
Cell–cell communication enhances the capacity of
cell ensembles to sense shallow gradients
during morphogenesis
David Ellisona,b,1, Andrew Muglerc,d,1, Matthew D. Brennana,b,1, Sung Hoon Leeb, Robert J. Huebnere, Eliah R. Shamire,
Laura A. Wooa, Joseph Kima, Patrick Amarf, Ilya Nemenmanc,g,2, Andrew J. Ewalde,2, and Andre Levchenkob,2

aDepartment of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218; bDepartment of Biomedical Engineering and Yale Systems Biology
Institute, Yale University, New Haven, CT 06520; cDepartment of Physics, Emory University, Atlanta, GA 30322; dDepartment of Physics and Astronomy,
Purdue University, West Lafayette, IN 47907; eCenter for Cell Dynamics and Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205;
fUniversité Paris-Sud, 91405 ORSAY Cedex, France; and gDepartment of Biology, Emory University, Atlanta, GA 30322

Edited by Herbert Levine, Rice University, Houston, TX, and approved December 9, 2015 (received for review August 20, 2015)

Collective cell responses to exogenous cues depend on cell–cell
interactions. In principle, these can result in enhanced sensitivity
to weak and noisy stimuli. However, this has not yet been shown
experimentally, and little is known about how multicellular signal
processing modulates single-cell sensitivity to extracellular signal-
ing inputs, including those guiding complex changes in the tissue
form and function. Here we explored whether cell–cell communi-
cation can enhance the ability of cell ensembles to sense and re-
spond to weak gradients of chemotactic cues. Using a combination
of experiments with mammary epithelial cells and mathematical
modeling, we find that multicellular sensing enables detection of
and response to shallow epidermal growth factor (EGF) gradients
that are undetectable by single cells. However, the advantage of
this type of gradient sensing is limited by the noisiness of the
signaling relay, necessary to integrate spatially distributed ligand
concentration information. We calculate the fundamental sensory
limits imposed by this communication noise and combine them
with the experimental data to estimate the effective size of mul-
ticellular sensory groups involved in gradient sensing. Functional
experiments strongly implicated intercellular communication through
gap junctions and calcium release from intracellular stores as me-
diators of collective gradient sensing. The resulting integrative
analysis provides a framework for understanding the advantages
and limitations of sensory information processing by relays of
chemically coupled cells.
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Responses of isogenic cells to identical cues can display con-
siderable variability. For instance, a population of cells will

typically exhibit substantial variation in gradient sensitivity and
migration trajectories within the same gradient of a diffusible
guidance signal (1). The variation in response could arise from
the inherent diversity of cell responsiveness (2–5), but it can be
further exacerbated if the gradients of extracellular signals are
shallow and noisy (6–11). In fact, sensing shallow gradients can
approach fundamental physical limits that define whether dif-
fusive graded cues can bias cell migration (12, 13). However, the
spatially biased response can improve and its uncertainty can be
substantially reduced if individual cells are coupled while respond-
ing to molecular gradients (5, 14–21). Strong cell–cell coupling
might reduce the response noise by averaging individual responses
of multiple cells (22–27). It can also alleviate sensory noise by
extending the spatial range of the sensing, thus increasing the
potential for more precise detection of weak and noisy spatially
graded inputs. Importantly, however, cell–cell communication in-
volved in such collective sensing may be itself subject to noise,
reducing the precision of the communicated signals and therefore
the advantage gained from an augmented size of the sensory and
the response units. The interplay between the increasing signal

and accumulating communication noise associated with the mul-
ticellular sensing and thus the limits of this multicellular sensing
strategy remain incompletely understood.
An example of collective cellular response is branching mor-

phogenesis of the epithelial tissue in mammary glands (28–30).
The dynamic processes, whose coordinated regulation leads to
formation, growth, and overall organization of branched epithelial
structures, are still actively investigated (29). Conveniently, the
morphogenesis of mammary glands is recapitulated in organotypic
mammary culture (organoids) (31–33), extensively used to model
and explore various features of self-organization and development
of epithelial tissues (34). Epidermal growth factor (EGF) is an
essential regulator of branching morphogenesis in mammary
glands (35, 36). It has also been identified as a critical chemo-
attractant guiding the migration of breast epithelial cells in invasive
cancer growth (37). This property of EGF raises the possibility that
it can serve as an endogenous chemoattractant, guiding formation
and extension of mammary epithelial branches, a possibility that
has not yet been experimentally addressed.
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What new properties may result from collective cell behavior,
and how may these emerging capabilities influence shaping
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vidual mammary epithelial cells are incapable of sensing ex-
tremely weak gradients of a growth factor, cellular collectives
in organotypic cultures exhibit reliable, gradient-driven, di-
rectional growth. This underscores a critical importance of col-
lective cell–cell communication and computation in gradient
sensing. We develop and verify a biophysical theory of such
communication and identify the mechanisms by which it is
implemented in the mammary epithelium, quantitatively ana-
lyzing both advantages and limitations of biochemical cellular
communication in collective decision making.
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Our data reveal that the capacity of mammary organoids
embedded in collagen I to respond to shallow EGF gradients
requires collective gradient sensing, mediated by intercellular
chemical coupling through gap junctions. Surprisingly, the ad-
vantage of multicellular sensing is limited and is substantially
lower than the theoretical predictions stemming from gradient
sensing models that do not account for communication noise (6).

