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Abstract

Small molecules are indispensable to modern medical therapy. However, their use may lead to 

unintended, negative medical outcomes commonly referred to as adverse drug reactions (ADRs). 

These effects vary widely in mechanism, severity, and populations affected, making ADR 

prediction and identification important public health concerns. Current methods rely on clinical 

trials and post-market surveillance programs to find novel ADRs; however, clinical trials are 

limited by small sample size, while post-market surveillance methods may be biased and 

inherently leave patients at risk until sufficient clinical evidence has been gathered. Systems 

pharmacology, an emerging interdisciplinary field combining network and chemical biology, 

provides important tools to uncover and understand ADRs and may mitigate the drawbacks of 

traditional methods. In particular, network analysis allows researchers to integrate heterogeneous 

data sources and quantify the interactions between biological and chemical entities. Recent work 

in this area has combined chemical, biological, and large-scale observational health data to predict 

ADRs in both individual patients and global populations. In this review, we explore the rapid 

expansion of systems pharmacology in the study of ADRs. We enumerate the existing methods 

and strategies and illustrate progress in the field with a model framework that incorporates crucial 

data elements, such as diet and comorbidities, known to modulate ADR risk. Using this 

framework, we highlight avenues of research that may currently be underexplored, representing 

opportunities for future work.
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1. Introduction

Adverse drug reactions (ADRs) continue to be a major burden on healthcare systems across 

the world, accounting for millions of hospitalizations each year.1,2 Their severity may range 

from the relatively minor (e.g. itchiness) to the life-threatening (e.g. liver failure).3 Many 

ADRs occur from known and preventable causes, such as CYP-based interactions; however, 

less predictable mechanisms, such as genetic susceptibility, can also cause these harmful 

events. The scope of pre-clinical and clinical trials cannot account for every source of 

therapeutic variance, meaning that unexpected interactions, such as uncommon drug-drug 

interactions, may not be explored during this phase of drug development. Further, clinical 

trials are unable to identify rare side effects due to their small sample sizes.

In response, global drug regulating agencies (like the FDA and WHO) have relied on the 

submission and analysis of adverse event reports by doctors, pharmaceutical companies, and 

patients. These pharmacovigilance programs have helped identify many dangerous effects of 

drugs, such as Vioxx and Avandia. However, they have some important limitations. The 

most obvious is the delay between evidence collection and detection of an ADR, which puts 

those taking the drug immediately after release at risk of serious and unexpected harm. In 

addition, stimulated reporting (i.e., increased reporting rates for a drug receiving a lot of 

media coverage—these reports tend to include a lot of false positives) can cause what 

appears to be increased ADR risk; for example, dabigatran was heavily covered by the 

media during post-marketing surveillance, and the FDA Adverse Event Reporting System 

received numerous reports of bleeding.4

In addition to the dangers ADRs pose for patients, these events contribute to growing costs 

of drug development and decreasing numbers of drug approvals.5 Up to 30% of 

experimental drug failures can be attributed to safety concerns,6 and each such failure comes 

at significant cost to pharmaceutical companies. A priori prediction of ADRs (prediction of 

an ADR before it happens—this is typically done using knowledge regarding at-risk patient 

populations) may increase the efficiency of the drug development process. Computational 

methods that are grounded in biological mechanisms, such as those developed and used in 

systems biology, are a particularly promising tool for pre-clinical drug safety assessment.

Systems biology is the study of groups of interacting components, such as genes, proteins, or 

drugs. Often, these systems are represented in network form, facilitating topological 

analyses that can identify emergent relationships among these entities.7 These methods 

allow us to visualize larger contexts and complement experimental methods that often 

consider only very specific interactions. Systems biology has many subfields,8 including 

systems pharmacology – the application of systems biology methods to pharmacological 

inquiries, such as drug effects and interactions.9
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Recent, extensive characterization of human protein-protein interactions 10 and large 

repositories of drug-target and drug-effect data11,12 have enabled the development of 

systems pharmacology analyses to predict and understand ADRs.13 In this review, we will 

first provide a brief overview covering the traditional clinical methods for detecting ADRs. 

We will then delve into systems pharmacology approaches for predicting ADRs and 

elucidating their mechanisms in both the general population and individuals. Finally, we will 

describe new integrative approaches that combine clinical, biological, and chemical data to 

better predict ADRs. We conclude with suggestions for future inquiry.

