing the maximal cliques in the graph. SMFM (Lin et al., 2013) uses

dynamic programming to compute a maximum bipartite matching

under a relaxed bijective mapping assumption for time mapping.

Many of the tools surveyed in Smith et al. (2013) make the assump-

tion that elution order of peaks is preserved across runs. Often, a tool

also has a number of user-defined parameters, varying which can dras-

tically change the alignment. More importantly, none of the tools sur-

veyed in Smith et al. (2013) take into account the structural

dependencies between coeluting peaks when solving the correspond-

ence problem. Such information could potentially be used to improve

the alignment process, since a set of coeluting peaks (derived from the

same compound/peptide fragment) in one run should generally be

aligned to another set of coeluting peaks in the other run. In this work,

we propose the inclusion of related peak information into the matching

process. We define related peaks to be all those peaks that appear in a

run due to the presence of one compound in the sample being analyzed.

Examples of related peaks are isotope peaks, multiple adduct and de-

duct peaks, and fragment peaks (Scheltema et al., 2009). Such peaks

should coelute from the column and have similar chromatographic

shapes. Our proposed approach uses information as to which peaks

are related to which other peaks in an individual run, to modify peak

to peak similarity scores across runs. The related peak information can

come from any peak grouping (e.g. clustering via RT) method. Our

key assumption is that groups of co-eluting peaks will be preserved

across runs. The idea is illustrated in Figure 1. In the figure, initial

weights are computed between pairs of peaks in the two runs that are

within m/z and RT tolerances (e.g. WAE and WAJ). When related peak

information is added, the similarity between peaks A and E is increased

due to peak A being related to another peak (B) that is similar to a

peak (G) related to E. On the other hand, the similarity between A and

J is not increased as J does not have any related peaks that could poten-

tially be matched to peaks related to A. In other words, we are propos-

ing using the structural dependencies present between peaks in each

run to modify the similarity scores and improve alignment perform-

ance: the more peaks related to A that could be matched to peaks

related to E, the more likely it becomes that A should be matched to E.

2 Materials and methods

2.1 Direct matching method
Our proposed alignment method combines a novel similarity score

with maximum weighted bipartite matching. This results in pair-

wise alignments which can be, if desired, extended to multiple align-

ments with hierarchical merging strategy. In such merging strategies,

having an accurate initial pair-wise alignments is important because

of its influence on the final multiple alignment results. In the follow-

ing sections, we describe each step in more detail.

2.2 Feature similarity
Suppose we wish to align run A containing NA peaks with run B

containing NB peaks. We follow SIMA (Voss et al., 2011) in using

the Mahalanobis distance between two peaks pi 2 A; pj 2 B where

each peak is a vector of its m/z and RT values pi ¼ ½mi; ti�T and

pj ¼ ½mj; tj�T. The distance is given as:

Dðpi; pjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpi � pjÞ

TR�1ðpi � pjÞ
q

;

where the covariance matrix R is a diagonal matrix of mass-

to-charge tolerance r2
m and retention time tolerance r2

t . The
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diagonal covariance matrix R assumes independence between the r2
m

and r2
t components. To reduce the computational burden, entries in

D are only computed when the peaks’ m/z and RT values are within

rm and rt. We now define the similarity score between two peaks as

one minus their normalized distance:

Wðpi; pjÞ ¼ 1�
Dðpi; pjÞ

Dmax
; (1)

where Dmax is the maximum computed distance between peaks in

the two runs being aligned. Collectively, we call the NA �NB matrix

of similarity scores between all peaks in run A and B to be W.

2.3 Incorporating related peak groups
The similarity score matrix W can now be combined with related

peak information to obtain a final score, S:

S ¼ aW þ ð1� aÞL (2)

where L is the cluster similarity score between the two peaks in a

single run (described below), and a (0�a�1) is a parameter control-

ling the relative influence of the two components. To compute L, we

require related peak groupings from the two runs being aligned.

