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Background. Results from the Costa Rica Vaccine Trial (CVT) demonstrated partial cross-protection by the bivalent human
papillomavirus (HPV) vaccine, which targets HPV-16 and HPV-18, against HPV-31, -33, and -45 infection and an increased inci-
dence of HPV-51 infection.

Methods. A study nested within the CVT intention-to-treat cohort was designed to assess high-risk HPV variant lineage–
specific vaccine efficacy (VE). The 2 main end points were (1) long-term incident infections persisting for ≥2 years and/or progres-
sion to high-grade squamous intraepithelial lesions (ie, cervical intraepithelial neoplasia grade 2/3 [CIN 2/3]) and (2) incident
transient infections lasting for <2 years. For efficiency, incident infections due to HPV-16, -18, -31, -33, -35, -45, and -51 resulting
in persistent infection and/or CIN 2/3 were matched (ratio, 1:2) to the more-frequent transient viral infections, by HPV type. Variant
lineages were determined by sequencing the upstream regulatory region and/or E6 region.

Results. VEs against persistent or transient infections with HPV-16, -18, -33, -35, -45, and -51 did not differ significantly by vari-
ant lineage. As the possible exception, VEs against persistent infection and/or CIN 2/3 due to HPV-31 A/B and HPV-31C variants
were −7.1% (95% confidence interval [CI], −33.9% to 0%) and 86.4% (95% CI, 65.1%–97.1%), respectively (P = .02 for test of equal
VE). No difference in VE was observed by variant among transient HPV-31 infections (P = .68).

Conclusions. Overall, sequence variation at the variant level does not appear to explain partial cross-protection by the bivalent
HPV vaccine.
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Persistent infection with high-risk human papillomaviruses
(HPVs) causes cervical cancer, a very common female malig-
nancy worldwide [1]. Although >200 HPV genotypes have been
characterized, cervical cancer is associated with a limited set of
12 related types from 5 Alphapapillomavirus species (alpha-5,
-6, -7, -9, and -11) [2–4]. HPV-16 and HPV-18 cause approxi-
mately 70% of cervical cancers [5] and are targeted by the virus-
like particle–based prophylactic HPV vaccines Gardasil and
Gardasil9 (Merck, Whitehouse Station, New Jersey) and Cervarix
(GlaxoSmithKline Biologicals, Rixensart, Belgium). All are hig-
hly effective against HPV-16/18 persistence [6] and cervical

intraepithelial neoplasia grade 2/3 (CIN 2/3) [7–9]. Develop-
ment of neutralizing antibodies against HPV-16/18 is correlated
with reported cross-protection against the phylogenetically
HPV-16–related types 31 and 33 and the HPV-18–related
type 45 [10, 11]. Partial cross-protection has been demonstrated
in studies using either the bivalent or quadrivalent vaccine [12],
while variable and/or increased rates of infections have been ob-
served for HPV-51, -52, and -58 [12–14].

Variant lineages are classified as viral genomes of a known
HPV type with <10% sequence variability [15]. Specific variant
lineages show epidemiologic patterns in their distribution and
associations with CIN 2/3 and cancer [15, 16]. In addition,
HPV variants are associated with hosts of common geographic
ancestry and are even evident with population movements; thus,
not all geographic regions harbor similar variants (or at similar
frequencies) [15, 17–19]. Whether viral genomic polymor-
phisms associated with variant lineages alter infection rates
upon vaccination has not been thoroughly evaluated, but this is
of interest because variants exhibit differences in natural history
and disease risks [15, 17, 20–22]. Although vaccine protection
against HPV-16/18 is uniformly high, cross-protection against
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genetically related high-risk HPV types is variable and could be
due to differential protection against variant lineages [15].

This study was designed to assess the impact of HPV-16/18
vaccination on incident infection(s) at the viral variant level.
This study evaluated the relative vaccine efficacy (VE) by variant
lineage in samples obtained from young women participating in
the Costa Rica Vaccine Trial (CVT), a National Cancer Institute
(NCI)–sponsored community-based, double-blind, randomized
clinical trial of Cervarix in Guanacaste, Costa Rica. The present
study examined the hypothesis that viral variants circulating in
Guanacaste were differentially affected by HPV vaccination.

