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Triple-negative breast cancer (TNBC) is a heterogeneous group of aggressive breast cancers for which no targeted
treatment is available. Robust tools for TNBC classification are required, to improve the prediction of prognosis and to
develop novel therapeutic interventions. We analyzed 3,247 primary human breast cancer samples from 21 publicly
available datasets, using a five-step method: (1) selection of TNBC samples by bimodal filtering on ER-HER2 and PR, (2)
normalization of the selected TNBC samples, (3) selection of the most variant genes, (4) identification of gene clusters
and biological gene selection within gene clusters on the basis of String© database connections and gene-expression
correlations, (5) summarization of each gene cluster in a metagene. We then assessed the ability of these metagenes to
predict prognosis, on an external public dataset (METABRIC). Our analysis of gene expression (GE) in 557 TNBCs from 21
public datasets identified a six-metagene signature (167 genes) in which the metagenes were enriched in different
gene ontologies. The gene clusters were named as follows: Immunity1, Immunity2, Proliferation/DNA damage, AR-like,
Matrix/Invasion1 and Matrix2 clusters respectively. This signature was particularly robust for the identification of TNBC
subtypes across many datasets (n D 1,125 samples), despite technology differences (Affymetrix© A, Plus2 and
Illumina©). Weak Immunity two metagene expression was associated with a poor prognosis (disease-specific survival;
HR D 2.68 [1.59–4.52], p D 0.0002). The six-metagene signature (167 genes) was validated over 1,125 TNBC samples.
The Immunity two metagene had strong prognostic value. These findings open up interesting possibilities for the
development of new therapeutic interventions.

Introduction

TNBC, defined by the absence of estrogen and progesterone
receptor expression and a lack of HER2 overexpression/amplifica-
tion, is an aggressive disease accounting for 15%–20% of breast
cancers. It differs from other molecular subtypes 1–3 in displaying
axillary lymph node involvement, local and regional recurrence,
differences in the time lag to metastasis (distant metastatic events
occurring within 5 y of diagnosis), high rates of brain, lung and

distant nodal metastasis and in its response to neoadjuvant
treatment.

TNBC constitutes a major clinical challenge because there has
been no substantial improvement in treatment for this subgroup
in the recent past. Even if adjuvant chemotherapy has signifi-
cantly improved outcome, reducing the risk of death by approxi-
mately 30%,4 but these cancers do not respond to endocrine or
targeted therapy. TNBC is, thus, currently the breast cancer sub-
group with the worst outcome.5 Moreover, the shape of the
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survival curve for this subgroup differs from that for other BC
subtypes: there is a sharp decrease in survival during the first
3–5 y after diagnosis, but distant relapses, occurring after this
interval, are much less common.5

TNBC is a highly heterogeneous group of tumors differing in
terms of their histological features, GE profiles, clinical behavior,
overall prognosis 6 and sensitivity to systemic treatment.7-9

Robust classifiers are urgently required, to improve our under-
standing of the molecular basis of TNBC and to define novel
therapeutic interventions. Lehmann et al. recently published a
classification of six molecular subtypes of TNBC10 and devel-
oped a website (http://cbc.mc.vanderbilt.edu/tnbc/) 11 for the
classification of TNBC samples on the basis of their GE profiles.
This classification has been shown to be relevant, as it identifies
the main biological component and pathways of TNBC. How-
ever, the large number of genes defining this TNBC molecular
classification (2,188 genes) constituted a potential source of
instability.12,13

We developed a two-step biological network-driven gene
selection process: (1) identification of the most variant genes dis-
playing highly-correlated patterns of expression, (2) direct con-
nection of these genes within known biological networks. This
method has been reported to be efficient for the construction of
molecular signatures.14,15 We defined a robust TNBC molecular

subtype classification, providing considerable biological insight,
with great potential for use in the development of therapeutic
interventions. We also identified a stromal immune module GE
profile strongly correlated with TNBC prognosis.

Results

TNBC gene expression profiles identify six main gene
clusters

GE profiles were obtained from 21 publicly available datasets,
containing data for 3,247 primary human breast cancer samples.
These profiles were processed according to the flow chart in
Fig. 1. The training set included samples hybridized on HGU-
133A Affymetrix� arrays (12 datasets, n D 1,995), to eliminate
cross-platform discrepancies and to ensure robust normalization.
The validation set included samples hybridized on HGU-
133Plus2 Affymetrix� arrays (9 datasets, nD 1,014). We filtered
out 42 outlier samples from the training set and 17 from the vali-
dation set.

We also collected two large datasets, for the validation of our
classification: the Ignatiadis set (n D 996) and the METABRIC
set (n D 1,992). The processing of these two datasets has been
described elsewhere.16,17

Figure 1.Methodology flow chart.
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Bimodal filtering on ER-PR and HER2 GE identified 262,
295, 314 and 254 TNBC samples in the training set, the valida-
tion set, the Ignatiadis set and the METABRIC set, respectively.

We developed a gene selection process based on biological
networks, to decrease the intrinsic instability of molecular classifi-
cation methods.

We identified the 830 most variant genes (SD > 0.8) in the
training set (n D 262). A consensus clustering method and hier-
archical clustering identified four main gene clusters. Further
increases in cluster number yielded no significant increase in the
consensus distribution function (CDF) area (Fig. S1 and Materi-
als and Methods).