This takes the form of an NA �NA matrix CA for run A and an NB

�NB matrix CB for run B. Entries in CA and CB can be either binary

(0, 1) or probability values, depending on the peak grouping algo-

rithm used. For example, if a greedy clustering approach is applied

to the features in run A, the ij-th element of CA will be either 1 or 0,

depending on whether the i-th and j-th features (peaks) in A are clus-

tered together (1) or not (0). Note that in the following, we define

the diagonal components of both matrices to be zero to avoid double

counting. We then compute L as follows:

L ¼ CA �W � CB: (3)

The resulting matrix gives cluster similarity scores such that each

element Lij of L is the sum of weight from peaks in the same cluster

as i in run A to peaks in the same cluster as j in run B. This allows us

to use the matrix L to upweight the similarity scores between peaks

in the same cluster in one run that also have more potential matches

to peaks in the same cluster in the other run of the matching.

Computation of Equation 3 is illustrated in Figure 1. The ratio par-

ameter a controls how much clustering information we bring into

the overall similarity score matrix S, with its value bounded in

0�a�1. Setting a¼1 results in a matching that uses only informa-

tion from W, the similarity score matrix. Setting a¼0 means that

the matching is performed based only on the cluster similarity score

L. From our experience, a reasonable range of values for a lies be-

tween 0.2 and 0.4.

Our proposed approach is independent of the method used to

group related peaks in each run. For comparison, we call our method

that does not use the cluster similarity score (a¼1) to be Maximum-

Weighted (MW). We demonstrate the performance improvement

from incorporating related peaks information using two different clus-

tering algorithms: a greedy RT clustering approach Maximum-

Weighted-Greedy (MWG) and a statistical mixture model

[Maximum-Weighted-Mixture (MWM)]. MWG starts with the most

intense peak in the dataset and clusters it with other candidate peaks

inside a retention time window gtol. The next most intense peak that

has not already been clustered is processed, and the grouping process

is repeated until all peaks are exhausted. If chromatographic peak

shapes information is available (such as for the Metabolomic dataset

used in Section 4.2), the Pearson correlation coefficient between the

chromatographic peak signals of the most intense peak and the candi-

date peaks are computed. Only candidate peaks with Pearson correl-

ation values greater than some threshold c are accepted into the

newly-formed cluster. This greedy clustering process results in binary

grouping matrices CA and CB. MWM uses an infinite Gaussian mix-

ture model on RT (see e.g. Rasmussen, 2000). Analytical inference is

not possible in this model, so a Gibbs sampling procedure is used to

sample clusterings used to compute the probability of two features

(peaks) to be in the same cluster. These probabilities comprise the

elements of CA and CB, i.e. the ijth element of CA is the proportion of

samples from run A in which peaks i and j were in the same cluster.

More details of the mixture model and sampling procedure are pro-

vided in the Supplementary Material.

2.4 Feature matching

Alignment between two runs can be represented as a matching prob-

lem on a bipartite graph G, where nodes in the graph are the fea-

tures, edges are the potential correspondence between features and

the weights on the edges are the similarity scores (entries in S) be-

tween features. In SIMA (Voss et al., 2011), the Gale–Shapley algo-

rithm (Gusfield and Irving, 1989) is used to find a stable matching in

G. A matching is stable if there are no two features in different runs

that would prefer to be matched to each other than to their currently

matched partners. Since the stable matching is computed based on

ranked preference, valuable information could be discarded as dis-

tances between features are converted to ranks. As such, we prefer

to use a method that maximizes the total sum of similarity scores of

matched features (maximum weighted matching).

The benefit of maximum weighted bipartite matching in solving

the peak correspondence problem has been studied in Wang and

Lam (2013) in their LWBMatch tool. LWBMatch shows that such

matching method, coupled to a local regression method, is able to

Fig. 1. Illustrative example of the incorporation of grouping information into the similarity score. Each node in the figure is a peak feature, and dotted ovals repre-

sent groups of related peaks, e.g. isotopes, fragments, etc. Initially weights (e.g. WAE) are computed for pairs of peaks (one from each run) with m/z and RT within

pre-defined thresholds. These weights are converted into an overall score by incorporating grouping information. For example, peak pairs (A, E) and (B, G) are

both within the threshold. As A and B are in the same group, and E and G are in the same group, the weights between pairs (A, E) and (B, G) are upweighted.