2. Background

Detecting ADRs during post-market surveillance has relied on disproportionality analysis of 

adverse event reports through pharmacovigilance. These methods quantify the degree to 

which a drug-event combination co-occurs disproportionately compared to the occurrence of 

the event for other drugs. Methods are based on both frequentist and Bayesian statistics. 

Frequentist approaches estimate associations and implement statistical tests, whereas 

Bayesian approaches deal with the uncertainty of the disproportionality measure associated 

with small observations and counts by comparing to the “no-association” baseline case. In 

order to analyze ADRs in realistic scenarios that include comorbidities and 

polypharmacology, statistical extensions of disproportionality analysis can be used.

Emerging trends in the domain of ADR analytics employ new information sources to 

facilitate ADR detection. These include using biomedical literature as a complementary 

strategy to prioritize ADR associations.14 User-generated health web forums are also 

becoming popular information sources for such analyses.15

Methods that employ item-set, or association rule, mining have also been used for temporal 

data analytics in biomedical data.16-18 In these methods, frequent temporal patterns (also 

known as temporal association rules19) are discovered and extended for more expressive 

association rules mining.20-22

Many data sources exist for detecting ADRs, including both publicly available datasets and 

proprietary datasets (Table 1). Other important data sources exist for detecting ADRs, 

including survey3 and retrospective analysis methods. Retrospective analyses use data 

sources such as electronic health records (EHRs),23-25 federal repositories,4,26,27 clinical 

trial data,28 and clinical narratives.29-31 Novel resources, such as genome wide-association 

studies (GWAS), are a budding resource for the study of pharmacogenetics and 

pharmacovigilance. A search in the Database of Genotypes and Phenotypes (dbGAP) for 

“adverse drug reaction” reveals 29 available studies. For more detail on clinical methods in 

detecting ADRs, we direct the reader to the review by Harpaz et al.32; for additional 

information regarding use of GWAS studies in ADR prediction please see a review by 

Motsinger-Reif.33 A summary of relevant data sources, with source reference and 

appropriate links, is provided in Table 1.
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3. Methods for Predicting Population-Level ADRs

Each year, approximately 20 new drugs are released into the market in the United States 

(fda.gov); each will have both anticipated and unexpected side effects. In addition, more 

patients are simultaneously taking multiple drugs (polypharmacotherapy) as a consequence 

of increased life expectancy.34 During polypharmacotherapy, drug-drug interactions (DDIs) 

can result from the interplay of drug mechanisms or metabolism, leading to ADRs that do 

not occur when each drug is taken individually.35 These factors underscore the importance 

of developing accurate methods to identify ADRs, both for individual drugs and DDIs. We 

begin by addressing methods that have been used to predict drug targets, as any protein-

protein interaction network-based method for predicting drug safety must rely on knowing 

all of the expected and unexpected biological processes a drug is perturbing. We then 

proceed to describe approaches that utilize drug target data as well as other data sources to 

predict drug safety.

3.1 Predicting Drug Targets Using Systems Pharmacology

The enumeration of all protein targets of a drug is an important step in predicting ADEs, 

including both those the drug was designed to hit (“on-targets”) and unintended interactions 

(“off-targets”). These data facilitate systems-level analyses of a drug's cellular effects and 

toxicities. In addition to the growth of curated databases of drug-target interactions,11 

systems pharmacology and chemical informatics approaches have enabled the large-scale 

prediction of drug off-targets.

Some methods of target prediction involve similarity analyses. For example, Campillos et 

al.36 predicted new drug targets using side effect similarity. Drugs with similar side effects 

were predicted to share targets, and their final model combined both side effect and 

chemical structural similarity. However, their approach requires the side effects of a new 

drug to be known, limiting the avenues of inquiry for drugs in the clinical pipeline.

Other methods of target prediction utilize the chemical similarity of the drugs themselves. 

