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ABSTR ACT
OBJECTIVE: This study aims to analyze the role of artificial neural networks (ANNs) in cytopathology. More specifically, it aims to highlight the 
importance of employing ANNs in existing and future applications and in identifying unexplored or poorly explored research topics.
STUDY DESIGN: A systematic search was conducted in scientific databases for articles related to cytopathology and ANNs with respect to anatomical 
places of the human body where cytopathology is performed. For each anatomic system/organ, the major outcomes described in the scientific literature are 
presented and the most important aspects are highlighted.
RESULTS: The vast majority of ANN applications are related to cervical cytopathology, specifically for the ANN-based, semiautomated commercial 
diagnostic system PAPNET. For cervical cytopathology, there is a plethora of studies relevant to the diagnostic accuracy; in addition, there are also efforts 
evaluating cost-effectiveness and applications on primary, secondary, or hybrid screening. For the rest of the anatomical sites, such as the gastrointestinal 
system, thyroid gland, urinary tract, and breast, there are significantly less efforts relevant to the application of ANNs. Additionally, there are still anatomi-
cal systems for which ANNs have never been applied on their cytological material.
CONCLUSIONS: Cytopathology is an ideal discipline to apply ANNs. In general, diagnosis is performed by experts via the light microscope. However, 
this approach introduces subjectivity, because this is not a universal and objective measurement process. This has resulted in the existence of a gray zone 
between normal and pathological cases. From the analysis of related articles, it is obvious that there is a need to perform more thorough analyses, using 
extensive number of cases and particularly for the nonexplored organs. Efforts to apply such systems within the laboratory test environment are required 
for their future uptake.
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Introduction
Computer science and artificial intelligence have enabled the 
development of computer-aided systems to support clinical diag-
nosis or therapeutic and treatment decisions. Many machine 
learning methodologies such as neural networks,1–7 discrimi-
nant analysis,1,8,9 classification and regression trees,10,11 genetic 
algorithms,12 and recently, deep learning13–15 have been success-
fully used in medicine, whereas other techniques are in the cen-
ter of current research studies.

Cytopathology is a relatively new medical discipline, 
which in most countries is considered to be a branch of 
pathology. In cytopathology, diseases are studied and diag-
nosed at a cellular level (free cells or small tissue fragments 
traditionally examined via the microscope). This discipline 
was founded by Papanicolaou in 192816 and became popular 

when he proposed the worldwide known Pap test. This test 
is used as a screening tool for detecting precancerous cervi-
cal lesions and thus preventing cervical cancer (CxCa).17,18 
However, CxCa is not the sole disease that cytopathol-
ogy deals with. Even in its early days,19–21 cytopathology 
was commonly used to investigate thyroid lesions, f luids 
in body cavities (peritoneal, pleural, pericardial, and cere-
brospinal), and in almost the total range of body sites. In 
addition, cell study is not only used for cancer diagnosis, 
but it can also be employed for the diagnosis of infectious 
diseases and inf lammatory conditions (eg, viruses, fungi, 
and bacteria). One of the major advantages of cytopathol-
ogy practice is its noninvasive or minimally invasive nature, 
ie, the biological material is extracted from the patients in 
a painless manner (eg, cells are extracted using a brush, 
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spatula, or fine needle), in contrast to histopathology that 
examines tissues and thus biopsy, and sometimes anesthe-
sia, is required.

Cytopathology and pathology22 seem to be highly suit-
able medical sectors for the application of artificial neural 
networks (ANNs), because diagnosis is usually performed 
by specialized cytopathologists and involves criteria justified 
via microscopic examination.23 This procedure rarely involves 
quantification steps, can be prone to errors, and is relatively 
subjective. On the other hand, measurements of the exam-
ined cells and their formations are possible with the use of 
digital cameras and image analysis software; thus, it is tech-
nologically feasible to introduce a high degree of objectivity 
through measurements. However, processing a multitude of 
measurements can also be a barrier, especially because diag-
nosis should be performed in a timely and objective man-
ner so as to be helpful in supporting decision-making in 
cytopathology.

In this review, research efforts related to the application 
of ANNs for decision support in cytopathology diagnosis are 
presented. From our bibliographic research, there were no 
other publications summarizing the applications of ANNs 
in cytopathology. The analysis is performed on the basis of 
human systems or organs. The structure of this review is as 
follows: (a) a short introduction of ANNs is provided; (b) 
the cytopathology subdisciplines are presented, highlighting 
the human systems in which ANNs can support the diag-
nostic process; (c) the applications of ANNs in each biologi-
cal system are presented and the results are analyzed; and 
finally (d) in conclusion, future applications and directions 
are presented, barriers for the application of ANNs in the 
everyday practice are highlighted, gaps in various cytopa-
thology research areas are spotted, and potential applica-
tions of ANNs in the cytopathology laboratory of the future 
are introduced.

Artificial Neural Networks
ANNs are complex computational models inspired by the 
human nervous system, which are capable of machine learn-
ing and pattern recognition.24–26 These models have the ability 
to learn from the past experience in order to provide outcomes 
for new data. This capability of learning from a certain data set 
makes ANNs suitable for classification and prediction tasks in 
practical situations. Furthermore, ANNs are inherently non-
linear and nonconvex, which makes them more suitable for 
processing complex data patterns, in contrast to many tradi-
tional methods based on linear techniques.

Usually, ANNs are constructed by interconnected neu-
rons (Fig. 1). Each neuron sums the weighted inputs (sum of 
the product of each input i multiplied by the corresponding 
weight ω), and the summation result is passed from a nonlin-
ear, nonconvex, and nonconcave module (transfer function or 
activation function). The output of this function is the artifi-
cial neuron output as well.

A network of interconnected artificial neurons forms the 
ANN; neurons are interconnected, in a way that the output 
of one is the input of one or more other neurons. In general, 
the model of interconnections does require a specific struc-
ture; however, for algorithm development and simplicity, the 
most popular interconnection models have a layered approach. 
More specifically, there is an input layer of neurons, which 
receives the input data, one or more hidden layers, and finally 
an output layer providing the output of the network. There-
fore, the structure of such ANNs is denoted in the form of 
X-Y-Z, where X, Y, Z are the number of input, hidden, and 
output neurons, respectively. This typical structure of a mul-
tilayer feed-forward ANN appears in Figure 2. This is the 
structure of the most widely used neural network: the multi-
layer perceptron (MLP) network.25,26 As depicted in Figure 2, 
each layer of the MLP network includes one or more neurons 
directionally linked with the neurons of the previous and the 
next layers.

Besides MLP network, there are many other types of 
neural networks, including probabilistic neural networks 
(PNNs), general regression neural networks, radial basis 
function (RBF) networks, cascade networks, Kohonen 
networks or self-organizing maps (SOMs), learning vector 

Figure 1. Schematic diagram of an artificial neuron. From left to right: 
inputs (i1–iN) are multiplied with synaptic weights (ω1–ωN), the products 
are added (Σ), and the result is passed from a nonlinear function to 
produce the neuron output.