MATERIALS AND METHODS

The study of viral variants was a nested analysis within the pre-
viously reported CVT (clinical trials registration NCT00128661).
Written informed consent was obtained from all participants in
CVT. Institutional review board approval was obtained for the
informed consent forms at both the NCI and in Costa Rica.

CVT Study Design
The study design and main outcomes have been published pre-
viously [6, 23, 24]. Briefly, the study involved female residents
living in Guanacaste and Puntarenas, Costa Rica, with commu-
nity-based census recruitment occurring during 2004–2005. A
total of 7466 women aged 18–25 years were randomly assigned
(ratio, 1:1) to receive the HPV-16/18 vaccine, Cervarix, or con-
trol (hepatitis A vaccine; Havrix, GSK Biologicals).

Prior to vaccination, all women completed a study survey and
had a clinical visit; specimens collected prior to randomization
were classified as having been collected at enrollment. Vaccina-
tion with 3 doses occurred over 6 months in the majority of
women in the CVT; 71.5% of participants received doses within
the prespecified vaccination windows at 0 months (enrollment
visit) and 1month and 6months after enrollment. A total of 3736
women received Havrix, and 3726 women received Cervarix [6].
When the last vaccine dose was administered, at 6 months,
women who were sexually active provided a self-collected speci-
men for HPV testing [23].

Follow-up included annual collection of cervical samples for
HPV and cytological testing. Abnormal cytological findings
(defined by the Bethesda system) of low-grade squamous intra-
epithelial lesions (LSIL) or atypical squamous cells of undeter-
mined significance (ASC-US) necessitating triage for HPV
testing [25] shifted clinical visits to a 6-month schedule; if 3
consecutive negative results of cytological tests were obtained,
annual visits resumed. Participants were referred to undergo
colposcopy for a cytological diagnosis of high-grade squamous
intraepithelial lesions (HSIL), atypical squamous cells (cannot
exclude HSIL), or glandular abnormalities and for repeat cyto-
logical testing of LSIL or HPV-positive ASC-US [6, 23].

Exfoliated cervical cells were obtained using a Cervex-Brush
(Rovers Medical Devices, Oss, the Netherlands) directly applied

to the cervix and eluted into PreservCyt medium (Cytyc, Marl-
borough, Massachusetts) for cytological and HPV testing as
previously described [6].

HPV Variant Study Design
Infecting HPV types were selected based upon phylogenetic re-
latedness to vaccine types and/or previous evidence for partial
protection or observed enhanced susceptibility to infection after
immunization [6, 13, 26–31]. A total of 7 high-risk HPV types
were evaluated: HPV-16 and HPV-18; HPV-31, -33, and -35
(3 types related to HPV-16 in the alpha-9 species); HPV-45
(a type in the alpha-7 species related to HPV-18); and HPV-
51 (a type from the alpha-5 species) [3].

Incident infection(s) were eligible for selection, defined as
an HPV infection that was detected after vaccination and not
present at either enrollment (time of first vaccine dose) or the
6-month visit. Infection duration was estimated as the interval
between the initial HPV-positive test result and the time of the
last positive HPV test. Long-term/persistent infections were de-
fined as incident infection(s) that lasted for >2 years worth of vis-
its (ie, >660 days) and/or resulted in a CIN 2/3 diagnosis. Short-
term/transient infections were defined as those lasting <2 years
and not associated with CIN 2/3. For efficiency, all incident per-
sistent infections/CIN 2/3 were selected, whereas a random sam-
pling of the more abundant incident transient infections matched
by HPV type were selected in a ratio of 2 short-term infections
for each long-term infection. Selection for testing was masked to
vaccine arm and number of doses administered.

Laboratory Characterization of HPV Type–Specific Variant Lineages
The laboratory was blinded to all data except HPV type. Briefly,
DNA was isolated from exfoliated cells, and HPV genomes were
assigned to variant lineages by DNA sequence analyses as previ-
ously described [17, 32]. Polymerase chain reaction (PCR) anal-
yses targeted the upstream regulatory region (URR) and/or E6
open reading frame (ORF), because these regions allow classifica-
tion of HPV variant genome lineages that are also correlated with
the major polymorphisms in the L1 and L2 ORFs [15, 33–35].
Samples for which the URR assay did not yield amplification un-
derwent repeat analysis using the E6 assay. PCR primers and con-
ditions are provided in Supplementary Table 1 [17, 33, 36].