Keiser et al.37,38 developed a BLAST-derived, fingerprint-based algorithm called the 

similarity ensemble approach (SEA), wherein drugs with comparable chemical structures to 

a given protein's ligand set are also predicted to bind that protein. Although this method does 

not depend on protein structure for target prediction, it relies on a reference of 

experimentally derived drug-protein sets. SEA was used to successfully predict that 

paroxetine (Paxil) and fluoxetine (Prozac), both selective serotonin reuptake inhibitors, are 

also beta-blockers. The authors concluded that these results helped to explain the ADRs of 

patients taking either drug.38 However, while paroxetine was experimentally determined to 

bind β adrenergic receptors with a Ki of 1μM, the mean Cmax for the maximum dosage of 

paroxetine has been found to be 105ng/ml (280 nM) (https://www.gsk.com/media/389890/

pharma_715.pdf). While this clinical perspective does not discount the possibility of drug-

drug interactions or genetic predispositions affecting CYP2D6 activity and, therefore, the 

serum concentration of paroxetine, such examples highlight the need for not only 

experimental validation but also cross-referencing with clinical data to determine the 

translatability of these predictions.
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In another method, Yamanishi et al. used a bipartite graph and supervised learning to predict 

new drug-protein pairs by combining chemical space (chemical structure similarity), 

genomic space (amino acid similarity), and pharmacological effect (keywords from package 

inserts).39 In another integrative approach, Zhao et al. combined drug therapeutic similarity 

(ATC classification), chemical similarity, and gene proximity in a human PPI network to 

predict new targets.40 Further work that combines chemical similarity with additional 

techniques can help to realize the potential of structure-free approaches to ADR 

identification.

3.2 Predicting Drug Safety Using Systems Pharmacology

Many systems biology methods use the human protein-protein interaction (PPI) network as a 

basis for models. For example, Jiang et al.41 used a network biology approach to identify 

proteins involved in specific ADRs based on the topological properties of the PPI. Among 

several properties, every protein was described with its average shortest path length to 

known ADR-related proteins. This method highlights the robustness and ‘customizability’ of 

network-based methods, allowing authors to define novel topological measurements in order 

to create query-specific models. The authors of this paper found that they were able to 

identify ADR-related proteins (ADRPs) with a relatively high degree of sensitivity and 

specificity, and observed that ADRPs tended to be much closer to each other on average 

than non-ADRPs are to such drugs. However, this may simply be a reflection of the higher 

centrality of ADRPs; that is, more central genes tend to be closer to the rest of the network, 

and central proteins are more likely to cause ADRs because the effects of drug-induced 

inhibition or activation propagate more easily through the network.

In another PPI-based study, Huang et al. combined human PPI network expansion with drug 

target data and Gene Ontology (GO) terms to generate SVM and logistic regression models 

for predicting cardiotoxic adverse drug effects.42 The authors systematically annotated drug 

targets with GO terms at varying hierarchical levels and were able to demonstrate that these 

annotations can improve model performance.

Kuhn et al.43 approached the identification of ADRs for particular drugs by using a network 

based on non-experimental data. The authors created networks with three types of nodes: 

drugs, targets, and side effects, and identified side effect causality predictors. The authors 

considered overrepresented protein-side effect pairs, and hypothesized that such 

overrepresentation could be indicative of causality. Of the 116 high-confidence predictions, 

72 were supported by the literature. The authors also used a mouse model to perform in vivo 

validation of the predicted link between serotonin receptor 1 family protein activation and 

increased pain sensitivity, which is a side effect of triptans. While this method could be very 

useful in providing expected ADRs for well-studied drugs, the authors note that statistical 

power is limited when considering proteins that are off-targets for a small number of drugs, 

and also for very common side effects (such as headaches).

Huang et al.44 also used PPIs to identify pharmacodynamic (PD) DDIs by first mapping 

drugs to PPI nodes. Unlike Jiang et al, the authors of this paper integrated expression data 

into their model by weighting PPI network edges with the encoding genes' Pearson 

correlation coefficient of coexpression across 79 tissues. They integrated data from SIDER12 
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in order to cross-validate their method, then used a Bayesian probabilistic model to validate, 

explain, and compare predictions.

Guimera and Sales-Pardo45 used a similar network approach to identify novel DDIs. They 

constructed network models such that nodes represent drugs, while edges represent 

interactions (antagonistic, additive, and synergistic). Unknown drug interactions were 

predicted from these data using stochastic block models. At first glance, such analyses seem 

superficial due to the lack of experimental or detailed biological data; however, they are 

often accurate and manage to grasp global patterns that would not necessarily be visible 

when considering the mechanistic details of each drug pair.

Networks can also be represented as adjacency matrices. Taking this into consideration, 

Cobanoglu et al.46 predicted drug-target interactions using a filtering algorithm called 

probabilistic matrix factorization. The authors first modeled drug-target interactions from 

DrugBank as a bipartite network, defined as having two independent sets of nodes (in this 

case drugs and targets) where edges can only be drawn between drugs and targets. The 

authors then used these known interactions to train a model that represents each drug and 

target as a vector of latent variables and used these attributes to assign probabilities to 

missing edges in the network. Edges receiving high probabilities represent new interactions 

between drugs and targets. In this case, the identification of novel targets can lead to 

potential insights on previously unidentified drug side effects for that particular drug.