Peak J is not related to any peaks that could be matched with A’s related peaks and the similarity between A and J is therefore downweighted (because a�1). The

same applies to similarities between pairs (C, H) and (D, I)
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align runs having large and systematic drifts in RT values. The well-

known Hungarian algorithm (Kuhn, 1955) attributed to Kuhn and

Munkres is used in LWBMatch to solve this problem. The time com-

plexity of the Hungarian algorithm is Oðn3Þ, where n is the number

of peaks in the larger set. While the Hungarian algorithm’s imple-

mentation can be improved to Oðn2log nÞ by using Fibonacci heaps

for the shortest path computation, the polynomial time complexity

required in this scheme is often too slow to be practical for align-

ments of the large number of runs produced in large-scale untargeted

LC-MS studies. Consequently, we compute an approximation of the

maximum weighted matching using a simple greedy algorithm that

runs in Oðm log nÞ time, where n and m denote the number of verti-

ces and edges in the bipartite graph G to be solved. The greedy algo-

rithm is straightforward to describe: pick the heaviest edge e in G,

where e represents a potential match between nodes (features). Add

e to the matching solution M and remove all other edges adjacent to

e from G. Repeat until all edges in G have been exhausted. This sim-

ple greedy algorithm is known to provide a lower bound of at least

1/2 of the maximum weight in the matching (Duan et al., 2011).

2.5 Evaluation datasets
Performance of the proposed methods and other benchmark meth-

ods is evaluated on LC-MS datasets from proteomic, metabolomic

and glycomic experiments. The proteomic datasets are obtained

from Lange et al. (2008) while the glycomic dataset comes from

Tsai et al. (2013). These datasets provide the ground truth for align-

ment and have used to benchmark alignment performance in other

evaluation studies (Ballardini et al., 2011; Lange et al., 2008;

Pluskal et al., 2010; Tsai et al., 2013; Voss et al., 2011).

Additionally, we also introduce a metabolomic dataset generated

from the standard runs used for the calibration of chromatographic

columns (Creek et al., 2011). The runs were produced from different

LC-MS analyses separated by weeks, representing a challenging

alignment scenario. Further details on each dataset and the construc-

tion of alignment ground truth can be found in Section 2 of the

Supplementary Material.

3 Evaluation study

3.1 Experimental setup
The alignment tools evaluated have in common user-defined m/z

and RT window parameters. These parameters act as hard thresh-

olds that determine the solution space to be explored in the m/z and

RT dimensions when matching features. Performance of all align-

ment procedures is highly dependent on the assumptions and choice

of parameter values that underpin them (Smith et al., 2013). For ex-

ample, warping methods must make assumptions regarding the

mathematical form of the warping function and are dependent on a

good choice of reference run. Direct matching approaches typically

need to decide on the form of peak similarity function, and define

some m/z and RT windows, outside of which, peaks cannot be

matched. While the m/z window and parameters can often be deter-

mined based on the mass accuracy of the measurement equipment,

there is no obvious way to determine the RT window and associated

parameters. The optimal choice of such parameters could have a sig-

nificant influence on the final results (Smith et al., 2013), and there

is no reason to believe that these parameters should remain constant

across different experiments.

Previous studies on the proteomic and metabolomic datasets pre-

sented here (Ballardini et al., 2011; Lange et al., 2008; Voss et al.,

2011) varied the window parameters and reported the best

performance achieved. While informative, this procedure is unrealistic

due to the role of the ground truth in choosing the optimal parameter

values. To provide a more realistic estimate of performance, we also

present the performance on a separate testing set. In other words, we

optimize the window parameters on one alignment task and report

the performance when using these optimized parameters on a second

task (distinct from the first task). This reflects the scenario where the

parameters are set based on performance on a previous dataset or due

to information supplied from the instrument manufacturer and tells

us how critical setting these parameters is for each method.

In this article, training set refers to the data on which alignment

parameters are optimized and testing set refers to the independent

set on which alignment performance is evaluated. We believe that

this represents a more realistic measure of alignment performance

and provides us with some information as to how the different algo-

rithms generalize to new datasets. We addressed the lack of com-

parative evaluation of alignment tools as discussed in Smith et al.

(2013) by independently reproducing key results from Lange et al.