Figure 2. Typical structure of a feed-forward multilayer neural network.
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quantization (LVQ ), Hebb networks, recurrent neural net-
works (RNNs), and hybrid networks.25,26 These networks 
may have different structures compared with MLP network, 
some of them may be more complex than others and gen-
erally they are based on different learning algorithms. The 
selection of the appropriate type of neural network depends 
on the machine learning problem at hand, as each ANN type 
has been designed to address specific issues. However, the 
learning and the predictive abilities of these networks are not 
only problem dependent but are also determined by several 
other factors, such as the parameters of the specific type, the 
network’s architecture (topology), the learning algorithm 
chosen for training, and the characteristics of the data pro-
vided to the network.

Depending on the type of machine learning problems 
that they are called to solve, ANNs can be grouped under 
three main categories, namely, clustering, classification, and 
regression. As far as the learning algorithms are concerned, 
they can also be categorized into supervised, unsupervised, 
and semisupervised learning.

In unsupervised learning (clustering problem),24 there 
is neither an explicit teacher nor training samples. This tech-
nique is applied when the classes of the samples of a data set 
are known in advance. The classification of the feature vectors 
is accomplished by examining the similarity among them 
based on the criteria defining the desired properties of groups. 
The SOMs, also known as Kohonen maps, are the most popu-
lar ANNs for clustering problems.

In supervised learning (classification and regression 
problems),24 a set of training examples are presented to the 
model in order to train it. More specifically, for each training 
sample, a feature vector characterizing the sample along with 
its correct class is provided to the ANN. Based on these train-
ing samples, the classifier learns how to assign a new feature 
vector to a correct class; thus, it obtains the ability to learn 
from past experience in order to provide outcomes for new 
data. In developing intelligent clinical decision support sys-
tems, supervised classification methods are more commonly 
used than unsupervised methods since the task requires out-
come prediction, eg, prediction of disease status. The most 
common ANNs used for supervised classification are the 
MLP network, the PNN, and the RBF network, whereas 
in cases of regression problems, the most widely used are the 
general regression neural network and the MLP network.

Essentially, the construction of an ANN involves the 
development of algorithms addressing a specific problem. The 
difference between an ANN and a conventional computational 

system is the learning through training process, which resembles 
the learning capability of the brain. Via training/learning, 
the ANN self-adapts and changes its structural characteris-
tics. This is based on the information that flows through the 
network neurons.

The pipeline for creating a system with intelligence pow-
ered by an ANN and designed to be used for a production 
system has several, but typical, steps (Fig. 3).

The first step requires the collection of the data. The data 
set size is closely related to the problem’s nature, and several 
times, this data size is required to be augmented after evalua-
tion of the ANN system’s results. Feature extraction and fea-
ture selection algorithms have to be applied in this step in order 
to create an appropriate processing by the ANN input dataset.

The second step is data preprocessing. More specifically, 
data are processed so that any inconsistent values are removed. 
Then, mathematical transformations are applied in order to 
map alphanumeric data to numbers suitable for the specific 
ANN model employed. Additionally, the available data are 
separated into three sets as follows: the training set, which 
is used to train the ANN (ie, to add the knowledge to the 
system); the validation set, which is used as a test platform 
for fine-tuning the model’s parameters and selecting the best-
performing ANN; and the test set, which is used to assess 
the performance of the developed model on data that have 
not been used in any previous step of the designing process. 
More advanced performance assessment methods such as 
cross-validation27 are also very popular. By cross-validation, 
data are divided many times in different training and test sets. 
Subsequently, many models are created and tested; finally, the 
model performance is assessed on the basis of the outcomes. 
Cross-validation is an important technique when the size of 
the available data is small and/or when the number of param-
eters in the model is large. Via cross-validation, overfitting 
and model robustness can be assessed.

The third step involves the selection of the appropriate 
ANN model and the definition of its parameters and charac-
teristics. These characteristics are related to the architecture 
of the ANN. For example, determining the right architecture 
of an MLP network involves selecting the optimal parame-
ters for the network, such as the number of hidden layers, the 
number of neurons of each hidden layer, the transfer functions 
of the neurons, and the learning rate and momentum of the 
learning algorithm. In general, according to the ANN type, 
there are individual characteristics that should be adjusted in 
advance, or, sometimes, defined during the development of 
the system, via trial and error method.

Figure 3. Typical cycle for ANN system development.
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Next, the ANN training takes place. More specifically, 
the training data set is presented to the network layers, and 
the fine-tuning of the system parameters is performed by 
testing it on the validation set. During this step, the ANN’s 
learning algorithm is applied. The role of this algorithm is 
to minimize the total errors of the system. Toward this pur-
pose, a large number of cases with a known outcome are 
provided to the network. The backpropagation (BP) algo-
rithm25,26 is the most common learning technique for train-
ing a typical MLP network. During training with the BP 
algorithm, information about the errors of the network on 
known data is propagated backward from the output layer to 
the input layer and is used to adjust the connections between 
the layers and their neurons (the weights and biases of the 
network) in order to minimize the error and thus improve 
performance.

In the final step of the pipeline, the performance of the 
system is evaluated using the test set, which contains samples 
that have not been used previously in the designing and train-
ing process (unseen data). Satisfactory results of the final step 
indicate that the system has an acceptable performance and, 
therefore, can be used in a production environment for routine 
usage. In the opposite case, all the steps should be reexamined 
from the beginning. The system trainer should go one or more 
steps backward, and after the appropriate changes are made, 
the process should be repeated until satisfactory performance 
is achieved. Acceptable performance means that the ANN can 
predict the outcome of cases that have never been presented to 
the system before.

Cytopathology is a medical specialty that is heavily based 
on images; therefore, the application of ANNs is based on 
image features. The typical pipeline to create ANNs (Fig. 4) 
includes: step a) image acquisition, usually via a digital cam-
era attached to a microscope; step b) according to the type 
of ANNs: b1) nuclei isolation (segmentation) and subsequent 
measurements or b2) transformation of the images, for exam-
ple, via Fourier transform or b3) no processing (when the image 
itself is the direct input to the ANN). The outcome of step b 
is a data set characterizing the nuclei. This data set (step c)  
may be augmented by additional data, for example, clinical 
details (results from other examinations), demographic infor-
mation (such as patient age), or quantified descriptive char-
acteristics of the specimen under examination. In step d, the 
data are separated into training and test sets, and as mentioned 
earlier (Fig. 3), an additional validation set is created. These 
three sets are used for ANN model training, testing, and vali-
dation (step e). Typical nuclei morphometry characteristics 
include (but are not limited to) geometric characteristics such 
as nucleus area, major and minor axis length, perimeter, or 
elongation and pixel-based characteristics such as mean opti-
cal density for each color component, standard deviation of 
color histograms, or more complex features related to texture 
(eg, gray-level cooccurrence matrix characteristics or fractal 
properties).