We build a theory of the multicellular sensing process, equivalent
to the information-theoretic relay channel, which correctly pre-
dicts the accuracy of sensing as a function of the gradient mag-
nitude, organoid size, and the background ligand concentration.
The theory and the corresponding stochastic computational
model trace the reduced sensing improvement to the unavoid-
able noise in the information relay used by cells to transmit their
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Fig. 1. Organoid branching but not single-cell migration exhibits biased directional response to an EGF ligand gradient. (A) A schematic of the mesofluidic device
chamber, with high (red) and low (pink) EGF concentration reservoirs and organoids embedded in a collagen gel exposed to the resulting EGF gradient (see
Supporting Information for further information). (B) Example microscopy image of an organoid exposed to a 0.5-nM/mm EGF gradient, with preferential branch
formation in the gradient direction (toward the right side of the field of view). (C–F) Angular histograms of (C) organoid branching directions in a uniform
background of 2.5 nM EGF (three biological replicates, eight experimental replicates, total 110 organoids, total 460 branches), (D) organoid branching directions
in a gradient of 0.5 nM/mm EGF (two biological replicates, two experimental replicates, total 200 organoids, total 1,283 branches), (E) in-gel migration directions
of single cells separating from P-cadherin-deficient organoids in a gradient of 0.5 nM/mm EGF (two biological replicates, six experimental replicates, total 255 cells
originating from 76 organoids), and (F) organoid branching directions for the P-cadherin organoids in a gradient of 0.5 nM/mm EGF (two biological replicates, six
experimental replicates, total 79 organoids, total 394 branches). Whereas single cells do not exhibit biased movement, organoids exhibit biased branching. In C, D,
and F, branching direction is defined as the angle of the vector sum of the organoid’s branches. The number of organoids branching in a specific direction is
shown. In E, cell migration direction is defined as the angle of the vector sum of the displacements of all cells originating from a given organoid. In C–F, the circular
axes measure the number of organoids with that branching direction, and left–right bias underneath each histogram is defined in Fig. 2 (measure B).
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local sensory measurements to each other. This analysis allows
us to determine the approximate size of a collective, multicellular
sensing unit enabling chemotropic branch formation and growth.

Results
To study the response of multicellular mammary organoids to
defined growth factor gradients, we developed and used meso-
scopic fluidic devices. These devices permitted generation of highly
controlled gradients of EGF that were stable for a few days, within
small slabs of collagen gels housing expanding organoids (Fig. 1A,
Materials and Methods, and Supporting Information). We found that
organoids of diverse sizes, ranging from 80 μm to 300 μm (or about
200–500 cells), developed normally within the device, forming mul-
tiple branches in the presence of spatially uniform 2.5 nM of EGF.
When monitored over 3 d, the branch formation in such uni-
formly distributed EGF displayed no directional bias (Fig. 1C
and Fig. S1A). However, if EGF was added as a very shallow gra-
dient of 0.5 nM/mm (equivalent to about 0.5× 10−2 nM or as little
as 0.2% concentration difference across a 10-μm cell), branch
formation displayed a significant directional bias (Fig. 1D). The
bias in formation of new branches remained the same when
measured on each of the three consecutive days (Fig. S2),
suggesting that EGF gradient sensing is not a transient response
and that its angular precision neither improves nor decreases
with time. The bias was robust to the choice of the bias measure,
as six different measures all yielded values at least four SEs
above their respective null values (Fig. 2, Supporting Information,
and Fig. S3).
Despite the very shallow EGF gradient, it was still possible

that the spatial bias in branching was a consequence of the gra-
dient sensing by individual cells within the tips of the branches.
Indeed, it is known that mammary epithelial cells individually
bias their motility in response to growth factor gradients (22),
albeit at least an order of magnitude larger than those tried in
our study (Movie S1). To examine the sensitivity of single cells to
these shallow gradients in the 3D geometry of collagen gels, we
analyzed organoids derived from P-cadherin knockout mice (38).
Consistent with our previous findings (39), the luminal epithelial
cores of the organoids derived from P-cadherin null mice remain
intact within collagen I gels, but individual and small groups of
myoepithelial cells disseminate into the surrounding gel, because
P-cadherin is a specific mediator of myoepithelial cell–cell ad-
hesion. These individual dissociated cells displayed extensive
migration through the collagen matrix. Although in these ex-
periments the organoids continued to display EGF gradient-
guided directional branching responses similar to those of WT
organoids, the dissociated cells migrated in a completely unbiased

manner (Fig. 1 E and F, Figs. S1B and S4, and Supporting In-
formation). Cell motility and the distance traveled by single cells
within the gels generally were the same as those observed in
similar experiments performed in spatially homogenous 2.5-nM
EGF distributions. These results were corroborated by experi-
ments in which dissociated single mammary epithelial cells iso-
lated from WT mice or MTLn3-B1 cells were embedded in the
same devices and subjected to the same experimental inputs
(Fig. S5), confirming that the absence of directional sensitivity in
individual cells is not a byproduct of the P-cadherin knockout.
The results of these experiments suggested that, despite con-
siderable motility, there was no evidence of chemotaxis by these
cells, in response to EGF gradients that were capable of trig-
gering biased chemotropic response in organoids. Overall, our
results reveal that cell–cell coupling within organoids permits
sensing of EGF gradients not detectable by single cells.
Can enhanced collective gradient sensing by multiple cells be

explained by a quantitative theory, permitting experimental val-
idation? The classic Berg–Purcell (BP) theory of concentration
(40) and gradient (6, 12) detection can explain why a larger
detector (in this case, an organoid) has a better sensitivity than a
smaller one (a cell). Briefly, the mean number of ligand mole-
cules in the volume of a detector of a linear size A is ν∼ cA3,
where c is the concentration being determined, and the overbar
represents averaging. This number is Poisson distributed, so that
the relative error in counting is ðδν=νÞ2 = ðδc=cÞ2 = 1=ν∼ 1=ðcA3Þ.
This bound can be modified to include temporal integration of
the ligand diffusing in and out of the receptor vicinity (41). Be-
cause the organoids show steady branching and no improved
directional sensitivity from 1 day to the next (Fig. S2), we con-
clude that temporal integration does not occur on timescales of
1 day or longer. However, we cannot say whether integration
occurs on timescales of less than 1 day. In what follows, we
choose to consider the simplest case of no integration, which
produces a model with the smallest number of parameters. We
relegate the mathematically much more complicated case to the
companion paper (41), and we compare the two in Discussion.
Estimation of spatial gradients by a cell or a multicellular