A number of systems pharmacology approaches have utilized chemical similarity to predict 

ADRs. Lounkine et al. used SEA to screen a panel of 656 approved drugs for binding to 73 

known side effect targets.47 The predicted results were then compared to experimental 

activity assays. While close to half of the predictions were disproved, the study still 

highlighted the high degree of drug target promiscuity. Other chemical fingerprinting-based 

approaches extracted chemical features with high correlation to each ADR and compared 

ADR-ADR pairs using these features to compute ADR similarity metrics.48,49

Other studies have combined chemical similarity with additional analyses. For example, 

Atias et al. combined chemical structure similarity with drug-ADR data from SIDER and 

side effect similarity data to perform i) a canonical correlation analysis that maximizes the 

correlation between drug characteristics (e.g. chemical structure) and side effects, and ii) 

network-based diffusion to prioritize side effects using a side effect similarity network.50 

Liu et al. combined chemical (substructures and fingerprints), biological (protein targets and 

pathway), and phenotypic (indications and other known ADRs) properties of drugs to 

predict ADRs.51 A follow-up study to Huang et al.42 combined drug structures with PPI 

networks in their predictive models.52

Computationally intensive and large-scale studies can also fall into systems pharmacology. 

LaBute et al. predicted off-target drug effects using protein-docking simulation. This study 

circumnavigates the inherent bias in systems biology approaches that integrate experimental 

data, which is limited by funding and research interest. LaBute et al.53 hypothesized that it is 

most valuable to predict ADRs during lead identification in drug development. The authors 
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trained in silico docking models on compounds and their associated ADRs (such as those 

found in SIDER) to demonstrate a pipeline for automated evaluation of drug safety.

Nonetheless, docking approaches remain limited by the availability of protein structures. 

Furthermore, even with available structures the binding affinities predicted by docking 

approaches can diverge wildly from experimental results.54 Many of these issues stem from 

the use of rigid structures and therefore being unable to sample the range of conformations a 

protein and ligand can occupy.55 New chemoinformatics approaches such as molecular 

dynamics simulations (MDS) have been used to circumvent these problems by simulating 

atomic motions on micro- to millisecond timescales.56 While MDS has yielded 

improvements in prediction accuracy for both correct ligand-protein poses and binding 

affinity,56-58 these simulations have high CPU demands and can therefore only be run on 

multi-core clusters or with cloud computing.56 The ability to screen large libraries of ligands 

against large libraries of potential targets with both accuracy and efficiency thus remains a 

present impossibility.

3.3 Understanding Mechanisms of ADRs Using Systems Pharmacology

Efforts to characterize mechanisms of drug side effects rely on databases of side effects 

(SIDER) and biological pathways (e.g. KEGG). To date, they have additionally integrated 

chemical structure,59 drug-target interactions,43,60,61 drug-induced differential gene 

expression,62,63 or a combination thereof.64-68

Scheiber et al. predicted biological pathways related to ADRs using chemical structure data 

to develop an in silico workflow.59 Beginning with known drug-ADR pairs, the authors then 

used chemical fingerprints to train Bayesian models predict protein targets for each drug. 

After mapping these predicted targets to biological pathways, they ranked the pathways to 

prioritize those containing predicted drug targets for a given ADR's drugs while 

simultaneously de-prioritizing pathways that were also targeted by drugs not causing the 

ADR. Using rhabdomyolysis and hypotension as examples, the authors found that top-

scoring pathways implicated by their method are supported in the literature.

In contrast, some papers use protein structures to predict ADR mechanisms. Xie et al.'s 

pioneering work identified mechanistic explanations for the hypertensive side effects of the 

cholesteryl ester transfer protein (CETP) inhibitor torcetrapib.61 To do so, the authors first 

identified off-targets of CETP inhibitors by searching for protein structures or homology 

models with similar ligand binding sites to the primary target. Putative off-targets were 

further evaluated using protein-ligand docking. The authors then mapped the off-targets to a 

mechanistic network incorporating metabolic, signal transduction, and gene regulation 

pathways and found that these predicted protein-ligand networks could differentiate between 

CETP inhibitors that caused hypertension and those that did not. The study elegantly 

demonstrated how each inhibitor's safety could not be derived from the predicted strength of 

binding to different regulators of the renin-angiotensin-aldosterone system implicated in 

ADR-associated hypertension.