The various gene clusters were associated with different gene
ontologies (Fig. S2). The clusters were thus named as follows
(Fig. S3A): Immunity cluster (145 genes), Proliferation/DNA
damage cluster (397 genes), AndrogenReceptor(AR)-like cluster
(139 genes) and Matrix/Invasion cluster (149 genes).

The Immunity cluster was the most homogeneous, with
strong correlations between the GE profiles of most of the genes
within this cluster (Fig. S3B).

We used String� database software to analyze our gene selec-
tion, with the aim of decreasing the heterogeneity of each main
gene cluster. We retained the genes from our initial selection that
(1) had high String� database gene connection indexes (greater
than 0.7, Fig. S4), (2) had similar patterns of expression to other
genes within the same biological network (correlation coefficient
of at least 0.5). We selected a final set of 167 genes [Immunity
cluster (80), Proliferation/ DNA damage (15), AR-like(15),
Matrix/Invasion (57)] (Fig. S5).

Following biological network-driven gene selection, it became
clear that the original Immunity and Matrix/Invasion clusters
were more accurately described by splitting them into two sub-
clusters displaying minor differences [Immunity1 (33), Immu-
nity2 (47), Matrix/Invasion1 (43), Matrix2 (14)] (Fig. S6A).
This approach yielded an increase in the area under the CDF
curve (Fig. S7).

For each of the six gene clusters identified in this way, we
defined a metagene. The Immunity1 and Immunity2 metagenes
displayed similar patterns of expression, with a Pearson correla-
tion coefficient of 0.58; the Pearson correlation coefficient for
the expression patterns of Matrix/Invasion1 and Matrix2 was
0.48. The Proliferation/DNA damage and Matrix metagenes dis-
played the strongest inverse correlation (coefficients of ¡0.43
and ¡0.60 for Matrix/Invasion1 and Matrix2, respectively)
(Fig. S6B).

We validated this six-gene cluster classification, by applying
hierarchical clustering based on the 167 genes selected to the vali-
dation set (n D 295). Clustering was highly consistent between
the training and validation gene sets (concordance: 93–100%).

The six gene clusters identify six stable TNBC subgroups
Hierarchical clustering was performed on the four TNBC

datasets [training set (262), validation set (295), Ignatiadis (314)
and METABRIC (254)]. For Affymetrix� arrays, we used the
167 selected genes. For the Illumina� platform, we used 153
common genes. We identified six reproducible subgroups of

TNBC, for which GE patterns were similar in the training set
and in the three validation sets (total of 1,125 samples). The cor-
responding heatmaps are shown in Fig. 2. The Pearson correla-
tion coefficients for the relationships between each sample
subgroup centroid in the three validation sets and the correspond-
ing subgroup centroid in the training set are shown in Fig. 2.

We illustrated the dynamic links between genes within a bio-
logical network, as defined by the String� database, by showing
GE levels for a “prototype sample” (Fig. S8).

We compared our sample classification with those reported by
Lehmann et al. and Curtis et al. (Fig. S9). Our classification
appears very different from that of Lehmann at first glance (x2

test p value D 0.05), but the samples assigned to Centroids one
and six (with high-levels of Matrix/Invasion 1 and Matrix 2 gene
expression, respectively) tended to be classified as Mesenchymal
(M) or Mesenchymal stem-like (MSL), the samples in Centroid
5 (strong expression of Immunity2 genes) tended to be classified
as Immunomodulatory (IM), and the samples in Centroid 4
(strong expression of AR-like genes) tended to be classified as of
the Luminal androgen receptor (LAR) subtype (Fig. S10A and
Fig. S10B). Curtis et al. aimed at defining a new classification
across all cancer subtypes, not specific to TNBC subtypes. In this
classification, the TNBC samples were mostly classified as
IntClust10 or IntClust4, with an even distribution.

Prognostic value of the Immunity2 metagene in TNBC
The prognostic value of the 167-gene TNBC signature was

assessed with the METABRIC dataset. The 254 TNBC samples
were split into two subgroups: a subgroup treated by chemother-
apy (n D 139) and a subgroup not treated by chemotherapy
(n D 115). The chemotherapy-naive (noCT) population and the
chemotherapy-treated population were significantly different
(Table S1). The patients in the noCT population were older
(mean age of 61.5 y vs. 50.1 y, p < 1.210-11), more likely to be
postmenopausal (77% vs. 47%, p D 5.3810-5), and their tumors
were of lower grade (p D 0.01), with less lymph node involvement
(81% vs. 17%, p < 2.2 10-16), a lower Nottingham Prognostic
Index (NPI < 3.4, 17% vs. 2%, p D 2.5710-5), and less cellularity
(p D 0.03).

Univariate analysis identified three factors significantly corre-
lated with a poor outcome (distant disease-free survival) in the
chemotherapy-treated population: NPI > 5.4 (HR D 2.15
[1.28–3.60], p D 0.003); p53 mutation (HR D 2.42 [1.15–
5.09], p D 0.02); and weak Immunity2 metagene expression
(HR D 2.59 [1.54–4.34], p D 0.0002) (Table 1A, Fig. 3A). We
did not include p53 mutation status in the multivariate model,
due to missing data (n D 79). A NPI > 5.4 and low-levels of
Immunity2 metagene expression were retained in the multivari-
ate model and were significantly associated with a poor outcome
(HR D 2.30 [1.36–3.89], p D 0.002; HR D 2.68 [1.59–4.52],
p D 0.0002, respectively) (Table 1A). The combined variable,
NPI score/Immunity2 metagene expression was found to be of
particular interest. In a first model, a NPI score greater than 5.4
was associated with a worse prognosis: HR D 3.98 [2.00–7.92],
p D 8.7210–5. For patients with NPI scores of 5.4 or below,
Immunity2 metagene expression discriminated between two
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groups of patients with different outcomes (HR D 2.90 [1.51–
5.56], p D 0.001). In a second model, NPI3 patients can also be
split into two groups on the basis of Immunity2 metagene
expression. The NPI3 group with high-levels of Immunity2
metagene expression had a prognosis similar to that of the NPI1/
2 group with low-levels of Immunity2 metagene expression
(Table 1B, Fig. 3A).