Cytopathology Areas of Interest
Nowadays, cytopathology is applied to the majority of human 
organs and systems. Specifically, its subdisciplines can be con-
sidered as follows:

•	 gynecologic cytopathology, applied in the female repro-
ductive tract such as the cervix, the endometrium, or the 
ovaries;

•	 cytopathology of the urinary tract, for the examination of 
ureters, the bladder, and urethra;

•	 effusion cytopathology, involving body fluids, specifically 
from the peritoneum, pleura, and pericardium;

•	 breast cytopathology, evaluating cells from the breast;
•	 thyroid cytopathology, for the thyroid gland via fine-

needle aspiration (FNA);
•	 lymph node cytopathology, concerning the lymph nodes;
•	 cytopathology of the respiratory system, relevant to the 

lungs and airways;
•	 cytopathology of the gastrointestinal system, relevant to 

the alimentary tract, but in a broader definition to the 
complete system from mouth to anus;

•	 cytopathology of soft tissues, bones, and skin;
•	 cytopathology for material obtained from the kidney and 

adrenal;
•	 liver and pancreas cytopathology;
•	 central nervous system cytopathology, mainly for the 

examination of cerebrospinal fluid;
•	 cytopathology of the eye; and
•	 cytopathology of the salivary gland.

Subsequently, the identified efforts to apply ANNs in the 
cytopathology subdisciplines are presented.

ANNs in Gynecological Cytopathology, 
the PAPNET System
ANNs are most commonly applied in cytopathology of the 
female reproductive system and particularly in the cyto-
pathology of the cervix. A few hundreds of articles can be 
found in the literature related to ANNs for CxCa, whereas 
semiautomated commercial products based on ANNs are 
available. Based on flow cytometry (FCM), the development 
of these techniques has been constantly evolving from the 
1950s up to present.28

One of the most well-known applications of ANNs in 
CxCa detection is the automated cytological screening sys-
tem for cervical smears, known as the PAPNET system.29 
According to the authors’ knowledge, PAPNET was the most 
successful commercial ANN-based product for CxCa detec-
tion. PAPNET has been mainly used in various comparative 
studies to test within the subcategories of cervical cytology 
reporting, in comparison with the light microscope exami-
nation (aka human observers).30–45 A meta-analysis study by 
Abulafia and Sherer46 concluded that compared with manual 
screening, PAPNET identified 20% more abnormal cases, 
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it has 50% less false-negative cases, and it can classify as 
abnormal 33% of manually screened false-negative slides in 
rescreening. Additionally, better performance is reported on 
high-grade squamous intraepithelial lesion (HSIL) cases47 and 
in most of the cytological categories used for CxCa reporting. 
Especially for cases of squamous cell carcinoma (SCC), which 
were difficult to identify by the light microscope, PAPNET 
was able to identify all of them.39,48 As seen in the literature, 
this system has been extensively used in quality control and 
assurance,42,49,50 as well as, with regard to quality control stan-
dards36 and for inter- and intraobserver variability studies.40 
From these papers, it is concluded that PAPNET reduced the 
number of false-negative cases.51

The cost-effectiveness of PAPNET as a commercial 
ANN-based system has been assessed,52–55 and the results 
are contradicting. Some reports indicated that the cost per 
woman increased,56 taking into consideration that the cost-
effectiveness depends heavily on the setting and varies from 
country to country. Other studies concluded that the cost of 
rescreening all negative slides with the PAPNET system, 
despite the fact that it provided increased sensitivity, could not 
be justified.57,58 Finally, there were cases in which the system 
was found to provide an economical solution.59

There are two major settings proposed for the use of 
PAPNET, either in primary CxCa screening or for rescreen-
ing purposes. For primary screening, the results showed that 

Figure 4. Typical application of ANNs in the field of cytopathology.
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ANNs (or screeners) had better60–62 or similar41 performance 
with cytopathologists, while the screening process in one 
study is reported as a faster method to obtain diagnosis.43 For 
rescreening purposes,63–67 PAPNET achieved the desirable 
target to reduce the number of false-negative cases; however, 
in one paper, the cost-effectiveness of the system was consid-
ered to be questionable.68

Moreover, a third setting for PAPNET application is 
hybrid screening,69 in which case slides diagnosed by the ANN 
system are also reviewed by light microscope. The outcome of 
these research efforts suggests that pure ANN provides opti-
mized prediction of HSIL or negative cases, but for the detec-
tion of low-grade squamous intraepithelial lesions (LSILs), 
the light microscope examination presents additional value.

The major drawback of the majority of comparative stud-
ies that are not targeting cytological categories of HSIL or can-
cer is that there is no evidence of comparisons with histological 
outcomes,70 ie, most of the research papers compare light 
microscope examination vs. the ANN system on cases without 
histological confirmation. In our opinion, it is extremely dif-
ficult to have histological confirmation on a large number of 
cases, because it is neither ethical nor legal to perform biop-
sies for cytological categories with normal, LSIL, and atypi-
cal squamous cells of undetermined significance. Additionally, 
comparative studies incorporate tens of thousands of cases; 
thus, it is not possible to have biopsies for all of them.

Finally, PAPNET was used for comparative studies 
involving human papillomavirus-related molecular tests31 with 
colposcopy techniques71 and has been compared with other 
non-ANN-based semiautomated screening systems, such as 
the Imager® by Hologic®72 or the AutoPap® Guided System.52

Cervix is not the sole organ of the female reproductive 
system. Uterus, ovaries, and the fallopian tubes are part of 
the complete system, and these organs are also of interest for 
pathology and cytopathology. Uterus, and more specifically 
endometrium, is a relatively easily accessible organ to extract 
cells, thus ideal for cytological diagnosis. Despite the applica-
tions of ANNs for the classification of images obtained via hys-
teroscopy,73 the literature related to cytological images is rather 
poor. In 2002, the potential of the LVQ ANN for the classi-
fication of cells from endometrial lesions in postmenopausal 
women was reported.74 The study involved a relatively small 
number of cases: 12 cases of atrophic endometrium (normal), 
48 cases of hyperplasia without cytologic atypia, 12 cases of 
hyperplasia with cytologic atypia, and 48 cases of adenocar-
cinoma. The study applied morphometry in ~100 nuclei from 
each slide, which were subsequently used to train and test the 
LVQ ANN. LVQ appeared to be a good classifier at a cel-
lular level and a useful tool for classification on the individual 
patient level. Specifically, the LVQ assigned 86% of atrophy 
nuclei, 75% of hyperplasias, and 90% of neoplasias correctly. 
Further discrimination between simple and complex hyper-
plasias and complex atypical hyperplasia was not possible, 
while discrimination of individual patients was not reported.

In the case of ovarian cancer, a great number of reports 
regarding the role of ANNs for the discrimination between 
malignant and benign tumors75 (ie, in histological material) 
can be found. However, in cytological material and despite the 
fact that it is feasible to obtain cells via image-guided FNA, 
no reports involving the application of ANNs in the cytopa-
thology of ovaries are available.