To classify HPV-31 lineages for the extended study, an addi-
tional PCR assay (L1_FG) amplifying a smaller fragment was
developed, based on lineage-specific sequence differences in a
hypervariable region of the L1 encoding the FG surface loop
[33]. Classification of HPV-31 variants by the L1_FG assay
was validated using samples previously characterized by the
URR/E6 assays (κ = 0.95; Supplementary Table 2). Samples
characterized by at least 1 HPV-31 variant assay were included
in the HPV-31 extended analysis; samples with discordant var-
iant results were excluded (n = 9). Thus, there was a difference
in the number of HPV-31 infections classified as persistent in-
fections/CIN 2/3 in the main and extended studies.
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Statistical Analysis
The lineage-specific VE was calculated for each variant group.
All incident persistent infections/CIN 2/3 for the described
types and a 2:1 match by type for incident transient infections
were included in the analysis. Since the total numbers of
women at risk for the end points in the 2 vaccine arms (Cer-
varix and Havrix) were practically the same for each analysis,
we used event counts instead of attack rates. The estimated
HPV VE against viral variant lineages for each HPV type
was calculated as the ratio of the difference in numbers of var-
iant lineage end points observed between the Havrix arm and
the Cervarix arm, divided by the number of events in the Hav-
rix arm.

The expected number of events in the Cervarix arm is a bi-
nomial variable, and the sample size is equal to the total number
of events in the two arms. Noting that the VE is the complement
of the ratio of attack rates in the two arms, we transformed the
estimates of the proportions and the confidence bounds to ob-
tain a corresponding confidence interval (CI) for the VE, using
the Clopper–Pearson method [37].

Additionally, we tested whether the efficacy of Cervarix var-
ied by variant lineages within the same viral type, separately for
each end point (ie, persistent infections/CIN 2/3 and transient
infections). The ratio of the attack rates was evaluated by a Pois-
son test for rates, using the rateratio.test package in R [38]. The
null hypothesis of the tests is equal VEs for each viral lineage
within a given HPV type.

HPV-31 Extended Analysis: Sample Selection and Variant Detection
To follow-up on a suggestive initial finding in the main analysis,
all HPV-31 infections were tested or retested; infections detect-
ed within 180 days of enrollment were considered prevalent and
used for exploratory analyses.

RESULTS

The study design is shown in Figure 1. A total of 1106 incident
infections were selected for lineage characterization of high-risk
HPV types 16, 18, 31, 33, 35, 45, and 51 (Supplementary
Table 3). Of the 1106 incident HPV infections selected, 842
(76.1%) were successfully characterized for variant lineage

Figure 1. Study design to determine the relative efficacy of bivalent human papillomavirus (HPV) vaccine against HPV variant lineages in the Costa Rica HPV Vaccine Trial
(CVT). Design of sample selection for analysis of incident HPV infections in a subset of women in the intention-to-treat (ITT) cohort of the CVT. This study was designed to
assess whether the HPV vaccine relative efficacy differed for incident type-specific variant infections, using 2 different outcomes: (1) transient infection and (2) persistent
infection and/or cervical intraepithelial neoplasia grade 2/3 (CIN 2/3)–associated infection (see “Materials and Methods” section).
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classification; 264 infections (23.9%) were excluded either be-
cause the sample was unavailable (n = 47) or the PCR reactions
failed (n = 217). Of the 842 infections characterized, 284
(33.7%) were persistent/CIN 2/3, and 558 (66.3%) were
transient.

To assess whether differences in type-specific VE resulted
from differences in HPV variant lineage infections, the genomes
were partially sequenced to classify variant lineages, categorized
by infection outcome and vaccine arm, and compared with re-
spect to lineage-specific VE. For vaccine types HPV-16 and
HPV-18, there was strong protection upon vaccination, irre-
spective of variant lineage or infection duration (Table 1). We
next assessed vaccine variant efficacies for HPV-31, -33, -35,
-45, and -51 (Table 1). Insufficient variant heterogeneity for
HPV-33 and HPV-35 limited estimation of VE by lineage. Al-
though HPV-45 infections showed cross-protection in the CVT
[6], no difference was observed in comparison of lineages A
(n = 35) and B (n = 40) for VE among transient infections
(P = .52) or persistent infections/CIN 2/3 (P = .99; Table 1).