(2008) and Voss et al. (2011) for the Join and SIMA alignment

methods. Our evaluation studies were performed on datasets se-

lected in Section 2.5 to validate the hypothesis that using related

peak information can improve alignment performance. Since most

direct matching algorithms work in a pair-wise fashion (pairs of

runs are matched and the results combined), pair-wise performance

therefore limits overall performance, justifying the choice for our ex-

periments. For the proteomic datasets, each fraction in P1 has two

runs used for alignment, while each fraction in P2 has three runs (we

use only the first two to establish pair-wise alignments). Similarly

for the metabolomic and glycomic datasets, we randomly extracted

30 pairs of runs for training and another 30 pairs of runs for testing

performance evaluation.

Performance is evaluated in terms of precision, recall and F1-

score. Looking at pair-wise matching, we can define the following

positive and negative instances with respect to some pair-wise align-

ment ground truth:

• True Positive (TP): pairs of peaks that should be aligned and are

aligned.
• False Positive (FP): pairs of peaks that should not be aligned but

are aligned.
• True Negative (TN): pairs of peaks that should not be aligned

and are not aligned.
• False Negative (FN): pairs of peaks that should be aligned but

are not aligned.

In the context of alignment performance, precision ( TP
TPþFP) is the

fraction of aligned pairs in the output that are correct with respect

to the ground truth, while recall ( TP
TPþFN) is the fraction of aligned

pairs in the ground truth that are aligned in the output. A perfect

alignment would have both precision and recall to be 1. In addition,

we also computed the F1 score (the harmonic mean of precision and

recall) such that F1 ¼ 2ðprecision � recallÞ=ðprecisionþ recallÞ. Only

feature pairs present in the ground truth are considered for evalu-

ation. The idea of using pair-wise matching to define alignment per-

formance evaluation is not new, and has also been done in Wang

and Lam (2013). Collectively for the purpose of performance evalu-

ation, the set of Precision, Recall and F1 values is referred to as a

‘measurement’.

3.2 Other alignment tools for comparison
Our proposed approach was benchmarked against MZmine2’s

Join Aligner (Pluskal et al., 2010) and SIMA (Voss et al., 2011).
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These tools employ different approaches towards alignment. Join

Aligner is a greedy direct-matching method, while SIMA is a com-

binatorial direct-matching method, with an optional warping step to

correct RT shifts after an initial matching has been established.

3.2.1 MZmine2’s join aligner

Users of the MZmine2’s toolkit may have good reasons to prefer

Join Aligner to the more recent RANSAC Aligner due to its simpli-

city and speed. Join Aligner produces a deterministic alignment out-

put (so running it each time on the same input and parameters gives

the same result), in contrast to the RANSAC aligner, which is non-

deterministic. Join Aligner has relatively few parameters to config-

ure, the most important ones being the m/z tolerance and retention

time tolerance parameters. These parameters are used for threshold-

ing and score calculations, and they were varied within reasonable

ranges during our experiments.

3.2.2 Simultaneous multiple alignment

The two most important parameters used in SIMA for thresholding

and computing feature similarities are the Tðm=zÞ and Trt parameters

(equivalent to our rm and rt). We let these two parameters vary in

our experiments. SIMA also offers an optional step to correct for re-

tention time distortion by constructing a smooth and monotonic

warping function for the maximum likelihood alignment path after

the initial matching has been done. The utility of this optional step is

not obvious to end-users, since it requires additional parameters to

configure and relies on having an initial correspondence established.

Therefore, we chose to test only the core matching functionality in

SIMA.

4 Results

We conducted several experiments on the proteomic, metabolomic

and glycomic datasets, each designed to test a different aspect of

alignment tools’ performance. Details on the parameter opti-

mizations for evaluated tools are provided in the Supplementary

document.

4.1 Proteomics experiments
4.1.1 Single-fraction experiment

Both P1 and P2 data consist of multiple fractions. In the first experi-

ment, we investigate the best possible performance by using the

same fraction as training and testing sets. On each training set (a

fraction), we optimized the m/z and RT window parameters for

alignments. The m/z parameters are in parts per million, normally

notated ‘ppm’ and the range of m/z parameters used were

f1:0;1:1; :::; 2:0g and RT f5; 10; :::; 300g seconds. Parameters that

control the grouping and influence of the cluster similarity score for

our MWG and MWM methods were also optimized. The ratio par-

ameter a was set to f0:1; 0:2; :::; 1g for both MWG and MWM. The

grouping tolerance gtol was set to f1; 2; :::; 10g seconds for greedy

clustering, while the same hyperparameters were used for clustering

of all fractions in case of mixture-model clustering (further details

on parameter range selections are in the Supplementary Material).