ANNs in the Cytopathology of Gastrointestinal 
System
The gastrointestinal system is responsible for consuming 
and digesting food, absorption of nutrients, and expelling of 
wastes. In a broad definition, this system includes all organs 
and structures between the mouth and anus; esophagus, stom-
ach and duodenum, small and large intestines, salivary glands, 
and pancreas are included in this system and, therefore, are of 
particular interest to cytopathology.

The application of ANNs to gastrointestinal cytopathol-
ogy was first attempted in 1993.76 More specifically, Molnar et al  
analyzed 21 normal, 15 dysplastic, and 23 malignant, gas-
tric imprint smears stained by Feulgen technique. The mean 
DNA content, the 2c deviation index (2cDI), 5c exceeding 
rate (5cER), G1, S, and G2 phase fraction ratios, cell nucleus 
area, and form factor were measured in this study. They 
applied discriminant analysis, yielding a diagnostic accuracy 
of 96% for the malignant cases, 87% for dysplasias, and 81% 
for normal cases. Subsequently, the BP ANN was applied, 
and all the normal and malignant cases (100%) and all but 
one of the dysplasias (98%) were correctly classified. In 1996, 
a second article77 investigated nuclear morphometry and the 
BP ANN for the discrimination of benign and malignant gas-
tric lesions. The study group had 23 cancer, 19 gastritis, and 
58 ulcer cases. In contrast to the method applied by Molnar et 
al,76 image morphometry on cell nuclei was employed in order 
to measure geometric and textural characteristics. In that 
particular study, the description of two different architectures 
of the BP ANN can be found. Ultimately, 97.6% of benign 
nuclei and 95% of malignant nuclei were correctly classified. 
These preliminary results indicated that image morphom-
etry and ANNs may effectively discriminate malignant from 
benign gastric cell nuclei; however, no discrimination at sin-
gle patient level was applied. One year later, the comparison 
of BP and LVQ was presented;78 the two ANNs gave com-
parable results, with an overall accuracy of ~97% for benign 
and malignant nuclei classification. After this paper, a study79 
compared three variations of the LVQ that had similar per-
formance. In 2000, a cascaded RNN to investigate cell nuclei 
from 19 cases of cancer, 19 cases of gastritis, and 56 cases of 
ulcer as a test set was applied.80 The application of the RNN 
gave correct classification in 96% of benign nuclei and 89% of 
malignant nuclei. In these papers, different ANN architec-
tures were tested giving encouraging results in the classifica-
tion of cell nuclei from the stomach, but without using the 
patient as end point.
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Despite the fact that this PAPNET was originally 
designed for cervical cytopathology, in 1998 Koss et al81 used 
this system to examine cells from 138 esophageal smears 
obtained from an equal number of patients. PAPNET iden-
tified potentially malignant images, which were subsequently 
examined by medical experts. Specifically, 128 cell images 
are classified in each case. In this study, all 35 patients with 
cancer—esophageal, gastric, oral, or metastatic—were cor-
rectly identified; in 11 cases, effects of radiotherapy were 
detected; in 8 patients, SCC was recognized; 6 patients were 
found with adenocarcinoma; and 3 additional cases revealed 
carcinoma not further specified. Interestingly, PAPNET 
enabled the detection of one case of esophageal carcinoma in 
situ that was not previously recognized on a smear or biopsy 
specimens, as well as one case of gastric adenocarcinoma; thus, 
ANN-based systems succeeded with greater accuracy than 
human experts in an organ that the system was not originally 
designed to be applied.

In 1998, PAPNET was used to screen oral cytological 
material. In this setting, PAPNET proved to have a perfor-
mance of 61% in detecting oral SCC,82 with false-negative 
cases being attributed to bad preparation. PAPNET was 
also used to investigate sputum cytological samples.83 The 
authors used 122 single slides of sputum specimens. Accord-
ing to the results from the 31 smears with cancer cells, 
30  were appropriately identified by PAPNET (sensitivity: 
97.1%), while PAPNET missed only one case of small cell 
carcinoma that contained just one cluster of neoplastic cells. 
PAPNET also resulted in reviewing 20 of the negative cases, 
which on reevaluation were identified as bronchial cells with 
squamous metaplasia and altered benign squamous cells of 
inflammatory type. According to the authors, before apply-
ing PAPNET for screening of sputum samples, a prospec-
tive study is needed in order to establish the clinical value 
of the method.

In 2008, a group of researchers published a report84 for 
preoperative prediction of tumor staging by ANNs using 
clinicopathological datasets and genetic variables. The study 
involved 121 patients with primary gastric cancer; the accu-
racy of the method used was 81.8%. These researchers dis-
covered important factors associated with tumor staging, 
specifically age and polymorphisms of a number of specific 
genes. It was concluded that the proposed method had the 
potential to serve as a prognostic system for staging and for 
individualized patient care.

In summary, with regard to the application of ANNs 
to the organs of the gastrointestinal system, the investiga-
tion resulted in 10 articles with rather small number of 
cases. However, the results for all cases can be considered as 
encouraging and have the potential to trigger more exten-
sive efforts in the everyday laboratory setting. In Table 1,  
the technical and performance characteristics of the 
applied ANNs in the gastrointestinal system organs are 
summarized.

ANNs in the Cytopathology of Thyroid Gland
Thyroid examination is one of the success stories of cytopathol-
ogy because it is based on FNA; the method is relatively pain-
less; cells extracted via this method are either directly placed 
on the glass slide or immersed in a solution and subsequently 
placed on a single cell layer. Thyroid FNA is performed with 
the help of ultrasonography (US-guided FNA) so that specific 
thyroid nodules can be accessed. According to the cytological 
examination findings, a decision is made whether a surgical 
operation of the thyroid gland is required and also the extent 
of the operation.

ANNs appeared in thyroid disease evaluation in 1993.85 
However, applications in cytopathology appeared in 1996.86 
The BP ANN was tested on the discrimination of benign from 
malignant thyroid nuclei, according to nuclear morphometry. 
More specifically, nuclei from 51 patients with thyroid diseases 
were processed. A correct classification of 90.6% of nuclei was 
achieved with the application of the BP NN. Subsequently, 
classification at a single patient level had an overall accuracy of 
98% of the cases. In 1999,87 four variations of the LVQ clas-
sifier (LVQ1, LVQ2.1, LVQ3, and OLVQ1) were tested on a 
larger set: 100 cases of goiter and follicular adenomas (FAs), 11 
cases of follicular carcinoma, 35 cases of papillary carcinoma, 
24 cases of oncocytic adenoma, 8 cases of oncocytic carcinoma, 
and 20 cases of Hashimoto thyroiditis. In this paper, the mean 
value and standard deviation of nucleus morphometry features 
were used; thus, patients were represented from cumulative 
nuclei measurements. LVQ variations enabled 97.7% clas-
sification of benign vs. malignant patients, but no important 
results in the classification of other histological subgroups were 
reported. In 2006, Cochand-Priollet et al88 performed nuclear 
morphometry followed by statistical preselection of significant 
features (only four features were found to be important). In this 
study, four classifiers were subjected to comparison, namely, (a) a 
linear classifier, (b) a two-layer feed-forward ANN (2L-FNN), 
(c) combined 2L-FNN generated by the AdaBoost, and (d) the 
k-Nearest Neighbors classifier. The results of the classifiers 
were in the range of 83%–94%; however, the linear classifier 
had the worst performance (65%) in patient discrimination. 
This proved that ANNs can be more accurate than traditional 
methods due to their nonlinear nature.