Univariate analysis identified four factors significantly corre-
lated with poor outcome in the noCT population: tumor size
>20 mm (HRD 2.36 [1.01–5.48], pD 0.04), lymph node-posi-
tive status (HR D 3.66 [1.65–8.11], p D 0.001), NPI score >5.4
(HR D 10.69 [2.74–41.76], p D 0.001) and low-levels of Immu-
nity2 metagene expression (HR D 2.33 [1.09–4.95], p D 0.03)
(Table 2A, Fig. 3B). Two of these factors were retained in the
multivariate model: NPI score >5.4 (HR D 12.03 [3.05–47.50],
p D 0.0004) and low-levels of Immunity2 metagene expression
(HR D 2.42 [1.13–5.16], p D 0.02) (Table 2A). As in the che-
motherapy-treated subpopulation, the combined variable, NPI
score/Immunity2 metagene expression discriminated between
two groups of patients with different outcomes in this noCT
population (Table 2B, Fig. 3B). The chemotherapy-naive group
contained only seven patients classified as NPI3. Stratification of

this subgroup defined on the basis of treatment was therefore not
considered methodologically relevant.

We compared the prognostic value of the Immunity2
metagene with that of eight previously published immune
signatures,18-25 using the METABRIC dataset.

We generated a heatmap (Fig. S11) of the GE profiles of each
of the above prognostic signatures applied to the METABRIC
dataset. The samples were ordered according to our classification
of low/high Immunity2 metagene expression. Expression pat-
terns were very similar between the Immunity2 GE signature and
all the other GE signatures, with the exception of the Bianchini,
Karn and Burstein (BLIS) gene-expression signatures.

We first performed a univariate analysis of the prognostic
value of the eight-GE signatures, as described in the correspond-
ing original manuscripts. The Rody, Sabatier, Teschendorff, Des-
medt, Gu-Trantein Tfh, Gu-Trantien Th1 and Burstein
signatures were significantly correlated with the prognosis of
TNBC. The Bianchini and Karn GE signatures were not corre-
lated with the prognosis of TNBC (Fig. S12, Table S2). We
then performed a multivariate analysis. We included NPI score,
the Immunity2 metagene and each of the Rody, Sabatier,
Teschendorff, Desmedt, Gu-Trantein Tfh, Gu-Trantien Th1,

Figure 2. Heatmaps of the selected genes in the TNBC training set (upper left) and the TNBC validation sets (upper right: validation, lower left: Ignatiadis,
lower right: METABRIC).
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and Burstein signatures, one-by-one, in the model. In all compar-
isons the only significant variables remaining in the multivariate
model were NPI score and the Immunity2 metagene (Table S2).

The Immunity2 metagene corresponds to B-cell and T-cell
pathways

String database connections between the Immunity1 or
Immunity2 genes and the genes of the eight published prognostic
immune signatures 18-25 are provided in Fig. 4. The gene inter-
section was poor, but our immune signature nevertheless appears
to be strongly correlated with other published signatures (Supple-
mentary data), suggesting the use of similar immune pathways.
The Immunity2 metagene was strongly correlated with the
expression metagenes of the above signatures (coefficient greater
than 0.8), except for the Bianchini, Karn and BLIS metagenes
(Fig. S13).

We explored the pathways relating to the immune metagenes
in detail, by analyzing the correlation between the expression of
the Immunity1 and Immunity2 metagenes and the metagenes
defined by Gatza et al.26 (IFN-a, IFNg, STAT3, TGF-b, TNF-
a) and Palmer et al.27 (LB, LT, CD8C, GRANS, LYMPHS).

This analysis was performed on the METABRIC dataset pub-
lished by Curtis et al.17

We showed that the Immunity2 metagene was highly corre-
lated with the B-cell, T-cell and CD8C cell metagenes (Pear-
son correlation scores: 0.93, 0.91, 0.87, respectively)
(Fig. S14). The Immunity1 metagene was highly correlated
with the interferon alpha and gamma pathways (Pearson corre-
lation scores: 0.97, 0.94, respectively).

Furthermore, in cancer cell lines (CCLE and CGP datasets),
the Immunity2 metagene displayed very low-levels of expression,
similar to those of the CD8C metagene (Fig. S15). This was true
for all cell lines and BC_CLs tested.

Moreover, the IFN-y, IFN-gamma, STAT3, TGF-b, TNF-a,
LB, LT, GRANS metagenes were more strongly expressed in TN
BC_CLs than in HER2-positive and luminal BC_CLs (Fig. S16).