ensemble involves inference of the difference between (or
comparison of) concentrations measured by different compart-
ments of the detector (6, 9, 12) [branches grow too slowly for a
temporal comparison strategy to be useful (42)]. For a detector
consisting of two such compartments, each of size a � A, the
mean concentration in each compartment is c± = c1=2 ± gA=2,
where c1=2 is the concentration at the center of the detector, and
g is the concentration gradient. For each of the compartments,
the BP bound gives ðδc± =c± Þ2 ∼ 1=ðc±a3Þ. Subtracting the two

Description Null 
value

Measured 
value

A vector sum of branches, 
projected in gradient 
direction

0 μm 52 ± 10 μm

B whether A is positive (1) 
or negative (0)

0.5 0.68 ± 0.03

C A, normalized by mean 
branch length

0 0.69 ± 0.12

D fraction of branches 
pointing right

0.5 0.55 ± 0.01

E fraction of east/west 
branches pointing west

0.5 0.61 ± 0.02

F D, weighted by branch 
length

0.5 0.56 ± 0.01
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Fig. 2. Organoid branching is significantly biased, regardless of the choice of the bias measure. (A) Six bias measures are shown, as described in the table in B
(the gradient points in the θ= 0 direction, such that “right” means the up-gradient half of the plane cos θ> 0, “east” means the up-gradient quarter of the
plane cos θ> cosπ=4, and “west” means the down-gradient quarter of the plane cos θ< cos3π=4). The table lists the null (unbiased) values for each measure, as
well as the measured values from the data, averaged across all organoids, and with uncertainty given by the SE. All measured values are at least 4 SEs above
their respective null values. See Supporting Information for further analysis. Note that, visually, measure B, used throughout the text, seems less biased than
the histograms in Fig. 1; this is because the histograms count only the number of branches in specific directions, whereas the measure B additionally weighs
each branch by its length.
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independently measured concentrations estimates the gradient,
g= ðc+ − c−Þ=A, which results in the signal-to-noise ratio (SNR)
(or inverse of the error)

1
SNR

≡
�
δg
g

�2

≈
c1=2

a3ðAgÞ2. [1]

Thus, the sensing precision should improve without bound with
the span of the gradient being measured (A), with the gradient
strength (g), and with the volume over which molecules are
counted (a3). However, the precision should decrease with the
background concentration (c1=2) because it is hard to measure
small changes in a signaling molecule against a large background
concentration of this molecule. [This is similar to the observation
that a small difference of two large numbers always has a larger
relative error than either of the two numbers, and so one is
frequently cautioned against making such subtractions in scien-
tific computing (43).] This decrease has been observed in many
systems (12, 13, 22, 44–47) and typically attributed to receptor
saturation, whereas our analysis suggests that it is present even
for linear systems. Indeed, high-affinity EGF receptors (KD ≈
300 pM) generally constitute ∼  10% of the total receptor pool, and

low-affinity receptors (KD ≈ 2 nM) constitute the remaining
∼ 90% (48). Because the concentration over almost the entire
device is smaller than KD of the dominant receptor, there should
not be substantial saturation effects.
Note that Eq. 1 seems to predict an infinitely precise mea-

surement when c1=2 → 0, and there are no ligand molecules. This
paradox is resolved by the simple observation that the back-
ground concentration of the signaling molecule and the organoid
size are not independent: In a linear gradient, c1=2 is limited from
below by Ag=2, and, generally, small c1=2 is possible for a small
organoid only if the gradient is nonzero. In this low concentra-
tion limit of the BP theory, which is often the subject of analysis
(6, 12), Ag∼ c1=2. Then Eq. 1 transforms to SNR∼ c1=2a3, and the
SNR increases with c1=2. Overall, this interplay between the size
and the concentration depends on c1=2ðAÞ, which may take dif-
ferent forms, depending on where organoids of different sizes
are in the experimental device. Typically, the SNR has an
inverted U shape: It first grows with c1=2 because the span of the
organoid increases, and then it drops because small differences
of large concentrations must be estimated by a cell or a cell
ensemble (Supporting Information and Fig. S6). Interestingly, this
decrease in gradient sensitivity does not require receptor saturation,