In 2007, Shapiro et al89 analyzed 197 thyroid follicular 
tumors (adenomas and carcinomas), and the research group 
tested several types of ANNs with different designs. They 
used nuclear morphometric parameters (area, perimeter, 
and shape factor) and density features of chromatin tex-
ture (mean value and standard deviation of gray levels). The 
ANNs were based on the means of the cytological features’ 
characteristics in order to represent the outcome for a patient 
instead of single nuclei. The method increased the accuracy 
of diagnosis for follicular tumors to 97% (75 out of 78) of 
cases and ANNs distinguished adenomas from carcinomas 
by 87% (73 out of 84). In conclusion, the authors reported 
that ANNs raised the sensitivity of cytological diagnosis of 
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follicular tumors to 90%, compared with the usual cytologic 
method (sensitivity of 56%).

In 2004, a research team studied the problem of thy-
roid cases with not determinate cytological diagnosis.90 The 
study had 453 patients and used a feed-forward ANN fed 
with cytological and clinical data. The classification aim was 
to categorize patients from high to low risk. The researchers 
discovered that only the cytological parameters contributed to 
this classification. Comparing the receiver-operating charac-
teristic (ROC) curves, the ANN model discriminated with 
higher sensitivity and specificity between benign and malig-
nant nodules compared with standard cytologic criteria and 
there was no degradation between the training and test set; 
thus, the method was confirmed to be robust and valuable in 
the gray zone of cytopathology of the thyroid, ie, in cases of 
undetermined significance.

In 2006, the use of a complex of quantitative cytological 
characteristics to differentiate between follicular cancer (FC) 
and FA (84 patients in the test set) with an overall accuracy of 
96% on the test set was reported,91,92 and an effort to discrimi-
nate FAs from FCs was reported. This was an extremely inter-
esting article, regarding the manner in which the ANN was 
applied. A two-layer ANN was employed. The first layer had 
one input assigned to each training image and the classifica-
tion was based on image characteristics extracted via Fourier 
frequency bands; thus, no morphometry was applied. Also, the 
second interesting characteristic of this approach was that the 
system discriminated each case as FC, FA, or unknown. In 
this way, the research team not only applied an ANN directly 
on images but also additionally handled cases not possible to 
be otherwise discriminated with acceptable accuracy.

In 2008, Daskalakis et al93 reported on the use of a mul-
ticlassifier system for distinguishing benign and malignant 
thyroid nodules taken via FNA. The researchers constructed 
a multiclassifier system (ensemble of classifiers) using several 
combinations of rules and mixtures of the different classifiers 
involved. The study was based on nuclear morphological and 
textural features. The results indicated that the best ensemble 
of classifiers had better accuracy (95.7%) compared with the 
best single classifier (89.6%). The involved classifiers were 
linear least-squares minimum distance, statistical quadratic 
Bayesian, k-NN, support vector machine (SVM), PNN, and, 
of course, ensembles of these. This approach highlights a new 
combinatorial methodology for cytopathology that has the 
potential to obtain better accuracy.

In 2011, a new study94 investigated the potential of the 
LVQ on nuclei measured from monolayer (ThinPrep) smears. 
The study involved 335 patients and nuclear morphometry 
describing size, shape, and texture of ~100 nuclei per case. 
LVQ discriminated individual cells as benign or malignant, 
and a cascaded second LVQ ANN subsequently discrimi-
nated the patients. The application of the proposed combined 
ANNs had an overall accuracy of 94%. The study concluded 
that the diagnostic accuracy of thyroid FNA can be improved 

by the use of ANNs. More interesting results were for 
follicular neoplasms suspicious for malignancy and in Hürthle 
cell tumors. This is the second combinatorial application of 
ANNs, although it is using a sequential approach rather than 
the ensemble proposed in the study by Daskalakis et al.93

The most recent research in thyroid cytopathology was 
published in 2014.95 Ozolek et al described a method to distin-
guish between follicular lesions of the thyroid. They utilized 
the optimal transport-based linear embedding for segmented 
nuclei96 together with an adaptation of existing classification 
methods. The classification results were nearly perfect as they 
correlated well with the clinical diagnosis. The data set came 
from 94 patients, and despite that it was based on histological 
sections, the classification was based on isolated nuclei using a 
supervised method.97

The diverging techniques employed in these research 
efforts and the nonstandardized method of presenting the 
results do not allow comparison of the techniques. However, 
the main characteristics in each paper, ie, the cases involved in 
each study, the variables/features used, the ANN model, and 
methodology, as well as the major results of the ANNs applied 
in thyroid cytopathology, are summarized in Table 2.

ANNs in the Cytopathology of the Breast
ANNs have been intensively used in breast cancer on the basis 
of imaging methods. A search in PubMed using the terms 
“breast” and “neural network” results in 50 publications, 
most of them related to ANNs for the evaluation of imaging 
material such as X-rays, US images, and thermographs. This 
is probably due to the fact that the standard screening method 
for breast cancer is based on imaging modalities. However, 
there have been efforts to evaluate cytological material as well.

In 1990, Wolberg and Mangasarian98 created three sys-
tems on the basis of cytological descriptive parameters using 
369 cases as the training set and 70 cases as the test set (57 
benign and 13 malignant). The first system generated a mul-
tisurface pattern separation and misclassified one malignant 
test sample; the ANN system misclassified two benign test 
samples and a classification and regression tree-based system 
misclassified three of the benign test samples. The results were 
promising as no malignant case was missed by the ANN. 
The following year (1991), Dawson et al used the CAS-100 
(Cell Analysis Systems) system to measure and analyze nuclear 
morphometric and texture features of cytological preparations 
from 35 breast carcinomas (well, moderate, and poorly dif-
ferentiated) as well as benign lesions.99 The extracted features 
were morphometric parameters and Markovian texture fea-
ture data from nuclei of different grades. Two methods were 
tested, namely, multivariate Bayesian analysis and an ANN. 
The researchers tried to perform deep classification (ie, to 
identify the nuclear grade of individual nuclei). Both classifi-
cation systems were able to assign a correct grade to low-grade 
lesions (~70% correct) more often than to high-grade tumors 
(~20%). The researchers reported that difficulties in correct 
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assignment of high-grade tumors could be explained by the 
presence of nuclear heterogeneity in these tumors, ie, high-
grade nuclei frequently did not predominate in high-grade 
smears. This research highlighted the problem of completely 
automated systems, where the landscape of the cytological 
slide is not dominated by abnormal cells; thus, such systems 
should have the capability to assist diagnosis based on a few 
cells or clusters.