We investigated Immunity2 GE in white blood cell popula-
tions (Palmer et al.27), by performing a consensus clustering of
the Immunity2 genes on Palmer’s dataset. This analysis identified
four stable clusters of the genes of the Immunity2 signature.
Some genes were more strongly expressed in B cells (GZMA,
GZMB, CCR7, LY96, MS4A1, CD74 for example), others in T

Figure 3. (A) Kaplan–Meier plots. Disease-specific survival of the chemotherapy-treated population (nD 139). NPI score. Immunity2 metagene. NPI score/
Immunity2 metagene. (B) Kaplan–Meier plots. Disease-specific survival of the noCT population (n D 115). NPI score. Immunity2 metagene. NPI score/
Immunity2 metagene.
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cells (CD3D, CCL2, CD14, CD2, LCK, IL7R), and still others
in granulocytes (named Pax cells) (CD163, MNDA, NCF2,
CSF2RB, FGL2) (Fig. S17). These findings suggest that, even if
the “Immune2” signal is highly homogeneous within tumor sam-
ples (the entire set of genes being coordinately either over- or
under-expressed), different subpopulations of cells express differ-
ent subsets of these genes in the periphery.

The Immunity2 metagene is probably expressed by stromal
cells

In TNBC cell lines (TNBC_CL), genes from the Immunity2
module displayed very low medians and narrow ranges of expres-
sion, suggesting that they were expressed only in the tumor stro-
mal compartment. A similar trend was observed for all BC_CLs.
The Immunity1 module genes had higher median expression lev-
els and a broader range of expression in TNBC_CL and in all
BC_CL, suggesting that Immunity1 genes were expressed by the
tumor cells (Figs. 5A and B).

Furthermore, we explored the contributions of stromal and
cancer cells to Immunity1 and Immunity2 expression in detail,
by comparing our gene lists to the “stromal contribution to
global GE evaluated in PDX RNAseq data”, as defined by Isella
et al.28 The Immunity2 metagene had a very high stromal frac-
tion, as for the Matrix/Invasion1 and Matrix2 metagenes. The

Immunity1 metagene had a very low stromal fraction, like the
AR-like and Proliferation/DNA damage metagenes (Fig. S18).

The Immunity2 metagene opens up interesting
new possibilities for therapeutic interventions

To highlight the new opportunities for therapeutic interven-
tion provided by this study, we represented the existing drugs
(with or without US Food and Drug Administration approval)
for each metagene (Fig. S19 and Supplementary data). Some are
undergoing clinical investigation in patients with TNBC.

We explored the links between PD1, PDL1, CTLA4 (and
their respective metagenes) and the Immunity2 metagene. We
compared the Immunity2 metagene with the TILs signature
defined by Schalper et al.,29 who showed that PD-L1 mRNA
synthesis was associated with increases in the expression of TILs
and recurrence-free survival. This analysis was performed on the
METABRIC dataset. The PD1 and CTLA-4 metagenes were
constructed from the genes most strongly correlated with the
PD1 and CTLA-4 genes, respectively (Pearson correlation score
>0.8). The PDL1 metagene was defined by Sabatier et al.30

The Immunity2 metagene was highly correlated with the
PD1, PDL1 and CTLA-4 metagenes (Pearson correlation: 0.90,
0.96, 0.91, respectively). The coefficient of correlation between
the Immunity2 metagene and the TILs signature was up to 0.90
(Fig. S20).

Table 1 A. Survival analysis (disease-specific survival). Chemotherapy-treated population. Univariate and multivariate analysis.

Univariate analysis Multivariate analysis

139 triple-negative breast cancer patients DS-survival HR [95% CI] p value DS-survival HR [95% CI] p value

Menopausal status Pre 1
Post 1.56 [0.95–2.55] 0.08

Tumor size (mm) <20 mm 1
>20 mm 1.03 [0.58–1.82] 0.92

Tumor grade II 1
III 1.23 [0.45–3.39] 0.69

Lymph node status 0 1
1 0.84 [0.42–1.65] 0.61

NPI score <5.4 1 1
>5.4 2.15 [1.28–3.60] 0.003 2.30 [1.36–3.89] 0.002

Cellularity Low 1
Moderate 0.57 [0.22–1.46] 0.24

High 0.59 [0.25–1.39] 0.23
P53 status Wild-type 1

Mutant 2.42 [1.15–5.09] 0.02
Immunity1 metagene expression High 1

Low 0.97 [0.60–1.58] 0.91
Immunity2 metagene expression High 1 1

Low 2.59 [1.54–4.34] 0.0002 2.68 [1.59–4.52] 0.0002
Proliferation/DNA damage metagene expression High 1

Low 1.13 [0.69–1.84] 0.63
AR-like metagene expression High 1

Moderate 1.07 [0.59–1.94] 0.82
Low 0.98 [0.50–1.94] 0.96

Matrix/Invasion1 metagene expression High 1
Low 1.23 [0.76–2.01] 0.40

Matrix2 metagene expression High 1
Low 0.99 [0.61–1.61] 0.96

Abbreviations: NPI, Nottingham Prognostic Index; AR, androgen receptor; HR, hazard ratio; CI, confidence interval.
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In cell lines, the PD1, PDL1, CTLA-4 and TILs metagenes
were very weakly expressed, like the Immunity2 metagene (Fig.
S21).

Using the METABRIC dataset, we compared the prognostic
value of these metagenes (PD1, PDL1, CTLA4 and TILs) with
that of the Immunity2 metagene. In univariate analysis, high-lev-
els of PD1, PDL1, CTLA-4 and TILs metagene expression were
associated with a good prognosis (Fig. S22, Table S3). In multi-
variate analysis, we included NPI score, the Immunity2 metagene
and each of the PD1, PDL1, CTLA4 and TILs metagenes, one-
by-one, in the model. In all comparisons, the only significant var-
iables remaining in the multivariate model were NPI score and
the Immunity2 metagene.