A B

C D

Fig. 3. Organoid branching bias for different parameters: Data support the theory of communication-constrained gradient sensing. (A–C) Experimentally
measured bias (denoted as “data”) is plotted vs. (A) EGF gradient strength, (B) organoid size, and (C) background EGF concentration. For the data, bias is
measured as the fraction of organoids with LU > LD, where LU (LD) is the sum of branch lengths, projected in the gradient direction, pointing up (down) the
gradient (measure B in Fig. 2). Error bars are SEs. In A, gradient response is estimated for different branching response directions, with the response axis
rotated by the angle θ, either clockwise (CW) or counterclockwise (CCW) with respect to the gradient direction, reducing the effective gradient by cos θ. In B,
the organoid body size is measured excluding branches, and the bias for single-cell migration is measured as for organoid branches, but with cell dis-
placement replacing branch length. In C, stability of bias at large concentration shows absence of significant saturation effects. Theory: The bias is calculated
as the probability that ΔN >Δ1, where ΔN (Δ1) is the Gaussian-distributed concentration difference in the cell farthest up (down) the gradient, with mean and
variance given by the model as described in the text. The classic Berg–Purcell (BP) theory predictions, which do not account for communication, are equivalent
to setting the communication length n0 to infinity in the theory that accounts for the communication. The downstream noise η2 is set by the data. In A, this
leaves no free parameters, and in B and C, after assuming a cell size of a= 10 μm and taking the limit of large gain β=μ, this leaves only the communication
length n0. The curve for n0 = 3.5 is shown in comparison with the BP curve to illustrate the effect of communication. In B and C, the theoretical curves are
obtained by averaging uniformly over the ranges of organoid size or midpoint concentration seen in the experiments (10–600 μm, 0.22–2.47 nM), except
where prohibited by geometry, as in Fig. S6. Because background concentration and size of the organoids are not independent, this results in the non-
monotonic dependence in C. Specifically, the nonmonotonicity comes from the noisy comparison of large, similar concentrations, as explained in the text, and
also because organoids with large midpoint concentration are at the edge of the device and cannot be large. (D) Communication length n0 is constrained by
the data. Minimum n0 ≥2.9 is determined by the fact that downstream processes can only add noise, not remove it (η2 ≥ 0). Maximum n0 ≤ 4.2 is determined by
the condition that data and theory in B agree sufficiently that χ2/(df) <1.
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as is commonly assumed (44). Calculations that account for true
receptor geometries of the sensor give results similar to Eq. 1 (6).
A critical prediction of this theory is that precision of gradient
sensing (expressed as SNR) always increases with the organoid
size A. We next contrasted this prediction with experimental data.
To examine whether the precision of gradient sensing in-

creases with the organoid size, we examined the bias of response
of differently sized organoids naturally formed in our assays (Fig.
3). To enable the comparison, we computed the fraction of
organoids with LU >LD, where LU (LD) is the sum of branch
lengths (projected in the gradient direction) pointing up (down)
the gradient (measure B in Fig. 2). The corresponding theoret-
ical prediction can be inferred from the analysis of a one-
dimensional array of N coupled cells subjected to a ligand gradient.
In particular, the experimentally determined difference between
“up” and “down” pointing branch numbers can be compared
with the theoretically predicted probability that the measured
number of ligand molecules in the Nth cell is larger than in the
first cell in the array, νN > ν1. We take νn as Gaussian distributed
with mean cna3 and variance cna3 + η2, where the first term ac-
counts for the Poisson nature of the molecular counts, and η2

represents the additional noise downstream of sensing, which
can dominate the sensory noise, but is assumed to be unbiased
(multiplicative noise was also considered, with similar effects;
Supporting Information and Fig. S7). We set the value of η2 by
equating the experimental and theoretical bias probabilities av-
eraged over all organoid sizes and background concentrations
observed in the experiments. Fig. 3A demonstrates that bias in-
creases roughly linearly with the gradient strength in both the
experiments and the BP model. However, Fig. 3B shows that the
experimental bias saturates with organoid size, whereas the BP
theory would predict an increase without bounds. Further, Fig.
3C shows that the experimental bias is generally weaker than that
predicted by the BP theory. These disagreements with experi-
mental results suggest that a new theory of multicellular gradient
detection is required.
To develop the new theory, we note that, by assuming that

information collected by different parts of a spatially extended
detector can be integrated in an essentially error-free fashion,
the BP approach neglects a major complication: the communi-
cation noise. Indeed, to contrast spatially distributed inputs, e.g.,
the local EGF concentration, the information collected in dif-
ferent parts of a coupled multicellular ensemble must be com-
municated over large distances by means of noisy, molecular
diffusion and transport processes. The unavoidable communi-
cation errors set new, unknown limits on the highest accuracy of
sensing. From this perspective, the BP analysis accounts for the
extrinsic noise of the ligand concentration, but not for the in-
trinsic noise (3, 49) of multicellular communication. To study the
communication noise effects, we again approximated an orga-
noid by a one-dimensional chain of N cells, each of size a, for a
total length of A=Na parallel to the gradient direction. The
observed independence of the response bias of the background
EGF concentration (Fig. 3C) supports an adaptive model of
sensing. We chose a minimal adaptive model allowing for
chemical diffusive communication, based on the principle of
local excitation and global inhibition (LEGI) (9, 50, 51). In the
nth cell, both a local and a global molecular messenger species
are assumed to be produced in proportion to the local external
EGF concentration cn at a rate β and are degraded at a rate μ.
Whereas the local messenger species is confined to each cell, the
global messenger species is exchanged between neighboring cells
at a rate γ, which provides an intrinsically noisy communication.
The local messenger then excites a downstream species, whereas
the global messenger inhibits it. In the limit of shallow gradients,
the excitation level reports the difference Δn between local
and global species concentrations (Supporting Information). The
differences ΔN,1 in the edge cells provide the sensory readout:

Positive/negative Δ shows that the local concentration at the
edge is above/below the average, and hence the cell is up/down
the gradient. Note that an individual cell within this multicellular
version of the LEGI model cannot detect a gradient, as the
readout will always be zero within statistical fluctuations.
In our analysis, we again note the absence of temporal in-

tegration on timescales of 1 d or longer (Fig. S2) and opt for a
model without integration because it has the fewest possible
parameters. Importantly, as shown by the extension of our analysis
to the temporal integration case (41), the general conclusions with
regard to how the sensory precision depends on the communication
are independent of this choice. Further, because there is no evi-
dence for receptor saturation at high concentration (Fig. 3C), we
confine ourselves to the linear response regime for theoretical
studies. These assumptions allow us to calculate the limit of the
sensory precision of the gradient detection, as a function of orga-
noid size N and the background concentration (Supporting In-
formation and Fig. S6). We find that precision initially grows with
N and then saturates at a maximal value (Fig. S6C). This is in
contrast to the BP estimate, Eq. 1, which predicts that precision
grows indefinitely with N. In our model we expect precision to be
the highest in the limits of a large organoid (N � 1), fast cell-to-
cell communication (γ=μ � 1), and large local and global mes-
senger species concentrations (β=μ � 1). In these limits the satu-
rating value of the sensory error takes the simplified form (Eq. S46)