The results are shown in Tables 1 and 2 (full results, including

precision and recall values, can be found in the Supplementary

Material). We see that approximate maximum weighted matching

(MW) alone performs competitively to other tools. On the P1 data

(Table 1), incorporating grouping information (MWG, MWM) im-

proves F1 score performance over MW. MWG outperforms MWM,

which may be due to the fact that the greedy approach is easier to

optimize. For the P2 data (Table 2), which contains features with

significantly higher RT drift across runs, again we find that MW is

competitive and clustering information (MWG) improves perform-

ance for all fractions. The results here show the potential of our pro-

posed approach: any peak grouping results expressed in a suitable

matrix format can be incorporated into our method, and used as

additional information during the matching stage. Figure 2 shows

how the benefit of incorporating clustering information is realized

during matching: it allows the matching methods to explore regimes

in the solution space having higher precision and recall values. On

some training fractions, both methods that incorporate clustering in-

formation show significant increases in the best possible F1 score.

For dataset P1 fraction 000, this is an 11% improvement for MWG

and a 7.5% improvement for MWM. For dataset P2 fraction 100,

this is a 51% improvement for MWG and 25% improvement for

MWM. Smaller improvements can be observed from other fractions

in the Proteomic datasets too. The full results for all fractions,

including computed precision and recall values, are available in the

Supplementary document.

4.1.2 Multiple-fractions experiment

The single-fraction experiment does not represent a very realistic

scenario as the optimal parameters were determined with respect to

an alignment ground truth; practitioners might not possess that in-

formation in real analytical situations. In this experiment, we im-

proved upon the single-fraction experiments by using each fraction

in each dataset as the training set and the remaining fractions as the

testing set. Parameters were optimized on the training set and per-

formance evaluations were performed on the testing set. This

training–testing procedure produces six measurements for P1 and

five measurements for P2, corresponding to the number of training

fractions in each dataset. The overall F1 score reported for each

measurement is the average F1 scores from individual testing frac-

tions. The aim of this experiment is to investigate how well the

Table 1. F1 scores for the single-fraction experiment results on the

P1 dataset

Fraction Join SIMA MW MWG MWM

000 0.63 0.64 0.64 0.77 0.71

020 0.88 0.88 0.88 0.95 0.90

040 0.82 0.83 0.85 0.87 0.86

060 0.76 0.78 0.78 0.88 0.83

080 0.90 0.89 0.88 0.92 0.90

100 0.89 0.89 0.89 0.91 0.91

Mean 0.81 0.82 0.82 0.88 0.85

Notes: The tool with the highest F1 score for each fraction is highlighted in

bold. The results for ‘All’ show the average F1 scores of individual fractions.

Table 2. F1 scores for the single-fraction experiment results on the

P2 dataset

Fraction Join SIMA MW MWG MWM

000 0.45 0.45 0.45 0.49 0.45

020 0.77 0.78 0.79 0.80 0.79

040 0.77 0.78 0.77 0.80 0.77

080 0.66 0.68 0.67 0.67 0.72

100 0.55 0.58 0.56 0.85 0.70

Mean 0.64 0.65 0.65 0.72 0.69

Note: The tool with the highest F1 score for each fraction is highlighted in

bold. The results for ‘All’ show the average F1 scores of individual fractions.
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different methods generalize to data that may have slightly different

characteristics from that used to optimize the parameters—i.e. how

critical the particular parameter values are.

Tables 3 and 4 show the F1 score across measurements (full results

in the Supplementary Material). On P1, the best overall performance

is achieved by our methods that incorporate clustering information

into alignment (MWG, MWM). On P2, the results are less homoge-

neous, with no method consistently performing best on all the differ-

ent testing fractions. The implication is discussed in Section 5.

4.2 Metabolomic and glycomic datasets
We further explore the performance of our proposed methods on

the metabolomic and glycomic datasets. From the full dataset, we

randomly extracted 30 pairs of runs as the training sets and another

30 pairs of runs as the testing sets. Each training set is paired to a

testing set. Parameters were optimized on the training set and the

best attainable performance reported as the training performance.

Generalization performance is evaluated on testing sets using the op-

timal parameters from the training stage.