Discussion

New tools for classifying TNBCs are urgently required, to
improve our understanding of the molecular basis of TNBC and
to identify potentially useful novel therapeutic interventions. By

analyzing the GE profiles of 1,125 TNBCs, we identified a six-
metagene signature (167 genes) in which the various metagenes
were enriched in different gene ontologies: two clusters were
enriched in immunity genes, one in proliferation/DNA damage
genes, one in AR pathway genes, and two in matrix/invasion
genes. This signature appeared to be particularly robust for iden-
tifying TNBC subtypes across different datasets, independently
of the gene chip technology used to generate the data. Further-
more, one metagene (Immunity2) was found to be of strong
prognostic value for TNBC samples.

Lehmann et al.10 recently developed a classification of
TNBCs in which a 2,188-gene signature was used to classify
tumors. They suggested that this classification could also be used
to classify xenografts or cell lines. They also developed a website
(http://cbc.mc.vanderbilt.edu/tnbc/) for the classification of
TNBC samples.11 This study provided important biological
insight into the molecular drivers of TNBC, but it also raised sev-
eral key concerns. First, the normalization process involved data
from different platforms. Several studies have shown that large
discrepancies in signature composition and absences of

Figure 4. String Software connections between our Immunity1 and Immunity2 genes and the genes of eight previously published prognostic immune
signatures. Stronger associations between genes are represented by thicker lines. Associations between genes with a coefficient < 0.9 are shown in
green. Associations between genes with a coefficient �0.9 are shown in red. Associations between genes with a coefficient between 0.4 to 0.7 are not
shown.
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concordance concerning outcome may be due to differences in
the array platform and preprocessing method used.12 Second,
Lehmann et al. used a very large number of genes (2,188 genes)
to establish their molecular signature, and this may have consti-
tuted a source of instability, due to the noise introduced.12,13 As
shown by Weigelt et al.,31 microarray-based single-sample pre-
dictors do not allocate individual samples to a given molecular
subtype reproducibly, probably because the use of large numbers

of genes leads to instability of the classification when new samples
are added. Third, it would be unwise to transpose this classifica-
tion to various in vitro and in vivo breast cancer models (primary
tumor xenografts, cell lines, cell line-derived xenografts), because
the stromal environment and the original tumor are very differ-
ent.32,33 We found that genes from the Immunity compartment
(Immunity2 module) were highly relevant for the classification of
TNBC samples and that these genes were not expressed in

Table 1 B. Survival analysis (disease-specific survival). Chemotherapy-treated population. Two univariate models. Combination of NPI score and Immunity2
metagene expression

139 triple-negative breast cancer patients DS-survival HR [95% CI] p value

NPI score/Immunity2 metagene expression NPI1-2/HighI2 1
NPI1-2/LowI2 2.90 [1.51–5.56] 0.001
NPI3 3.98 [2.00–7.92] 8.72 10-5

NPI score/Immunity2 metagene expression NPI1-2/HighI2 1
NPI1-2/LowI2 2.91 [1.51–5.59] 0.001
NPI3/HighI2 2.31 [0.96–5.57] 0.06
NPI3/LowI2 6.30 [2.89–13.78] 3.8710-6

Abbreviations: NPI, Nottingham Prognostic Index; I2, Immunity2; HR, hazard ratio; CI, confidence interval.
NPID [0.2 £ S] C N C G.
S: tumor size (cm).
N: number of lymph nodes involved (0 D 1, 1¡3 D 2, >3 D 3).
G: tumor grade according to Elston and Ellis (Grade ID1, Grade II D 2, Grade III D 3).

Table 2 A. Survival analysis (disease-specific survival). Chemotherapy-naive population. Univariate and multivariate analysis.

Univariate analysis Multivariate analysis

115 triple-negative breast cancer patients DS-survival HR [95% CI] p value DS-survival HR [95% CI] p value

Menopausal status Pre 1
Post 1.31 [0.56-3.06] 0.53

Tumor size (mm) <20 mm 1
>20 mm 2.36 [1.01-5.48] 0.04

Tumor grade I-II 1
III 1.33 [0.51-3.49] 0.56

Lymph node status 0 1
1 3.66 [1.65-8.11] 0.001

NPI score <3.4 1 1
3.4-5.4 1.36 [0.47-3.96] 0.57 1.55 [0.53-4.51] 0.43
>5.4 10.69 [2.74-41.76] 0.001 12.03 [3.05-47.50] 0.0004

Cellularity Low 1
Moderate 1.91 [0.54-6.71] 0.31

High 1.42 [0.41-4.90] 0.58
P53 status Wild-type 1

Mutant 0.90 [0.17-4.63] 0.90
Immunity1 metagene expression High 1

Low 1.56 [0.76-3.19] 0.22
Immunity2 metagene expression High 1 1

Low 2.33 [1.09-4.95] 0.03 2.42 [1.13-5.16] 0.02
Proliferation/DNA damage metagene expression High 1

Low 1.14 [0.56-2.32] 0.72
AR-like metagene expression High 1

Moderate 0.96 [0.42-2.20] 0.92
Low 0.74 [0.28-2.00] 0.56

Matrix/Invasion1 metagene expression High 1
Low 0.48 [0.23-1.01] 0.06

Matrix2 metagene expression High 1
Low 1.31 [0.64-2.66] 0.46

Abbreviations: NPI, Nottingham Prognostic Index; AR, androgen receptor; HR, hazard ratio; CI, confidence interval.
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BC_CLs. The observed lack of reproducibility between classifiers
may reflect major differences in the methodology and aims of the
studies concerned. Further validation will be required before
these models can be used in routine clinical practice.