1
SNR

=
�
δΔN

ΔN

�2

=
cN

a3ðn0agÞ2
=
c1=2 + gaN

�
2

a3ðn0agÞ2
, [2]

where n0 =
ffiffiffiffiffiffiffiffi
γ=μ

p
. Comparing Eq. 2 to the BP estimate in Eq. 1,

we see that even when communication noise is accounted for, the
organoid can achieve the noise-free bound, but with an effective
size of A= n0a instead of the actual size A=Na. Thus, n0, which
grows with the communication rate γ, sets the length scale of the
effective sensory unit within the organoid: It is the number of
neighbors with which a cell can reliably communicate before the
information becomes degraded by the noise. Beyond N ∼ n0, a
larger organoid is predicted to achieve no further benefit to its
sensory precision. Additionally, because of this finite communi-
cation length scale, the sensory precision is predicted to depend
on the concentration at the edge cell(s), rather than in the mid-
dle of the organoid. Thus, the interplay between the concentra-
tion and the organoid size is also very different compared with
the predictions of the standard BP theory.
We first tested the new theory that accounts for communica-

tion by simulating the multicellular, LEGI-based sensing with a
spatially extended Gillespie algorithm (details in Supporting In-
formation). This analysis allowed us to explore the nonlinear
(Michaelis–Menten type) biochemical reaction regime. We chose
parameters such that n0 = 10, so that the model allows for a
sufficient dynamic range of SNR to simultaneously observe (i)
improvements from the system size growth and (ii) saturation
due to the system’s nonlinearities emerging before the finite
communication length becomes important (see Table S1 for all
simulation parameters). We verified that our theoretical pre-
dictions were fully consistent with this stochastic model in the
linear regime and were still qualitatively valid when the de-
pendence of the local and the global signaling reactions on the
input was allowed to gradually saturate (Fig. 4). In particular,
under all assumptions, the advantage of increasing detector
rapidly reached a maximum value. This maximum SNR value,
however, gradually decreased with increasing saturation, sug-
gesting predominant effects of decreasing sensitivity of saturat-
ing chemical reactions to the differences in the input values.
We then compared the predictions of our new theory of

multicellular gradient sensing to the experimental measurements.
To do that, we calculated the probability that the gradient indeed
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biases the branching response, i.e., that ΔN >Δ1, where Δn was
assumed in the theory to be a Gaussian-distributed variable with
the mean Δn and variance ðδΔnÞ2 + η2 (the case of multiplicative
noise is treated in Supporting Information and Fig. S7). The first
term in the variance is calculated in Supporting Information, and
the second term reflects the added noise downstream of gradient
sensing, set by the average organoid bias, identical to the one
found in the BP theory above. Fig. 3 A–C demonstrates the ex-
cellent agreement between experiment and theory that accounts
for the communication noise, suggesting that the new theory is a
much better explanation of the data than the BP analysis.
The experimental data in Fig. 3B place constraints on the

possible range of values of the size of the effective multicellular
sensing unit, n0. The requirement that η2 ≥ 0 (downstream pro-
cesses only increase noise, they do not decrease it) places the
lower bound n0 ≥ 2.9 (Fig. 3D). Roughly speaking, the edge cell
must communicate with at least three neighbors if the inability of
the observed bias to reach 1 was due entirely to sensory noise, with
no additional noise downstream. Further, the requirement that
the model agrees with the data within error bars in Fig. 3B also
places the upper bound n0 ≤ 4.2 (similar limits come from the
multiplicative model, Fig. S7). That is, a functional sensing unit of
4 cells or less is required to explain why all organoids, which range
in width from ∼8 cells to 30 cells, display roughly the same bias,
independent of their size. Thus, Fig. 3 demonstrates that cells
receive reliable information from only a few nearby cells, and this
number is tightly bounded. The tightness of the bound implies that
the noise downstream of the sensing process is relatively small, at
least when no temporal integration is considered. Crucially, in our
theory, a cell not communicating with the neighbors cannot detect
a gradient, and a nonzero value of n0 is qualitatively different from
n0 = 0. We thus tested whether gradient sensing would be altered
if cell–cell communication was prevented in the organoids.

A central prediction of the theoretical analysis is that pre-
venting cell–cell communication can lead to a complete loss of
sensing of shallow gradients. One simple way cell–cell commu-
nication can occur in epithelial layers is by means of gap junc-
tions. We therefore explored the effect of disrupting the gap
junction communication, using four distinct inhibitors: 50 nM
Endothelin-1, 50 μM flufenamic acid, 0.5 mM octanol, and
50 μM carbenoxolone (52). Although the mode of inhibition was
different for these distinct compounds, application of each one
of them resulted in a complete loss of directional bias in re-
sponse, whereas the branching itself was present and was similar
to that without gap junction perturbation in spatially uniform
EGF concentrations (Fig. 5A and Fig. S8). Crucially, this result
also confirms that communication over the effective sensory unit
is due to intracellular chemical diffusion, rather than through the
extracellular medium or due to a mechanical coupling. The likely
candidates for gap junction-mediated cell–cell coupling are cal-
cium or inositol trisphosphate (IP3), both of which are second
messengers that can control intracellular Ca release. EGF is
known to stimulate Ca signaling (53) at least in part through
stimulation of IP3 synthesis, thus providing a source of these
intracellular messengers.
To examine Ca signaling more directly, we used organoids