Figures 3 and 4 summarize the results from the experiments (de-

tailed full results and parameter range selections are described in the

Supplementary Material). We see that all methods perform better on

the glycomic set than on the metabolomic set. This is explained by

the fact that the metabolomic runs represent a generally more chal-

lenging alignment scenario with significantly more features to align.

MW performs identically to SIMA on both datasets due to the simi-

lar form of Mahalanobis distance function used. This is despite the

differences in the actual matching method that establishes feature

correspondences in SIMA and MW. On the glycomic dataset, add-

ing clustering information improves the training performance, with

an increase in the mean of the F1 scores across 30 measurements

from 0.89 (MW) to 0.93 (MWG) and 0.92 (MWM). This also trans-

lates into statistically significant improvements on the testing sets

for both MWG (p¼0.01, paired t-test) and MWM (p¼0.002,

paired t-test) over MW.

On the metabolomic dataset, where it is potentially harder to

produce good clustering results due to the larger number of peaks

and the more complex elution profile, we observe improvements in

the mean of the F1 scores from 0.83 (MW) to 0.90 (MWG) and 0.85

(MWM) on the training sets. These are also statistically significant

improvements for both MWG (p<0.001, paired t-test) and MWM

(p<0.001, paired t-test) over MW. The training results confirm our

hypothesis that indeed incorporating clustering information (by

modifying the similarity matrix used for matching in the proposed

manner) can be used to help improve matching results over the case

when such information is not used. However, this does not translate

into any statistically significant improvements on the testing sets,

suggesting that for the metabolomic dataset evaluated here, our pro-

posed methods are also sensitive to parameter choices, and the

choices of particular parameters (especially for the clustering step)

that work on some runs may not generalize well to others. Note that

unlike in the Proteomic and Glycomic experiments, the results for

MWG shown here (also referred to as MWG(RTþPS) in Section

3.4 of the Supplementary Material) takes into account the Pearson

correlations of the chromatographic shapes between peak features

during the clustering process. Results for MWG that consider only

the RT values (referred to as MWG(RT) in the Supplementary) for

grouping of related peaks can be found in Section 3.4 of the

Supplementary Material.

5 Discussion and conclusion

In this article, we have proposed a novel peak matching method that

incorporates related peak information to improve alignment per-

formance. The method takes related peak information in the form

of peak-by-peak binary or real-valued similarity matrices and as

such is independent of the particular method used to compute these.
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Fig. 2. Precision and recall training performance for all parameters (m/z, RT tolerance, a and gtol) varied in the experiment for the fractions containing the most

(Fig. 2a and c) and least (Fig. 2b and d) number of features in the P1 and P2 datasets. Plots for all the remaining fractions can be found in Figures 1 and 2 of

Supplementary Material

Table 3. Multiple-fractions experiment results for the P1 dataset

Training Frac. Testing performance

Join SIMA MW MWG MWM

000 0.82 0.85 0.82 0.86 0.86

020 0.78 0.76 0.78 0.79 0.75

040 0.78 0.76 0.77 0.79 0.81

060 0.78 0.78 0.77 0.84 0.83

080 0.71 0.73 0.72 0.77 0.78

100 0.75 0.77 0.74 0.76 0.78

Note: For each training fraction, the reported testing performance is the

average of individual F1 scores from the testing fractions. The top-performing

method (highest F1 score) is highlighted in bold.

Table 4. Multiple-fractions experiment results for the P2 dataset

Training fraction Testing performance

Join SIMA MW MWG MWM

000 0.62 0.64 0.61 0.48 0.61

020 0.58 0.56 0.55 0.43 0.55

040 0.52 0.56 0.56 0.41 0.56

080 0.56 0.50 0.50 0.50 0.57

100 0.63 0.57 0.56 0.44 0.57

Notes: For each training fraction, the reported testing performance is the

average of individual F1 scores from the testing fractions. The top-performing

method (highest F1 score) is highlighted in bold.
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The method fits into the category of direct matching approaches—

those alignment approaches that do not perform an explicit time-

warping phase. Our experimental results demonstrate the potential

of this approach. From the training results, we see evidence of per-

formance improvement across all evaluated datasets by incorporat-

ing grouping information into the matching process in the proposed

manner. With the exception of the metabolomic dataset, both the

greedy and model-based clustering approaches evaluated in our ex-

periments rely only on the RT information for grouping related

peaks. In the case of the noisiest data (dataset P2 fraction 000), we

observe some combinations of parameters that result in training

points with reduced precision and recall values. These are likely due

to the difficulty of producing a high-quality grouping of related

peaks with sub-optimal parameters especially when only the RT in-

formation is used. Comparisons of matching performances on the

metabolomic dataset for the clustering of related peaks with and

without chromatographic peak shape correlations (see Section 3.4

of the Supplementary Material) shows that for best performance

during the clustering stage, additional information, such as chroma-

tographic peak shapes, should be used whenever available.