Incident HPV-51 infections were previously found to be in-
creased in the Cervarix arm, compared with the Havrix arm, of
the CVT [6]. Infection with this relatively common type was due
to lineage A variants in 85.2% of cases (n = 150) and due to B
variants in 14.8% (n = 26); no statistically significant differences
for VE were observed for either persistent infections/CIN 2/3
(P = .46) or transient infections (P = .80) by lineage. Lineage
A infections were more common in persistent infections/CIN
2/3 after vaccination, whereas lineage B infections were more
common in transient infections after vaccination; the interac-
tion was not statistically significant (Table 1).

HPV-31 infections were dichotomized into variant lineages
A/B or C, representing the divergence of the lineages from a
most recent common ancestor [33]. In women who received
Cervarix and developed HPV-31 persistent infection/CIN 2/3,
VE against HPV-31 variant lineage C infections was 86.4%
(95% CI, 65.1%–97.1%), compared with −7.1% (95% CI,
−33.9% to 0%) for HPV-31 A/B variant lineage infections
(P = .02; Table 1). No significant difference was observed for
VE against transient HPV-31 infection by variant lineage.

Because of the intriguing difference between persistent infec-
tions/CIN 2/3 and transient infections due to HPV-31, a post
hoc study was performed to test all incident HPV-31 infections
(Figure 2). An additional PCR assay was developed to character-
ize HPV-31 variant lineages by amplifying and sequencing a
small fragment within the L1 FG loop (see “Materials and
Methods” section). Seventy-four HPV-31 infections (9.2%) that
were unamplified by all 3 HPV-31 variant assays were excluded.

To determine whether differences in infection duration mod-
ify the effect of vaccination on HPV-31 variants, the number of
HPV-31 positive tests during follow-up was used to categorize
infection periods: transient single infections, transient multiple
infections, or persistent infections/CIN 2/3 (Table 2). The terms

“single” and “multiple” refer to the number of HPV-31–positive
tests detected within the <2-year period. The end point of ≥2
years for persistent infection was the same as that used in the
main study, although the numbers are slightly different,
owing to use of an additional assay.

The majority of HPV-31 infections (any lineage) were tran-
sient, and, among these, no significant difference was observed
in lineage-specific VE, whether for single or multiple transient
infections (Table 2). As previously observed, persistent infec-
tions/CIN 2/3 due to HPV-31 displayed significant differences
by variant lineage. Incidence of persistent infections/CIN 2/3
due to HPV-31 A/B was similar by vaccine arm (17 infections
in the Cervarix arm and 16 in the Havrix arm), resulting in a VE
of −6.3% (95% CI, −.15% to 30.2%), whereas the VE against
HPV-31C (4 infections in the Cervarix arm and 25 in the Hav-
rix arm) was 84.0% (95% CI, 63.9%–95.5%; P = .017).

To determine whether the vaccine influenced the natural his-
tory of existing HPV-31 infections, we tested 266 infections that
were prevalent at the time of vaccination. No lineage-specific ef-
fect on infection duration was observed among the prevalent
HPV-31 infections (data not shown). To evaluate an HPV-
naive group that should have maximum protection from Cer-
varix, we limited the analyses to women who received 3 vaccine
doses and were negative for HPV by PCR and HPV-16/18 sero-
logic analysis at baseline. HPV-31 results were similar as report-
ed above (13 transient HPV-31 A/B infections in the Cervarix
arm and 52 in the Havrix group, with a VE of 75%; 9 and 47
transient HPV-31 C infections, respectively, with a VE of
81%; 3 and 4 persistent infections/CIN 2/3 due to HPV-31 A/B,
respectively, with a VE of 25%; and 0 and 5 persistent infections/
CIN 2/3 due to HPV-31 C, respectively, with a VE of 100%).