In a similar vein, Wallach et al. associated ADRs with biological pathways by applying 

multiple stages of logistic regression to drug-protein docking profiles mapped to side effect 
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data from SIDER and pathway data from KEGG.60 In doing so, the authors identified almost 

200 ADR-pathway associations, of which 22 were supported by literature review. The 

model offers advantages over those used by Xie et al.61 in that it can link cases where two 

drugs may target different proteins but affect the same biological pathway. However, the 

authors note several examples were the associations are not causative, and the method is still 

limited to drug targets with known structure and the accuracy of virtual docking algorithms.

In a drug-target study relying solely on known interactions, Mizutani et al. used sparse 

canonical correlation analysis to correlate proteins with ADRs based on the co-occurrence of 

drugs in drug-target and drug-ADR profiles.69 They then searched for KEGG pathways 

enriched for these predicted ADR proteins.

Other approaches rely on drug-induced changes in gene expression to identify mechanisms 

of ADRs. Lee et al. systematically evaluated relationships between biological processes 

(Gene Ontology (GO) terms) and side effects (SIDER) by using the Connectivity Map to 

generate a multi-level process-drug-side effect network combining 2209 biological 

processes, 74 drugs, and 168 side effects.63 Another approach mapped drug-induced 

microarray changes to “principal response networks” by first parsing KEGG pathways into 

unique “sub-pathways” in an attempt to better account for the high degree of redundancy 

and cross-talk between biological pathways.62 While this subdivision allows for improved 

granularity in determining the mechanisms of drug action, both methods assume that 

differentially expressed genes belong to the same biological pathway, and do not consider 

compensatory pathways as an option. Further, these studies are limited to known and curated 

pathways through the use of biological databases.

To address some of these limitations, Silberberg et al. combined protein-protein and protein-

DNA interactions in the context of drug-target data and drug-induced gene expression 

changes to identify drug-specific subnetworks connecting drug targets to differentially 

expressed genes. The authors used over-represented short paths within these subnetworks to 

construct a panel of pathways that were then checked for overlap with the drug-specific 

subnetworks.67 They found that close to 90% of these inferred pathways did not overlap 

significantly with KEGG pathways. Furthermore, the inferred pathways achieved better 

performance in predicting side effects than KEGG pathways. In related work, Gottlieb et al. 

generated drug-specific pathways by linking drug targets, disease genes, and pharmacogenes 

(genes modulating drug response) within a pathway-annotated human PPI network to predict 

drug mechanisms of action and adverse effects.65 Such approaches demonstrate that curated 

biological process databases represent a good starting point but should not be considered 

definitive sources for pathway elucidation.

In an effort to bridge chemical and biological approaches to evaluate drug side effects, 

Duran-Frigola et al. performed a top-down enrichment analysis for each ADR in SIDER to 

identify over-represented chemical and biological features (e.g. chemical fragments, 

therapeutic targets, and pathways).64 These enriched molecular features were then used to 

build simple decision tree classifiers. While the approach is innovative, the authors note that 

they could only achieve their performance cut-off for 6% of the ADRs investigated. While it 

is clear that larger data sets will improve such analyses, future work must achieve a more 
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challenging compromise must be made between model simplicity, interpretability, and 

performance.

4. Systems Biology of ADRs and Precision Medicine

Many ADRs are extremely rare, occurring infrequently among the general population. 

However, some ADRs are familial suggesting a genetic component that can increase ADR 

risk.70,71 In response, researchers and physicians must decide whether a particular treatment 

will help or harm a given patient and this decision is often mired with difficulties. The field 

of precision medicine is focused on understanding the differing reactions of patients to the 

same treatment regimen and aims to provide physicians with optimal therapy options for 

each patient. ADRs that seem to occur in certain individuals or families are termed 

idiosyncratic ADRs. Because precision medicine is focused on the individual, we focus here 

on idiosyncratic ADRs.

4.1 Identifying and Explaining Idiosyncratic ADRs

Idiosyncratic ADRs are patient-specific reactions that occur without a known biological 

mechanism and exhibit dose-dependency among those who experience it.72 These reactions 

place a significant burden on public health, as they represent approximately 20% of all 

ADRs.72 Because their underlying mechanism is unknown, idiosyncratic ADRs are 

challenging to predict a priori. Understanding the true mechanistic etiologies of 

idiosyncratic drug reactions would enable personalized ADR risk assessment.