In a 1992 study,100 an ANN was used successfully to 
predict the clinical outcome of node-positive breast cancer 
patients. The aim was to predict the clinical outcome for 1008 
patients. Input information involved clinical laboratory data, 
specifically tumor hormone receptor status, DNA index and 
S-phase measured by FCM, tumor size, number of axillary 
lymph nodes involved with tumor, and age of the patient, as 
well as the length of clinical follow-up, relapse status, and 
time of relapse. The ANN was tested on a separate set of 
960 cases. The ANN was as powerful as Cox regression mod-
eling in identifying breast cancer patients at high and low 
risk for relapse.

In 1997, two studies investigated the role of ANNs in 
breast cytological material. In the first study,101 the BP ANN 
was tested for the distinction of benign from malignant 
breast cell nuclei. The study was carried out on 68 carcinomas 
and 32 benign breast lumps. A set of image nuclear features 
was investigated in the discrimination at the nucleus level 
(achieving an overall accuracy of 87%), and subsequently at 
the patient level, correct diagnosis was achieved in 98% of 
cases. On the same data set, the LVQ ANN102 was applied 
that correctly classified 87.4% of the cells; subsequently, a 
threshold-based method achieved the same accuracy on indi-
vidual patients. Both studies indicated that ANNs and image 
morphometry have the potential to assist the diagnosis of 
breast cytological material.

One year later (1998), Ohno-Machado and Bialek103 
compared the selection of variables for building two classifi-
cation models: ANN and logistic regression. The researchers 
used a set of 460 cases to build the models that would clas-
sify cell samples obtained by FNA as malignant or benign, 
depending on nine pathology features. Variables selected by 
a step-down logistic regression model were compared with 
those selected by a measure of relevance derived from ANN 
weights. Despite that both types of models resulted in similar 
predictive accuracy, the same variables were not identified as 
important for classification. Thus, variable relevance based on 
weights for neural network models does not seem to be a con-
sistent index of the importance of that variable for multivari-
ate models such as logistic regression. This study highlighted 
the use of ANNs in the evaluation of discrimination power of 
individual features.

The same year, Reigosa et al104 used 46 cases of intra-
ductal breast carcinoma aiming to classify them into high- or 
low-grade nuclear grade on the basis of histological images and 
a BP ANN. Despite the fact that the authors used histological 

material, the results seem to be reproducible in cytological 
material because all the studied characteristics were based 
on nuclear measurements. At least 200 nuclei per case were 
measured using various morphometric characteristics. How-
ever, the variance of the measurements was used as an input to 
the ANN in order to approximate the complete picture. The 
ANN system had an accuracy of 97.5% as compared with the 
consensus of at least two of the three expert pathologists who 
decided on the grading. Note that consensus between any two 
pathologists was no higher than 85%, while consensus of the 
BP ANN with any of the three pathologists was no smaller 
than 87.5%. This work demonstrated that ANNs could act as 
decision support tools in the definitive classification of intra-
ductal carcinomas.

Einstein et al,105 in 1998, explored the use of fractal anal-
ysis in the numerical description of chromatin appearance in 
breast cytology. They used images of nuclei from FNA of the 
breast characterized in terms of their Minkowski and spec-
tral fractal dimensions. The study involved 19 patients with 
benign epithelial cell lesions and 22 with invasive ductal car-
cinomas. The authors proved that chromatin appearance in 
breast epithelial cell nuclear images could be considered as 
fractal. Not only statistically significant differences between 
the fractal properties of benign and malignant nuclei were 
found but it was also suggested that it is possible to assign 
human understandable texture description to fractal proper-
ties. The research team applied logistic regression, which cor-
rectly diagnosed 95.1% of the cases and ANNs that classified 
all cases correctly.

The most recent papers of ANNs in breast cytologi-
cal material appeared in 2013 and 2014. In the first article, 
Dey et al106 used histology-proven breast lesions consist-
ing of 20 fibroadenomas, 28 infiltrating ductal carcinomas 
(IDCs), and 16 infiltrating lobular carcinomas (ILCs). The 
morphometric analysis was performed on hematoxylin and 
eosin (H&E)-stained smears. The novelty of this work was 
the introduction of some objective morphological informa-
tion produced by human experts such as sample cellularity 
and nucleoli characteristics, among others. The research-
ers applied a BP ANN, which, in the test set, classified all 
the benign and ILC cases and six of the seven IDC cases. 
Thus, the authors implemented an ANN able to differentiate 
IDC from ILC on FNA material and introduced contextual 
features evaluated by cytopathology experts. In 2014,107 the 
application of a BP ANN model constructed on the basis 
of cytomorphological data, morphometry, nuclear densitom-
etry data, and gray-level cooccurrence matrix information 
was reported. The researchers used 52 cases of fibroadeno-
mas and 60 cases of IDC on H&E-stained smears. The BP 
model identified all cases of fibroadenomas and infiltrating 
carcinomas in the test set.

Table 3 summarizes the results of the efforts on breast 
cytopathology, technical details of the applied systems, as well 
as the performance metrics.
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ANNs in the Cytopathology of the Urinary System
The majority of efforts related to urological cancer and ANNs 
are based on clinical data,108,109 specifically for prostate cancer 
prognosis, bladder cancer diagnosis, grading and prognosis, 
testicular and renal cancer staging on the basis of tissue speci-
mens, and additionally for image interpretation and planning 
of treatment. Cytology of the urinary system is based on urine 
collection and, therefore, is a completely painless and rela-
tively easy process to apply for the patient, in contrast to the 
discomfort caused when a tissue sample has to be acquired. 
Thus, it is a very popular discipline.

There is a relatively small number of reports on cytological 
material. The idea of computer-based discrimination of uro-
thelial cells according to our search first appeared in 1975.110 
Approximately 15 years later, Moallemi111 presented an ANN-
based system that could serve as the front end of any image 
analysis application targeting urothelial cells. More specifi-
cally, he implemented an MLP network-based algorithm that 
operates using automated image measurements on cytological 
images. The MLP network decides if the objects under inves-
tigation are cells that require further processing or should be 
rejected as not important. The proposed methodology achieved 
an accuracy of 93.4% in detecting objects that require subse-
quent processing. Despite the fact that the ANN does not 
perform the classification step into medical diagnoses, it intro-
duces the concept of selecting objects in the cytological field of 
view for subsequent analysis via the use of ANNs. This intro-
duces the idea of the use of ANNs for fully automated systems.