DISCUSSION

This study evaluated whether the partial protection against or
increased susceptibility to some high-risk HPV types after ad-
ministration of the HPV-16/18 AS04-adjuvanted vaccine could
be due to viral type genetic heterogeneity. The evolution of HPV
genomes has resulted in the emergence of stable viral variant
lineages with highly correlated nucleotide changes across the
viral genome [15, 35]. To determine whether synthetic selective
pressure created by the recent introduction of HPV vaccines
limits the dispersion of specific HPV variants, we used speci-
mens and data from the ITT cohort of the CVT. We selected
HPV types previously shown to be significantly protected, par-
tially protected, or increased after HPV vaccination in either the
CVT [6, 24] or other studies [12].We chose our end point based
on the most important predictors of cancer risk following infec-
tion, viral persistence and/or CIN 2/3. We observed moderate-
to-high VE against variants of HPV-31 lineage C for both
transient infections (VE, 61%) and persistent infections/CIN
2/3 (VE, 84%), whereas, lineages A/B showed only partial pro-
tection for infections that were transient (VE, 58%) but not for
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Table 1. Relative Vaccine Efficacy (VE) Against Incident Infection With High-Risk Human Papillomavirus (HPV) Variant Lineages

Species, Lineage, Arm

Transient Infection Persistent Infection and/or CIN 2/3 Progression

Total Evaluated, No.No. (%)
Lineage-Specific VE,

(95% CI) P Valuea No. (%)
Lineage-Specific VE,

(95% CI) P Valuea

HPV-16 (alpha-9) .97 .99

Lineage A

Cervarix 16 (51.6) 88.1 (81.5–93.1) 15 (48.4) 76.2 (63.8–86.0) 31

Havrix 135 (68.2) . . . 63 (31.8) . . . 198

Lineage D

Cervarix 1 (50.0) 80.0 (28.4–99.5) 1 (50.0) 75.0 (19.4–99.4) 2

Havrix 5 (55.6) . . . 4 (44.4) . . . 9

HPV-18 (alpha-7) .99 .93

Lineage A

Cervarix 2 (40.0) 92.0 (74.0–99.0) 3 (60.0) 66.7 (29.9–92.5) 5

Havrix 25 (73.5) . . . 9 (26.5) . . . 34

Lineage B

Cervarix 1 (33.3) 92.3 (64.0–99.8) 2 (66.7) 81.8 (48.2–97.7) 3

Havrix 13 (54.2) . . . 11 (45.8) . . . 24

HPV-31 (alpha-9) .68 .02

Lineages A/B

Cervarix 19 (55.9) 50.0 (33.4–66.6) 15 (44.1) −7.1 (−33.9 to 0) 34

Havrix 38 (73.1) . . . 14 (26.9) . . . 52

Lineage C

Cervarix 15 (83.3) 62.5 (45.8–77.3) 3 (16.7) 86.4 (65.1–97.1) 18

Havrix 40 (64.5) . . . 22 (35.5) . . . 62

HPV-33 (alpha-9)