obtained from transgenic mice, expressing genetically encoded
Ca reporter GCaMP4, under the control of the CAG promoter
(54). We confirmed that addition of 2.5 nM EGF to the medium
indeed triggered a pulse of calcium signaling in a typical orga-
noid (Fig. 5C). Furthermore, the Ca activity throughout the
branching processes was coordinated, releasing calcium nearly
simultaneously in cells at the tips of growing branches, suggesting
cell–cell communication leading to Ca release (Supporting In-
formation, Fig. S9, and Movie S2). To deplete intracellular Ca
stores and thus potentially disrupt the effect of chemical cell–cell
coupling, we treated the organoids with the sarco/endoplasmic
reticulum Ca2+-ATPase (SERCA) inhibitor thapsigargin. This
treatment indeed was sufficient to disrupt EGF gradient sensing
in the treated organoids (Fig. 5B and Fig. S1D). Surprisingly,
SERCA inhibition also enhanced the branching elongation: The
average length of a branch increased from 74± 1 μm for WT
organoids to 201± 3 μm with SERCA blocking; the organoids
appear to be almost entirely composed of branches after 3 d
under these conditions. This result suggested that gap junction-
mediated exchange of a molecular regulator that can trigger
intracellular calcium release may have a negative effect on the
local branching response, consistent with the assumed negative
role of the diffusive messenger postulated in the LEGI model.
We finally note that small molecules exchanged through gap
junctions (e.g., IP3 or calcium ions) would be a natural choice
for the cell–cell coupling intercellular messenger, because their
smaller size and larger diffusion coefficient (compared with pep-
tides) allow for a larger γ, which, in turn, increases the size of the
effective sensory unit n0 and improves the sensing accuracy.

Discussion
Morphogenesis and growth of complex tissues are orchestrated
by diverse chemical and mechanical cues. These cues not only
specify patterning of developing tissues but also direct tissue
growth and expansion. However, we still lack details of how these
collective, multicellular processes are controlled by spatial gra-
dients of extracellular ligand molecules. Here we used mathe-
matical modeling, computational simulations, and experimentation
in a novel gradient generating device to study the directional
guidance of branch formation and extension in a model of mam-
mary tissue morphogenesis. Our data revealed that multicellular
constructs undergo directionally biased migration in shallow
gradients of EGF that are undetectable to single cells. Further,
our analysis suggests that cell–cell communication through gap
junctions underlies the increased gradient sensitivity, allowing

Fig. 4. Saturation of signaling responses reduces the maximum SNR in the
simulation of multicellular gradient sensing. To investigate effects of sig-
naling saturation, we simulated a multicellular stochastic LEGI model, using
a spatially resolved implementation of the stochastic simulation algorithm
(Supporting Information), and measured the simulated organoid bias at
different saturation levels. Shown is the square root of the SNR (mean re-
sponse squared over its variance), where for the response we take the de-
viation of the species activated by the local and suppressed by the global
messenger from its mean value. This is the closest equivalent to ΔN and to
the bias measure in Fig. 3 and Fig. S6. For the theory and the simulations, we
set g= 5 molecules per cell volume per cell diameter, n0 =

ffiffiffiffiffiffiffiffi
γ=μ

p
= 10 cells,

and cN =1,000 molecules per cell volume. We contrasted the theory and the
simulations by matching the low saturation curves for small organoid sizes.
The effects of saturation in activation/suppression of the response by the
messengers result in earlier saturation of the SNR curves, as expected.
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the cell ensembles to expand the range of EGF concentrations
they can sense within the gradient and thus enhance the overall
guidance signal. Increasing evidence suggests that collective
sensing of environmental signals, particularly if accompanied by
secretion of a common signal that enables averaging of variable
and noisy signaling in individual cells, can help improve re-
liability of signaling, cell fate choices, and behavioral actions.
Examples are abundant in coordinated pathogen actions or im-
mune responses (8, 37–43). Similarly, individual sensing and
collective decision making in morphogenesis and animal group
behaviors have been shown to amplify weak signals observed by
individual agents and to develop coherent, long-range patterns
(24, 25, 55, 56). In contrast to “all-to-all” signaling or response
communication cases, here we focused on the case of sequential
communication of a signal between the sensing units, in a relay
fashion, which can enhance the sensing precision by enhancing
the effective input itself. Critically, this communication mecha-
nism, mediated by diffusive coupling through gap junctions, can
be seen as an information-theoretic relay channel (57, 58)
(Fig. 6). The theoretical analysis we present here is thus to our
knowledge one of the first departures from the simple point-to-
point information-processing paradigm in systems biology. In
fact, our calculations of reliability of multicellular signaling, pre-
sented in this paper and in ref. 41, are equivalent to calculating
channel capacities of various Gaussian relay channels.
The key consequence of the relay communication mechanism

is that it is subject to a gradual buildup of communication noise,
mitigating the gain from the signal increase and providing a
fundamental limit on effectiveness of such collective sensing
responses. This result runs counter to the prevailing intuition
that sensing accuracy should increase without bound with the
system size (40), for multicellular systems in development (27)
and also for other multiagent sensory systems. These intuitive
expectations are flawed precisely because they fail to take into
account the importance of communication uncertainty, which
provides fundamental limits on the gains resulting from multi-
cellular sensing. Our integrated analysis reveals that this multi-
cellular sensing strategy in growing mammary branches is indeed
limited by the noisy cell–cell communication. Importantly, we
were able to combine theory and experiments to estimate these
limits for EGF gradient response of mammary branching and
found them to be much tighter than those that assume that all of
the spatially distributed information is immediately actionable:
Growth of the branch beyond the size of the maximum effective