In 1998, Pantazopoulos et al112,113 applied the BP and LVQ 
ANN on 50 cases of lithiasis, 61 of inflammation, 99 of benign 
prostatic hyperplasia, 5 of carcinoma in situ, 71 of grade I, and 
184 of grade II or III transitional cell carcinoma of the bladder. 
The approach was based on image morphometry and subse-
quently on ANN application on nuclei measurements. At the 
patient level, the methods gave correct classification of 100% of 
benign patients and 94.51% of malignant patients with 96.96% 
overall accuracy. The comparison of BP and LVQ114 indi-
cated that both ANNs had similar performance at the patient 
level. The same year Van Biesen et al115 reported on the use of 
unsupervised ANNs, specifically on the use of 10 × 10 neuron 
Kohonen’s SOM on 41 mainly clinical and a few cytological 
parameters from 75 patients aiming to discriminate patients 
with glomerular from tubular disease. Their results showed 
that SOMs have higher sensitivity and predictive value than 
the nephrologists’ diagnoses and that the best classification was 
based on a hybrid system. Specifically, sensitivity and predic-
tive value for the diagnosis glomerular were 100% and 88% for 
the SOM, 90% and 83% for nephrologists, and 95% and 96% 
for the hybrid system, respectively. The authors concluded that 
ANNs may give a new insight into the diagnostic approach of 
renal disease and that the approach uncovered misconceptions 
in the problem-solving strategies of the clinicians. According 
to the literature search, this was the sole article that reports the 
application of a nonsupervised ANN on cytological material.

Two years later (2000), Vriesema et al116 performed 
a pilot study of the PAPNET system. The researchers used 
PAPNET to detect urothelial cell carcinoma of the bladder. 
They employed 85 bladder wash samples and compared the 
results obtained with a commercial image analysis system 
QUANTICYT (BioProcon) and human examination using 
the microscope. They provided risk estimation as low, inter-
mediate, and high. The sensitivity of ANNs for diagnosing 
was 92%, whereas microscope and QUANTICYT showed 
sensitivities of 50% and 69%, respectively. For the predic-
tion of a positive cystoscopy, the highest area under the curve 
(AUC) for ANNs was found to be 0.71, while it was 0.58 for 
the microscope. For predicting tumor recurrence after a nega-
tive cystoscopy, QUANTICYT had the highest AUC value 
(0.62), whereas ANN had 0.50.

ANNs in the Cytopathology of Effusions
Effusion cytology is related to fluid collections, usually from 
the peritoneum, pleura, and pericardium. Such fluids are col-
lected with the use of a needle; the fluid is centrifuged to 
obtain cells and subsequently create slides. Despite that effu-
sion cytology is extensively applied, according to the search 
results, there are only two reports of ANNs’ applications.

In 1995, Truong et al117 applied BP ANNs on image mor-
phometry data for 112 Papanicolaou smears of lymphocyte-rich 
effusions. The aim was to differentiate reactive lymphocytosis 
from malignant lymphoma. An architecture of 7-10-1 neurons 
with sigmoid transfer function, using five morphometry and 
two densitometry features as inputs, enabled the correct clas-
sification of 89.3% of the test set, with sensitivity of 76.9% and 
specificity of 93.0%. The same BP architecture with a step 
transfer function gave an overall accuracy of 95.3%, sensitiv-
ity of 85.7%, and specificity of 97.6%. Obviously, the transfer 
function had an important effect on performance. Additionally, 
the results on the nucleus level classification were encouraging. 
This paper highlighted the role of the ANNs’ parameterization 
in the final accuracy.

The second report was in 2012; Barwad et al118 built a 25-2-1 
BP ANN for differentiating carcinomas from benign cases in 
effusion cytology. The researchers used 114 cases (57 benign 
and 57 malignant). Image morphometric, densitometric, and 
chromatin texture data were used as inputs to the system. 
Simultaneously, a logistic regression analysis was performed 
for direct comparison with the ANN: both the ANN and the 
logistic regression identified correctly all the benign and malig-
nant cases. Both reports provided consistent results in cellular 
and patient level, indicating the potential of ANNs in effusion 
cytopathology, considering that larger data sets are needed and 
extensive validation is required in the clinical practice.

Discussion and Conclusions
In general, ANNs and artificial intelligence have been used 
in clinical decision support since the early days of comput-
ing. Even from the 1990s,5 the concept of introducing ANNs 
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in cytopathology tasks was presented, aiming mainly to cre-
ate and operate prototype ANNs designed and developed to 
solve simple pattern recognition problems. In addition, ANNs 
have been proposed for database analysis and machine vision.5 
There are several advantages in choosing such an approach: 
ANNs have the ability to tolerate ambiguous, noisy, and spu-
rious data, and since they can be trained, they can handle 
unfamiliar cases. ANNs were proposed to be used alongside 
other traditional algorithmic processing techniques for the 
development of systems useful in quantitative pathology.

The analysis of the literature proved that the vast major-
ity of ANN applications are for cervical cytopathology. Addi-
tionally, there are commercialized ANN-based systems and 
the literature relates not only to diagnostic performance but 
also to the application of ANNs in quality control and cost-
effectiveness studies. This is an expected result as the first 
widespread application of cytopathology is related to CxCa. 
Other cytopathology disciplines have exploited ANN tech-
nologies to a much smaller degree. These are in agreement 
with the popularity of cytological examinations according to 
the biological systems/organs. The majority of the proposed 
ANN applications are related to breast and thyroid cytopa-
thology as well as cytopathology of the urinary tract. ANNs 
have been applied to a smaller degree on cytopathology of 
the gastrointestinal system and to a lesser degree in effusion 
cytopathology. Yet, there are cytopathology subdisciplines 
that have not yet used ANNs, especially, cytopathology of 
the lymph node, respiratory system, soft tissues, bone and 
skin, liver and pancreas, central nervous system, and the eye, 
among others. This is probably due to the fact that there are 
significantly few patients who benefit from these cytology 
examinations. Additionally, the biological material is difficult 
to be collected, and the impact is smaller because it affects 
few patients. In summary, application of ANNs on such types 
of biological material is still an open research topic today.

Excluding cervical cytopathology, in the vast majority 
of articles, results of the application of ANNs on cell nuclei 
measurements were presented. This is to our opinion a disad-
vantage, because, despite that cytological diagnosis is based 
mainly on nuclear characteristics, the contextual characteris-
tics should not be neglected (ie, structures formed by nuclei 
are important diagnostic criteria). Only a few articles have 
taken into account the contextual characteristics, although in 
a subjective manner, because there is no measurement process 
but a human-based context characterization. In some papers, 
the standard deviation of nuclei measures was used to approx-
imate such conditions. Thus, in the majority of the efforts, 
contextual characteristics were missing or not objectively 
evaluated. Moreover, other important findings, for example 
colloid presence in thyroid cytopathology, were not considered 
at all. The use of contextual parameters to our opinion is very 
important to achieve accurate diagnosis; thus, efforts toward 
the inclusion of scene context in an objective (ie, measurable) 
manner are required. In fact, commercialized systems take 

into account such characteristics as the first slide evaluation is 
in low magnification.