By looking at the testing performance, our results also explore

the ability of the evaluated methods to generalize on different runs

using less than optimal parameters. This is important because in the

actual analytical situation of LC-MS data, neither the optimal par-

ameters nor the alignment ground truth is known. The heteroge-

neous testing performance in the multiple-fractions experiment of

P2 shows that no method performs best and the choice of optimal

parameters that work for certain runs do not generalize well to

others on datasets with very high RT variability. Using MW as an

example, the optimal RT window parameter rt is 90 seconds for

training fraction 000 and 275 s for training fraction 080. We also

observe that in the multiple-fractions experiment for P2, our pro-

posed approach incorporating greedy clustering (MWG) shows a de-

crease in overall testing performance instead. This is because the

greedy clustering method used is sensitive to the choice of param-

eters and do not generalize well across fractions of P2. The results

suggest the dependence of our methods on the quality of groupings

of related peaks in order to generalize well on different runs.

The same conclusion can be obtained from the training and testing

performances on the metabolomic dataset as well, where we see

significant improvements in the training performance but none in

the testing performance. On datasets with lower RT variation, such

as the P1 and the glycomic data, we see evidence of improvements in

both the training and testing performances, suggesting that incorpo-

rating clustering information in the proposed manner can indeed im-

prove alignment performance and generalize well to different runs

even with less than optimal parameter settings.

Note that our method relies on grouping of related peaks, and this

introduces additional user-defined parameters. However, as our ex-

periments have shown, in some settings, it may be much easier to pro-

duce good groupings of related peaks than accurately determine RT

window parameters (the same grouping parameters were used for all

evaluation datasets in the case of mixture-model clustering).

Depending on the nature of the data, parameters relating to within-

run characteristics (e.g. RT window for grouping related peaks) may

be more likely to generalize across runs and experiments than param-

eters relating to between-run characteristics (particularly RT). For ex-

ample, changes in the LC column would likely result in related peaks

still coeluting but could significantly change the absolute RT.

It would be interesting to investigate in greater detail any perform-

ance improvements that can be obtained from using other peak group-

ing methods, such as Rogers et al. (2012) that uses a mixture model of

peak shape correlations or Daly et al. (2014) that considers the depend-

encies between adduct and isotopic peaks when clustering. Exploring

alternative approximate matching algorithms (such as the scaling algo-

rithm in Duan et al. (2011), which provides a ð1� �Þ approximation

of the maximum weighted matching in optimal linear time for any �)

and evaluating the benefits of incorporating different clustering

approaches into our proposed alignment method are avenues for future

work. Finally, the different alignment methods evaluated in this article

also suffer from variable behaviors depending on the order of the runs

being aligned. This is particularly true in the case of alignment of mul-

tiple runs (typical in large-scale LC-MS studies), where the final align-

ment results are often constructed through merging of intermediate

alignments of pair-wise runs. Different alignment methods may employ

a different merging approach, for example, Join merges the intermedi-

ate results towards a reference run while SIMA allows the possibility of

using a greedy hierarchical merging scheme. Systematic evaluation on

how the chosen merging scheme may influence alignment performance

is beyond the scope of this article and is an item for future work.

The related peak-based similarity score that underpins our ap-

proach could be applied to many other direct matching approaches

(e.g. SIMA: Voss et al., 2011) and similar ideas could also be incor-

porated into recently developed methods that take into account the

presence of internal standards (Tsai et al., 2013). The evaluation

pipeline developed over the course of our experiments can also be

easily extended by algorithmic researchers to evaluate other align-

ment tools in future work.
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Fig. 4. Testing performance shows how well each method generalize on the

30 different testing sets, each evaluated using the optimal training param-

eters from its corresponding training set
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