multicellular sensing unit does not improve the sensing accuracy.
We estimate that the sensing unit is ∼3–4 cell lengths, a size that
is consistent with the number of cell layers in small end buds of a
growing mammary duct (59) (Movie S2). Although our estimate
is based on the model with instantaneous sensing, such general
predictions depend only weakly on the presence of temporal
integration (41). Some large end buds in vivo contain signifi-
cantly more cell layers and our analysis suggests that these ad-
ditional cells may be primarily involved in other functions, such
as proliferation and differentiation, and not gradient sensing.
The narrow bounds on the number of interacting cells also suggest
that the “actuation” noise downstream of sensing is minimal (at
least if the cells do not integrate their signals with time), paral-
leling related findings in the nervous system (60). Interestingly, the
theoretical analysis predicted that the sensory unit size is specified
by a simple formula describing the typical distance traveled by a
diffusing messenger molecule before it degrades or is inactivated,
consistent with simpler estimates of the molecular communication
reach (61). In the companion paper (41) we evaluate this formula
under the assumption that the messenger molecule is IP3, as
proposed above, using known turnover and hopping rates, and
we find n0 ∼

ffiffiffiffiffi
10

p
≈ 3.2, consistent with our inferred value of 3–4.

Our analysis also provided an alternative way to interpret the de-
pendence between the background ligand concentration and gradient
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Fig. 5. Cell–cell communication proceeds through gap junctions and involves calcium ions. (A and B) Directional histograms and biases (measure B in Fig. 2) of
organoids in 0.5 nM/mm EGF gradient with (A) 50 nM of a gap junction blocker Endothelin-1 added (two biological replicates, three experimental replicates,
total 54 organoids, total 177 branches), and (B) 100 nM of thapsigargin, a SERCA inhibitor, depleting internal calcium stores (two biological replicates, two
experimental replicates, total 214 organoids, total 1,071 branches). Both A and B show absence of directional response by multicellular organoids in these
conditions. (C) A total of 2.5 nM EGF is added to the device and the total Ca signaling is measured in organoids obtained from GCaMP4, under the control of
the CAG promoter (see evidence for cell–cell coupling within these organoids in Supporting Information).
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Fig. 6. Multicellular gradient sensing is an example of a relay channel. (A) A
diagram of an information-theoretic relay channel. Differently scrambled
versions of the input signal are communicated to the output, but also to
the intermediate relay units. In their turn, the intermediate units relay the
information farther along the chain and ultimately to the output unit.
(B) Interpretation of gradient sensing as a relay channel. The local concen-
tration, which is a biased and noisy version of the background concentration, is
measured by every cell and then relayed to the edge cell, using the diffusive
messenger to produce an estimate of the background concentration.
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sensing—saturation of receptors is not needed to explain the often-
observed decrease in the sensory precision at high concentration (12,
13, 22, 44–47). Rather, the loss of precision is ascribed to increasing
noise-to-signal ratio, stemming from the need to compare large, noisy
concentrations. Similar limits might exist in any biological systems
with spatially distributed sensing of spatially graded signals, including
single cells or multinuclear syncytia.
Our results suggest that the intercellular communication un-

derlying multicellular sensing in growing mammary tissue is
mediated by calcium signaling events, as depletion of internal
stores by a SERCA inhibitor both enhanced the branch forma-
tion and inhibited gradient detection. Thus, release of calcium
from internal stores is consistent with a negative or limiting ef-
fect on the local branch formation or extension. The release can
be controlled by either IP3 or calcium itself, both of which can
diffuse through gap junctions. Therefore, the inhibitory diffusive
signal postulated by the LEGI models of gradient sensing may
rely on the ultimate release of calcium from internal stores, as also
suggested by our imaging of calcium with the genetically encoded
probe. This role of calcium is consistent with its enhancement of
retraction of the leading front in migrating cells (62). Consistent
with the LEGI model, gradient sensing was persistent in time
and exhibited very low sensitivity to the local background EGF
concentration. The use of the LEGI model in our analysis, both
in mathematical modeling and in spatially distributed Gillespie
simulations, also showed results quantitatively consistent with
the experiments, suggesting that this model was appropriate for
describing the diffusively coupled collective EGF sensing.
Overall, we conclude that collective gradient sensing suggested

for many natural developmental processes (63), as well as for
pathological invasive tissue expansion (37), is an effective strategy,
which, although subject to important limitations, can help explain
the observed differences in the single-cell and multicellular
chemotactic responses. Importantly, the experimentally validated
theory proposed in our analysis provides a way to assess the po-
tential role of intercellular communication in other settings, in-
cluding invasive tumor growth, pointing to the specific parameters
that can be altered to disrupt this process or make it less efficient.

Materials and Methods
Experimental Device. Custom polydimethylsiloxane (PDMS) devices were de-
veloped using stereolithography, yielding culture area ∼5 mm wide, 10 mm
long, and 1 mm tall (Fig. 1B). The sides of the device are open wells that allow
the use of standard pipettes to change media and six replicates of the entire
device are contained within a standard six-well plate. Before use, the center
cell culture area is filled. This action is assisted by the hexagonal pillars, which
are used to trap the liquid 3D ECM and organoid mixture within the cell
culture area before the 3D ECM can harden (64). Once the 3D ECM matrix of
choice has hardened, the open wells can be filled as previously mentioned.
Both in silico and in vivo (Supporting Information and Fig. S10) tests demon-
strate a stable linear EGF gradient across the cell culture area for approxi-
mately 3 d, after which the media can be replenished as needed. Various
compounds were added to the collagen gel at final concentrations, as in-
dicated, along with the organoids.