The isolation and selection of nuclei in most of the cases 
were performed by human experts. This is due to technical 
difficulties in automated segmentation of the images for auto-
matic nuclei detection. In fully automated systems, nuclei 
detection, separation from artifacts, identification and separa-
tion of touching, or overlapping nuclei are crucial. Techniques 
creating slides with single-cell layer (monolayer) come to facil-
itate this procedure; however, image-processing algorithms 
with acceptable performance both in speed and detection 
accuracy for nuclei isolation in a routine setting are missing. 
Such algorithms are heavily dependent on both staining and 
cell characteristics of each tissue type and anatomical site; note 
that the human body has more than 200 different cell types.

Understanding the cell nucleus textural content is another 
important issue, as nucleus chromatin and other organelles are 
crucial in malignant cases; thus, specific textural measures are 
required. Most of the texture measurement methods are not 
performing well, for example in the differentiation of nuclei 
with a chromatin pattern distributed in the periphery. A link 
of the nucleus textural morphometry, as this is perceived 
by human beings, to fractal-based texture measurements 
was reported in only one article. Methods where ANNs are 
applied on nuclei images seem to have an advantage in the 
textural characterization of the nucleus.

The number of nuclei required for the classification of a 
case is important. However, only one study stated the mini-
mum number of nuclei required. The selection of nuclei that 
will be measured and subsequently evaluated by ANNs is 
important. In most cases, there is a manual nuclei selection; 
thus, a selection process is applied in advance. However, in the 
field of view, there are coexisting cells presenting malignant 
characteristics along with benign nuclei. In an automated set-
ting, proper differentiation should be performed.

Accurate reproduction of measurements in different 
imaging systems is important. For example, microscope light 
intensity may affect pixel-based measurement and hence some 
researchers have performed histogram equalization, while 
others have performed light adjustment in order to achieve 
specific color values in an empty field.

In terms of the type of ANNs employed, the popular 
multilayer feed-forward BP architecture was the most used. 
Only one article exploits the capabilities of unsupervised tech-
niques, such as the SOM and 5 papers using LVQ , RBF, and 
other architectures and algorithms. There was only one paper 
in which the effect of the transfer function in the ANN per-
formance was evaluated. Thus, ANN-related studies may con-
sider the effect of the parameters on the performance metrics.

Recently, deep learning algorithms have shown impressive 
performance in machine vision applications, including medical 
image processing and histopathology image analysis.13–15,119,120 
A deep neural network (DNN) is an ANN with multiple hid-
den layers of units between the input and output layers.121 
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system has declined during these years; therefore, the 
PAPNET-related publications (dominating this research) 
seem that followed this trend, (b) a second reason could be 
overfitting; in some papers, there is no separation of data 
into training and test sets, and in the majority of articles, the 
robustness of the ANNs is not evaluated, and (c) obtaining 
morphometry data is an extremely hard process, because there 
are no well-established nuclei segmentation algorithms, and 
the use of ANNs directly on the images is a very new field, 
after deep architectures have emerged.

Comparison of the performance of the applied tech-
niques is not always feasible. The overall accuracy is not the 
ideal performance index, as misclassifying a disease case has 
a different effect compared with misclassifying a nondisease 
case. Specificity and sensitivity are more representative per-
formance indices; however, these metrics are not provided 
in all articles. Additionally, the proportion of data included 
into the training and test set is not standardized, and in some 
cases, a test set is not there at all. Therefore, comparison of 
the involved techniques cannot be objective. This fact points 
toward the requirement of providing the used datasets to the 
research community and to standardize performance metrics.

It is well known that ANNs have some disadvantages as 
follows: (1) a large number of variables is required that have 
to be parameterized during learning, comparing for example 
to decision trees, (2) they are black box models, thus it is not 
possible to perform knowledge discovery, as for example in 
decision trees, where it is possible to extract human under-
standable rules that lead to the classification result, (3) some 
architectures can be trapped to local minima, and not lead to 
the optimal solution, (4) the training process, especially for the 
BP algorithm, requires a lot of computational power. Hope-
fully, modern computers will be able to provide such resources, 
and GPUs (Graphics Processing Units) can be used to decrease 
training by hundreds of times and training algorithms can 
be parallelized, (5) overfitting on the training data set is a 
frequent issue, thus special care should be taken to ensure 
their robustness, and (6) there are no established algorithms 

DNNs have the exact same structure as classical MLP neural 
networks, except that the number of hidden layers is greater so 
that they can be considered deep. Similar to shallow ANNs, 
DNNs can model complex nonlinear relationships. One of the 
main advantages of the DNNs compared with classical ANNs 
is the fact that these models do not need to be provided with 
predefined features chosen by an engineer, but they can learn 
features from the data set by themselves, ie, they perform auto-
matic feature extraction without human intervention, unlike 
most traditional machine learning algorithms. The ability to 
automatically extract hierarchies of features from images is the 
reason why DDNs perform so well in image recognition and 
classification tasks13–15,119–121 and are so promising for cytopa-
thology applications directly on microscopic images.

Modern cytopathology laboratories apply molecular 
biology techniques as an adjunct to cytological examination. 
FCM is one of these methods,122 as it provides new quan-
titative information that complements the morphological 
examination during microscopic inspection. It is particularly 
useful for assessing lymphoid lesions, from FNAs, cerebrospi-
nal fluid, or effusions. FCM may quantify a lot of parameters 
simultaneously on the basis of cell differentiation markers 
and DNA quantification. In FCM, the number of measured 
cells is in the order of tens of thousands, and there are various 
parameters measured for every cell. Thus, the development 
of ANN-based methods seems to be of interest if applied 
on FCM data.123 Actually, some applications of ANNs in 
FCM124–128 have been reported; some authors report that for 
field studies, the problem of obtaining suitable training data 
needs, as well as the number of cell categories, is an issue. This 
is clearly a field that needs further research.125

According to search results from SCOPUS and PUBMED 
bibliographical database for articles relevant to PAPNET, the 
number of relevant publications peaks in 1997–2000. Since 
2000, the literature can be considered rather poor (Fig. 5).

Efforts to apply ANNs in cytopathology seem to have 
stopped around 2000. We can only speculate about this phe-
nomenon as follows: (a) the PAPNET use as a commercial 

Figure 5. Historical evolution of publications with the keyword PAPNET according to SCOPUS bibliographic database (A) and PUBMED (B).
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allowing to add new knowledge to ANNs without training 
them again, ie, when more data become available it is not pos-
sible to use only this new data and gain new knowledge from 
an already-trained ANN. Despite the disadvantages, the liter-
ature research showed that ANNs have the capability of learn-
ing and may assist cytopathologists in their decision-making. 
If they are used correctly, ANN models can be superior to 
standard statistical methods, allowing flexible data interro-
gation and reliable prediction of disease status. Advances in 
image analysis and intensive tests on large data collections 
in the cytopathology environment are the requirements for 
the widespread implementation of the method. ANNs may 
become an important asset in the cytopathology laboratory of 
the future and lead toward better decision support systems.
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