We developed a strategy for the definition of a GE signature
based on the analysis of biological networks for the most variant
genes. Within these networks, we then analyzed GE parameters,
to select the genes with the most strongly correlated patterns of

Table 2 B. Survival analysis (disease-specific survival). Chemotherapy-naive population. Univariate analysis. Combination of NPI score and Immunity2 meta-
gene expression.

115 triple-negative breast cancer patients DS-survival hazard Ratio [95% CI] p value

NPI score/Immunity2 metagene expression NPI1-2/HighI2 1
NPI1-2/LowI2 2.13 [0.95-4.78] 0.07

NPI3 12.89 [4.07-40.82] 1.3710
¡5

Abbreviations: NPI, Nottingham Prognostic Index; I2, Immunity2; HR, hazard ratio; CI, confidence interval.

Figure 5. (A) Boxplots of gene expression for the Immunity1 and Immunity2 metagenes, in each breast cancer cell line subtype from the CCLE. (B) Box-
plots of gene expression for the Immunity1 and Immunity2 metagenes in each breast cancer cell line subtype from the CGP.
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expression. The validation process showed that our gene matrix
identified similar GE patterns across 1,125 TNBC samples. This
first step in biological network analysis, which is probably less
sensitive to sample fluctuations than other methods, made it pos-
sible to capture strong biological signals that might be concealed
by the noise present in microarray data. Several studies have
reported that the incorporation of network information improves
the stability of gene selection and the biological interpretability
of biomarker signatures for a given prediction accuracy.14,15,34

The Immunity2 module was identified as a strong prognostic
factor for disease-specific survival (strong expression of this meta-
gene is correlated with a good outcome), regardless of the charac-
teristics of the tumor (NPI score, tumor size, tumor grade and
lymph node status). It clearly suggest the presence of an hemo-
poietic infiltrate, composed of activated cytotoxic T cells, B cells,
myeloid cells, natural killer cells and neutrophils. This module
includes adhesion molecule-associated genes (SELL, ITGB2),
and genes encoding proteins involved antigen processing and pre-
sentation (CD74 or ligand, HLA-DRA), B-lymphocyte cell sur-
face molecules (PTPRC, ITGB2, HLA-DRA), the caspase
cascade (CASP1), complement pathway (C1QA, C1QB), CTL-
mediated immune responses to target cells (ITGB2, CD3D,
GZMB), dendritic cell regulation of Th1 and Th2 development
(CD2, IL7R), granzyme-mediated apoptosis (GZMA, GZMB),
IL12-mediated signaling events (CD3D, HLA-DRA, GZMA,
LCK), the IL2 signaling pathway (LCK), interleukin-3, 5 and
GM-CSF signaling (HCK, BLNK, CSF2RB), T-cell surface
molecules (PTPRC, CD3D, CD2, ITGB2), and the T-cell
receptor signaling pathway (PTPRC, CD3D, HLA-DRA, LCK).

Burstein et al.25 identified four different TNBC subtypes
(LAR, MES, BLIS, BLIA) with the identification of similar path-
ways and a prognostic value for the BLIA subgroup similar to
that for the signature identified in our study. This subgroup dis-
plays an upregulation of B-cell, T-cell, and natural killer cell
immune-regulating pathways and an activation of STAT tran-
scription factor-mediated pathways. The authors showed that the
prognosis was worse for basal-like immune-suppressed tumors
than for basal-like immune-activated tumors, for both disease-
free survival (p D 0.04) and disease-specific survival (p D 0.039).

Several recent studies have demonstrated the importance of
tumor-infiltrating lymphocytes (TILs) in controlling the clinical
progression of various epithelial cancers.35 In breast cancer,
recent advances in GE profiling have revealed an association
between immune signatures and favorable outcomes.29,36 A gene
signature enriched in cytotoxic CD8C T-cell genes and genes
associated with natural killer cell activity has been reported.37

However, the ability of CD8C T cells to control human breast
cancer is probably counteracted by the presence of immunosup-
pressive cells, CD4C T-regulatory cells or macrophages: immu-
nohistochemistry (IHC) analysis of tissue microarray data for
179 treatment-naive breast tumors revealed that high-levels of
macrophages and CD4C T cells were correlated with poor overall
survival, whereas a combination of high-levels of CD8C T cells
and low-levels of macrophages and CD4C T cells was correlated
with higher overall survival.38 Intratumoral B cells have also been
associated with a favorable prognosis in breast cancer.39 In ER-

negative breast cancers, a STAT1 signaling metagene,16 and a B-
cell metagene19 were found to be associated with better out-
comes. Another group identified an immune response-based
prognostic gene module (C1QA, XCL2SPP1, TNFRSF17, LY9,
IGLC2, HLA-F) associated with a better prognosis than for other
ER-negative breast cancers, regardless of lymph node status and
lymphocytic infiltration.40 According to Bertucci et al.,41 the IM
subtype (overlapping with medullary breast cancers, a rare form
of TNBC with a prominent lymphocytic reaction) is associated
with a favorable prognosis. The two immune modules identified
in this study had many biological connections with other eight
immune prognosis signatures published for TNBC.18-25

Neoadjuvant chemotherapy is increasingly being used for
TNBC, because these tumors have a poor prognosis, are assumed
to be chemosensitive and no alternative specific systemic treat-
ment is available. Patients with a complete pathologic response
(pCR) after neoadjuvant chemotherapy have a better outcome
than those with residual disease, and pCR is a good surrogate for
long-term survival and cure in this specific subgroup.9,42

The Immunity2 metagene was not found to be predictive of
response to neoadjuvant chemotherapy in TNBC (272 fine nee-
dle aspirations of TNBC samples for which information about
pCR or its absence was available from the eight datasets previ-
ously published by Ignatiadis et al. 16) (data not shown). This
lack of relationship may have resulted from the use of fine needle
aspiration biopsy samples. The Immunity2 genes, which are
largely expressed in the stromal environment, were less strongly
expressed in fine needle aspiration samples than in tumor samples
(Fig. S23).