Stereolithography and PDMS Casting. Using the 3D rendering software Solid-
Works (Dassault Systems), we drew the final mold for the PDMS devices. The
design was electronically transmitted to FineLine Prototyping, where it was
rendered using high-resolution ProtoTherm 12120 as the material with a
natural finish. Proprietary settings were used to accurately render the pillars.
In 2–3 d the mold was shipped and after its arrival we mixed PDMS monomer
to curing agent in a 10:1 ratio (Momentive RTV615). After mixing, the liquid
PDMS was poured into the mold and a homemade press was used to keep
the top surface flat. This press from bottom to top consisted of a steel plate,
a paper towel, a piece of a clear transparency film, the mold with PDMS,
another piece of a transparency, a paper towel, a piece of rubber, and an-
other steel plate. The entire assembly was placed in the oven at 80 °C and
baked overnight. The devices were then washed, cut, and placed on top of
22 × 22-mm coverslips (72204-01; Electron Microscopy Sciences). Six devices
were then placed inside an autoclave bag and sterilized. When needed, the

bag was opened in a sterile environment and the devices were filled and
placed inside a six-well plate.

Device Preparation for Time-Lapse Imaging. To allow for real-time imaging,
the devices were fabricated as described above and were then cut from the
PDMS, using a 16-mm sharp leather punch to create a circular device. The
device was sterilized with ethanol and then plasma treated before being
bonded directly to the bottom of a glass-bottomed six-well plate with a
20-mm hole (LiveAssay).

Collagen Preparation. Rat-tail Collagen (354236; BD Biosciences) was pH
balanced, using 1 M NaOH (S2770, Sigma) mixed to a final concentration of
3 mg/mL with 10× DMEM (D2429; Sigma). This mixture sat in an ice block in
aliquots of no more than 1.5 mL until fibers formed, typically ∼75 min (de-
scribed in detail in ref. 33). Cells were then mixed in at 2.5 organoids/mL and
a 100-μL pipette tip was used to draw 75 μL of the suspension. The pipette
was inserted into the prepunched hole and the suspension was gently in-
jected into the device. The device was placed on a heat block for no more
than 10 min before the side wells were filled with solution. The lid was
replaced on the six-well plate and the whole assembly was plated inside the
incubator at 37 °C with 5% CO2.

Confocal Microscopy. Confocal imagingwas performed as previously reported
(32, 65). Briefly, imaging was done with a Solamere Technology Group
spinning-disk confocal microscope, using a 40 C-Apochromat objective lens
(Zeiss Microimaging). Both fixed and time-lapse images were acquired using
a customized combination of μManager (https://www.micro-manager.org)
and Piper (Stanford Photonics). Thereafter image stacking and adjustments
were done with Imaris (Bitplane) to maximize clarity, but these adjustments
were always done on the entire image.

Differential Interference Contrast Microscopy. Phase contrast images were
taken with an Axio Observer differential interference contrast (DIC) inverted
microscope (Carl Zeiss), using AxioVision Software (Carl Zeiss). All image
processing was done either with Adobe Photoshop CS 6.0 or with Fiji (GPL
v.2) for clarity, but always done on the entire image.

Image Quantification.A custom Fiji programwaswritten tomeasure the angle
and length of the resulting branches. Additionally this program allows the
user to draw a freehand outline around the body and/or the branch and body
of the whole organoid. From these outline areas, a fit ellipse and a Feret
diameter were computed along with related statistics. After all measure-
ments were made, a custom MatLab (MathWorks) program was written to
create the graphs.

Primary Mammary Organoid Isolation. Cultures are prepared as previously
described (33). Mammary glands are minced and tissue is shaken for 30 min
at 37 °C in a 50-mL collagenase/trypsin solution in DMEM/F12 (GIBCO-BRL),
0.1 g trypsin (GIBCO-BRL), 0.1 g collagenase (Sigma C5138), 5 mL FCS, 250 μL
of 1 μg/mL insulin (Sigma I9278), and 50 μL of 50 μg/mL gentamicin (Gibco
15750-060). The collagenase solution is centrifuged at 1,500 rpm for 10 min,
dispersed through 10 mL DMEM/F12, centrifuged at 1,500 rpm for 10 min,
and then resuspended in 4 mL DMEM/F12 + 40 μL DNase (2 units/μL) (Sigma).
The DNase solution is shaken by hand for 2–5 min and then centrifuged at
1,500 rpm for 10 min. Organoids are separated from single cells through
four differential centrifugations (pulse to 1,500 rpm in 10 mL DMEM/F12).
The final pellet is resuspended in the desired amount of Growth Factor
Reduced collagen.

Multicellular Gradient-Sensing Model. Theoretical results are derived using a
stochastic dynamical model of multicellular sensing and communication. The
model includes Langevin-type noise terms corresponding to ligand number
fluctuations, stochastic production and degradation of internal messenger
molecules, and exchange of messenger molecules between neighboring cells
in a one-dimensional chain. The model is linearized around the steady state.
The mean and instantaneous variance of the readout variable ΔN are
obtained by Fourier transforming and integrating the power spectra over all
frequencies. This leads to an expression in terms of the matrix of exchange
reactions, whose inverse (the “communication kernel”) we solve for ana-
lytically and approximate in the appropriate limits to obtain Eq. 2. See
Supporting Information for more information.

Statistical Analysis. Angular histograms (e.g., Fig. 1 C–F) plot the distribution
of branching directions over all organoids. For each organoid, the branching
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direction is defined as the angle of the vector sum of its branches. A branch
vector extends from the organoid body (defined by the fitted ellipse) to the
tip of the branch. For single-cell movement (Fig. 1E), the definitions are the
same, except that the branch vector is replaced by the displacement vector,
from where the cell broke away from the organoid to where the cell is
observed in the image. The breakaway point is taken to be the nearest
branch tip. Data contained in the angular histograms are reduced to a single
bias measure in one of six ways, as described in Fig. 2. Measure B is also
shown in Figs. 1, 3, and 4. See Supporting Information for comparison of the
bias measures. All animal work was conducted in accordance with protocols

reviewed and approved by the Institutional Animal Care and Use Committee,
Johns Hopkins University, School of Medicine.
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