Lineage A

Cervarix 10 (66.7) 44.4 (21.5–69.2) 5 (33.3) 37.5 (8.52–75.5) 15

Havrix 18 (69.2) . . . 8 (30.8) . . . 26

Lineage B

Cervarix 0 (0.0) . . .c 0 (0.0) . . .c 0

Havrix 1 (50.0) . . . 1 (50.0) . . . 2

HPV-35 (alpha-9) .34

Lineage A

Cervarix 18 (58.1) 25.0 (9.77–46.7) 13 (41.9) 0.0 (.0–24.7) 31

Havrix 24 (64.9) . . . 13 (35.1) . . . 37

Sublineage A2

Cervarix 1 (100.0) 85.7 (42.1–99.6) 0 (0.0) . . .c 1

Havrix 7 (100.0) . . . 0 (0.0) . . . 7

HPV-45 (alpha-7) .52 .99

Lineage A

Cervarix 4 (44.4) 78.9 (54.4–93.9) 5 (55.6) 28.6 (3.67–71.0) 9

Havrix 19 (73.1) . . . 7 (26.9) . . . 26

Lineage B

Cervarix 8 (61.5) 55.6 (30.8–78.5) 5 (38.5) 44.4 (13.7–78.8) 13

Havrix 18 (66.7) . . . 9 (33.3) . . . 27

HPV-51 (alpha-5) .46 .80

Lineage A

Cervarix 51 (61.4) 0.0 (.0–6.98) 32 (38.6) −100.0 (−79.4 to −1.0) 83

Havrix 51 (76.1) . . . 16 (23.9) . . . 67

Lineage B

Cervarix 12 (75.0) −100.0 (−54.1 to −100.0) 4 (25.0) 0.0 (0.0–60.2) 16

Havrix 6 (60.0) . . . 4 (40.0) . . . 10

Abbreviations: CI, confidence interval; CIN 2/3, cervical intraepithelial neoplasia grade 2/3.
a Data denote no. of the specified type of infection and/or disease state (% of all infections per specified lineage and vaccine arm).
b For comparison of the equality of vaccine efficacy for each HPV variant lineage by infection duration.
c Not determined, because of insufficient sample size.
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those that led to persistent infection/CIN 2/3 (VE, −6%). If cor-
roborated, this finding could be of clinical importance, since
HPV-31 lineages A/B have been observed to more likely lead
to development of CIN 3, compared with HPV-31 lineage C
[17, 22]. We evaluated whether the difference in VE of HPV-
31 A/B lineages for persistent infections/CIN 2/3 might be re-
lated to changes in duration of infection, but we did not observe
a difference by vaccine arm (data not shown). Thus, it is unlike-
ly that the vaccine acts subsequent to acquisition of an HPV-
31A/B variant infection to change the natural history and/or
duration of these infections [39].

In women with no prior evidence of HPV exposure, vaccina-
tion is highly efficacious against autologous HPV type acquisi-
tion and persistence [6, 13, 27, 39]. As reported in the CVT, the
bivalent vaccine displayed 91% VE (95% CI, 82%–96%) against
1-year persistent HPV-16/18 and 90% (95% CI, 40%–100%)
against related CIN 2/3 in the ATP cohort [24], as well as a
VE of 49% (95% CI, 38%–58%) in the ITT group [6]. A more
stringent end point of ≥2 years for persistence used in the cur-
rent variant analysis confirmed a high efficacy against vaccine-
types (HPV-16 and HPV-18) irrespective of variant lineage,
maintaining high-type specific protection.

As previously reported in the CVT, VE against the HPV-16/
18–related types HPV-31, -33, and -45 was 44% (95% CI, 18%–

63%) in the ATP and 16% (95% CI, −5% to 32%) in the ITT
group for protection against 1-year persistence [6]. Analysis
by HPV genotype in the ATP revealed that only the closest phy-
logenetically HPV-16/18–related types, HPV-31 and HPV-45,
were significantly protected [6]. Vaccine cross-protective effica-
cy against 6-month and 1-year persistence in the ATP arm of
the CVT was significant for HPV-31, with a 1-year persistence
VE of 46% (95% CI, 8%–69%). For HPV-45, only 6-month

persistence VE of 73% (95% CI, 45 to 88) was significant [6].
We observed no significant differences in VE for HPV-45 line-
ages A and B (Table 1).

HPV-51 1-year persistence was significantly increased in the
ATP vaccine arm, with a VE of −64% (95% CI, −151% to −8%).
Enigmatically, HPV-51 lineage A and HPV-51 lineage B variants
were differentially increased in persistent infections/CIN 2/3 and
transient infections, respectively, although VEwas not statistically
significantly different by lineage. In contrast, the PATRICIA trial
that also used the bivalent HPV-16/18 vaccine observed weak but
significant cross-protection for HPV-51 6-month persistence
[13]. The reasons for the differences in VE for HPV-51 variants
in this study and the HPV-51 increased incidence between stud-
ies could be related to statistical instability due to the limited
number of HPV-51 lineage B infections reported here.

In a previous report, HPV-31 partial protection was associat-
ed with anti–HPV-16 antibody titers, the ability of sera to neu-
tralize HPV-31 pseudovirions, and antibody avidity [28]. We
evaluated the number of vaccine doses received by women
with HPV-31 infections. There were no significant differences
between the proportion of women receiving 3 versus <3 doses
either by HPV-31 variant lineage (ie, A/B vs C) or by outcome,
transient infection versus persistent infection/CIN 2/3 (data not
shown). Thus, it is unlikely that viral titers are related to HPV-
31 variant differences in partial protection for persistent
infection/CIN 2/3. Theoretically, differences in protection of
HPV-31 variants could result from polymorphisms within the
L1 sequence that alter conformational epitopes recognized by
vaccine-induced antibodies. Based on our previously reported
data on the heterogeneity of HPV-31 variant complete genome
sequences (supplementary figure 2A in the article by Chen et al
[33]), we noted only 1 consistent L1 amino acid change