However, intratumoral immune responses are known to be
correlated with clinical outcomes in TNBC. This may reflect the
role of immune cells in the activity of cytotoxic chemotherapeutic
agents. Some chemotherapeutic drugs, such as anthracyclines, act
not only through direct cytotoxic effects, but also by activating
CD8C T-cell responses. Conflicting results have been published
on the ability of other immune-based classifiers to predict out-
come in TNBC. High-intratumoral levels of CD8C T cells 43 or
TILs 36,44 are associated with better clinical responses to anthra-
cycline-based chemotherapy. West et al. 45 reported that high-
levels of lymphocyte GE were associated with a high rate (74%)
of complete pathological responses to neoadjuvant anthracycline-
based chemotherapy. In 2011, Sabatier et al. 20 showed, by gene-
expression profiling, that “Immune High” patients (59%) were
more likely to present pCR than “Immune Low” patients (43%),
but this difference was not significant (p D 0.29). In 2014,46

they showed that “PDL1 mRNA expression high” (57%) patients
presented higher rates of pCR than “PDL1 mRNA expression
low” (43%) patients (p < 0.001). Wimberley et al. 47 showed
that PDL1 protein levels in the epithelium and stroma were cor-
related with pCR only in hormone receptor-positive and HER2-
amplified breast cancers. Denkert et al. 44 demonstrated the
importance of TIL and immune GE signatures for predicting
pCR in breast carcinoma. However no significant difference in
pCR rate was detected between lymphocyte-predominant breast
cancer (LPBC) and no-LPBC in the anthracycline-taxane
subgroup.
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However, the results of these studies suggest that clinical out-
comes in ER-negative breast cancers, including TNBC in partic-
ular, are strongly influenced by tumor immune responses and
are, thus, highly responsive to immunotherapies. The possible
use of immunotherapy approaches to treat TNBC (tumor vac-
cine approaches, immune-checkpoint inhibitors, antagonists of
immunosuppressive molecules and adoptive cell therapies)
should be investigated in detail.48

The other metagenes studied had no significant prognostic or
predictive value. However, they identified sound biological net-
works providing opportunities for therapeutic intervention. The
Immunity1 metagene included genes involved in the interferon
a/b signaling pathway or cytokine signaling (STAT1, IRF7,
IRF27, OAS1, OAS2, PMSB8, XAF1, IFIT1, IFITM1, ISG15,
IGS20, IF6, MX1), the Toll-like receptor signaling pathway
(STAT1, CXCL9, CXCL10, CXCL11, CCL5, IRF7), cell-cycle
checkpoints and DNA synthesis (PSMB8, PSMB9). Patients dis-
playing strong expression of this metagene often also had high-
levels of Immunity2 and Proliferation/DNA damage metagene
expression, suggesting the possible existence of common path-
ways. The IDO1 (indoleamine 2, 3-dioxygenase 1) gene is a
particularly interesting potential target. It encodes a tryptophan-
degrading enzyme known to suppress antitumor CD8C T cells
and it contributes to the inhibition of anticancer immune
responses.48 This immunosuppressive enzyme is actually investi-
gated as a promising candidate target in cancer immunotherapy.

A subset of TNBC tumors strongly expresses AR-regulated genes.49

AR expression has been reported to be lower in triple-negative breast
tumor cells than in other types of breast cancer. The overall frequency
of AR expression in carcinoma cells varies considerably between studies
(0–53%).50,51We identified strong expression of AR pathway genes in
25% of our population. The biological role of androgens in TNBC
remains a matter of debate. Immunohistochemical studies investigat-
ing the presence of AR in tumor cells have reported conflicting results
for clinical outcome; some studies have suggested that AR expression is
advantageous for survival,52-54 whereas others found no significant
effect.55 Lehmann et al. found that the LAR subtype of TNBC dis-
played the lowest frequency of pCR (10%). The presence of AR in a
subset of TNBC patients suggests that androgenic pathways in tumor
cells could be targeted in at least someTNBCpatients. Thewidespread
availability of agents targeting the AR also makes this approach poten-
tially appealing, as it would be straightforward to incorporate such
treatment into clinical practice.