Figure 2. Expanded study design to assess the relative efficacy of the bivalent human papillomavirus (HPV) vaccine against HPV-31 variant infections. Samples in which
HPV-31 was previously detected [6] were selected for variant lineage classification, and incident infections were evaluated for lineage-specific vaccine efficacy. A total of 433
incident HPV-31 infections, classified into variant lineages, were evaluated for relative vaccine efficacy, based on infection duration ([1] transient infection or [2] persistent
infection and/or cervical intraepithelial neoplasia grade 2/3). Prevalent infections (n = 266), defined as HPV-31 detected within 180 days of study enrollment, were excluded in
this analysis. Repeats for QC were an additional sample selected from a different time point in 32 women. Abbreviation: ITT, intention to treat.
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difference between variants HPV-31 A/B and C lineages, and it
was located in the L1 FG loop (HPV-31 amino acids L1-26;
Supplementary Table 4). This conformational epitope corre-
sponds to amino acids HPV-31 L1 262–276 and was previously
shown to facilitate HPV-31 cross-reactivity and neutralization
by HPV-16 [40–43] and HPV-31 [44, 45] antibodies. HPV-31
C lineage contains an alanine at L1–267, similar to that seen
in HPV-16, as well as the HPV-16 L1 amino acid sequence
used in Cervarix (NCBI accession no. AAC09292.1) [46].
HPV-31 A/B variants contain threonine at this position (Sup-
plementary Table 4). Thus, it is plausible that this genetic var-
iation could contribute to HPV-31C lineage being better
protected than the A/B lineages, consistent with the enhanced
activity of monoclonal antibody 31.F16 to recognize HPV-31C
variant as compared to HPV-31A/B variants [45].Nevertheless,
it is not clear why this differential protection was not seen when
using HPV-31 transient infections as the outcome. It is possible
that persistence involves both protection and natural history
differences of HPV-31 variants, as HPV-31 lineage C appears
to persist longer than A/B [17, 47].

The data suggest that VE by lineage for persistent infections/
CIN 2/3 was generally lower than that observed for transient in-
fections (eg, for HPV-45 A lineage, VE against transient infection
was 79%, and VE against persistent infections/CIN 2/3 was 29%).
Since the number of events was limited and because this was not
an a priori hypothesis, we have not pursued this analysis in detail.
It is possible that lower VE in long-term persistent infections was
a result of misclassification of incident infections that were low-
level prevalent infections, as discussed by Malagon et al [12].

This study has limitations. The number of infections in each
outcome was limited by stratification on variant lineage. The
study was well powered to detect clinically significant differenc-
es, but it does not rule out variant differences in other popula-
tions. Our study did not access rare variations in the viral
variant genomes, particularly in the L1 ORF containing the
neutralizing epitopes, but evaluated common changes con-
served among variant lineages, based on knowledge of the evo-
lution and conservation of HPV genetic variations.

In conclusion, we tested the hypothesis that HPV variant
lineages might explain the partial protection or increased sus-
ceptibility to the HPV vaccine. Although we did not find a con-
sistent pattern of variants having differing vaccine efficiencies,
HPV-31 A/B versus C lineages showed differences in the main
outcome, persistent infection/CIN 2/3. We are perplexed by
these observations, as transient HPV-31 infections showed no
differences. Based on the knowledge that the vaccine induces
neutralizing antibodies that should affect both persistent infec-
tions/CIN 2/3 and acquisition of transient infections, we have
no underlying mechanism that can explain these observations.
However, data on HPV-31 variant natural history suggest that
lineage C tends to be more persistent, whereas, lineages A/B are
more associated with CIN 3. These observations are notTa
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consistent with the model derived from HPV-16 variants in
which persistence and oncogenicity are related [15]. Complex-
ities in viral-host relationships beyond current understanding
might be at play, or there may be random effects of population
sampling yielding data that are difficult to interpret. Neverthe-
less, considering the enhanced oncogenicity of HPV-31 A/B
lineages, this study requires confirmation or refutation in addi-
tional vaccine cohorts to determine whether HPV-31 variants
show differential protection by the bivalent vaccine.
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