The Matrix/Invasion1 metagene included genes associated
with b1 integrin cell surface interactions, ECM-receptor interac-
tion or integrin family cell surface interactions (NID1, TGFBI,
COL5A1, COL5A2, COL6A3, COL3A1, COL1A1, COL1A2,
COL11A1, FN1, FBN1, THBS1, THBS2), the TGF b signaling
pathway (DCN, COMP, THBS1, THBS2), the inhibition of
matrix metalloproteases (MMP2, TIMP3), and the AP-1 tran-
scription factor network (DCN, COL1A2, MMP2). Metallopro-
teinases (MMPs) and their tissue inhibitors are involved in
several key pathways of tumor growth, invasion and metasta-
sis.56,57 The expression and activity of MMPs has been linked to
advanced stages of breast cancer, greater tumor invasion and the
construction of metastatic formations.58,59,60 Some studies have

highlighted the importance of matrix MMP expression by stro-
mal cells as a prognostic factor in the TNBC subtype.61 These
molecules are thus attractive targets for drug development.62

The Matrix2 metagene included genes associated with the AP-
1 transcription factor network (FOS, EGR1, FABP4, DUSP1),
the EGR receptor signaling pathway (FOS, DUSP1, EGR1), the
Wnt or ALK signaling pathway (CAV1), the MAPK signaling
pathway (FOS, DUSP1) or Trk receptor signaling mediated by
the MAPK pathway (FOS, EGR1), the mTOR signaling path-
way (IGF1), the PPAR signaling pathway (ADIPOQ, CD36,
FABP4), and androgen-mediated signaling (FOS, EGR1). These
pathways may contribute to cell motility and tumor cell invasion63

and play a prominent role in epithelial-mesenchymal transition
(EMT) and in stem cells. These metagenes are strongly expressed
in mesenchymal cells and metaplastic breast cancers.4 Metaplastic
breast cancers have lineage plasticity, including spindle cell foci,
and display osseous or cartilaginous differentiation.64 Some drugs
targeting the pathways relating to the metagenes identified here
may be of particular interest for the treatment of TNBC (PI3K/
mTOR inhibitor, Wnt/b catenin inhibitor).

Conclusion

In conclusion, our 167-gene TNBC molecular signature, con-
sisting of six metagenes, appears to be particularly robust for the
identification of TNBC subtypes. Furthermore, expression of the
Immunity2 metagene was strongly correlated with prognosis,
and many biological targets have been identified within the corre-
sponding biological network. These findings open up interesting
new possibilities for the development of new therapeutic
interventions.

Patients and Methods

Data normalization and quality control
We collected 21 publicly available datasets (described in the

supplementary data) containing raw GE data from microarray
analyses (Affymetrix� Gene Chip Human Genome HG-U133A
and HG-U133Plus2) of 3,247 primary human breast cancer
samples. The data were normalized by the robust multichip aver-
age (RMA) procedure from the EMA R package.65 The datasets
were split into training (HGU-133A Affymetrix� arrays, 12
datasets, n D 1,995) and validation (HGU-133Plus2
Affymetrix� arrays, (9 datasets, n D 1,014) sets. We also col-
lected two large datasets, to validate our classification: The Igna-
tiadis dataset (n D 996) and the METABRIC dataset (n D
1,992). Data processing for these two datasets has been described
elsewhere.16,17

Determination and preprocessing of triple-negative breast
cancer samples

We identified the TNBC samples in each dataset, using a
bimodal mixture of two Gaussian distributions for ER and
HER2 gene expression, and the median value for PR expression.

www.tandfonline.com e1061176-11OncoImmunology



The training, validation and Ignatiadis datasets
Batch effects were eliminated by the median centering of each

probe-set across arrays and by a, independent quantile normaliza-
tion of all arrays for each dataset. We controlled for outliers with
the Array Quality Metrics R package.

The METABRIC set
We fitted a linear model (limma R package) to remove the

batch effect and probes were filtered according to three criteria:
probe quality,66 GC content and presence in more than 5% of
the samples. We centered expression values, using the R function
scale().

Gene selection process
Consensus clustering was applied to the training set, to deter-

mine the optimal number of robust gene clusters for the most
variant genes (standard deviation > 0.8). We investigated the
enrichment of each gene cluster in particular types of genes. We
then identified known biological networks, for each gene cluster
separately, using String� database software version 9.1 (http://
string-db.org/).67

We then applied a two-step selection process: (1) we selected
strong biological networks by retaining only genes for which con-
nection scores of at least 0.7 were obtained with String� database
software, (2) within each biological network, we selected groups
of genes with for which expression levels were correlated, with a
correlation coefficient of at least 0.5.

For each dataset (the training, validation, Ignatiadis and
METABRIC sets), we applied a hierarchical clustering procedure
to the TNBC GE profiles, using the selected genes to visualize
the optimal number of stable TNBC subtypes.

Prognostic analysis
Prognostic analysis was performed on the METABRIC set

published by Curtis et al.17

Expression data were summarized by a metagene for each gene
cluster (details in the supplementary material). The clinical and
pathological variables available for each dataset are described in
the supplementary data. Qualitative variables were compared in
x2 tests or Fisher’s exact tests, as appropriate. Quantitative

variables were analyzed in Student’s t-tests. Survival analyses were
performed separately for patients with and without chemother-
apy. Survival analyses were performed, with the Kaplan–Meier
estimate of the survival function. The endpoint of these analyses
was breast cancer-specific survival (BCSS). Survival curves were
compared in log rank tests. Hazard ratios were estimated with
Cox’s proportional hazard model.

Expression of the gene signature in human triple-negative
breast cancer cell lines

We downloaded the GE profiles of the human cancer cell lines
from the Cancer Cell Line Encyclopedia (CCLE)68 of Novartis/
the Broad Institute and the Cancer Genome Project (CGP)69 of
the Sanger Institute. We normalized all the cell lines from differ-
ent tissues together.

All statistical analyses were performed with R software (www.
cran.r-project.org). P -values < 0.05 were considered statistically
significant.
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