4.1.1 Genetic ADR Susceptibility—Related individuals can be at an increased risk for 

developing certain ADRs, which was found via familial studies.71,72 These initial results 

prompted additional research into the relationship between ethnicity and ADR risk. For 

example, hypersensitivity to anticonvulsants, specifically phenytoin and carbamazepine, was 

originally thought to follow a recessive, autosomal pattern of inheritance.70,71 However, 

additional investigation revealed that population stratification was a major issue. For 

example, the allele HLA-B*1502 is associated with carbamazepine-induced ADRs among 

both Thai73 and Han Chinese74 populations, while HLA-A*3101 occurs in Japanese 

populations75 and no HLA-B alleles are associated in European populations.76 Stratification 

by ethnicity has been a crucial tool for understanding the genetic underpinnings of ADR 

susceptibility.77

Several systems biology methods have been developed to uncover genes associated with 

ADR susceptibility. Berger et al.78 investigated long-QT syndrome (LQTS), which can be 

drug-induced. They used GWAS-identified seed proteins associated with congenital LQTS 

risk to identify a LQTS neighborhood in the human PPI network. The authors found that 

drugs connected with identified LQTS disease genes in their network also resulted in QT 

prolongation being reported in the FDA Adverse Event Reporting System (FAERS).78 Their 

results demonstrate that network-based approaches can be used to find additional genes and 

SNPs related to an ADR. Consequently, mutations in those genes may increase the 

likelihood of an ADR in some individuals.
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4.1.2 Lifestyle-Induced ADR Susceptibility—Lifestyle factors, such as diet, can also 

play a critical role in ADR susceptibility by affecting gut microflora, which alter metabolite 

absorption rates and vary widely based on diet.79 Lifestyle-induced ADR susceptibility can 

be investigated using metabolomics, the systematic study of all physiological metabolites.8 

For example, Winnike et al. showed that urine metabolite profiles taken after the start of 

therapy can predict Drug-Induced Liver Injury (DILI) before the onset of clinical signs.80 

This enables early intervention and can improve patient outcomes. Similarly, Cunningham et 

al. found a metabolite signature response to isoniazid in urine that could be used to 

determine an individual's risk for certain ADRs.81 However, a drug's effect on urine 

metabolites can be mitigated or exacerbated by other factors, such as diet, culture and 

ethnicity.82 In summary, understanding a patient's precise microbiome, metabolome, and 

diet can help researchers understand the underlying cause of an ADR in a population subset.

Understanding the effect of lifestyle on ADR susceptibility can help elucidate the underlying 

mechanisms behind individual responses to drug therapy.83 Systems biology approaches are 

ideal because they can be used to integrate and analyze data to provide a global picture of 

the underlying biological processes.84 Recently, techniques have been developed to 

understand the gut microbiome, and its relationship with drug metabolism.85 Others 

investigated lifestyle and environment factors termed “environmental exposures,” these 

exposures were then mapped to biological networks containing genes and gene pathways.86 

Therefore, it becomes possible to link environmental exposures to specific genes and 

pathways they modulate.87 These ‘systems exposure event networks’ have implications for 

uncovering personalized drug-ADR effects.86 Kasarskis et al. propose an integrative 

network approach that combines genetic, clinical, and environmental data to help predict 

drug outcomes and ADRs.88 Such approaches enable clinicians to determine if a particular 

drug would be efficacious for an individual patient given that individual patient's diet 

containing reduced sodium and their exercise routine of bicycle riding. Integrative 

approaches for understanding ADRs should also take into account pertinent environmental 

exposures that can modulate ADR risk.

4.1.3 Comorbidity-Induced ADR Susceptibility—Increased ADR risk is associated 

with certain disease comorbidities, such as congestive cardiac failure, peripheral vascular 

disease, and diabetes.89 Likewise, certain comorbidities are associated with decreased ADR 

risk, including cerebrovascular disease, dementia, and paraplegia.89 Pre-systems biology 

methods of identifying such ADRs involved retrospective analysis of health data.89,90 Onder 

et al. had physicians who suspected an ADR fill out a questionnaire detailing the drugs 

hypothesized to be causative.90 They found that each point increase in a patient's Charlson 

Comorbidity Index, a common tool used to assess patient comorbidity profiles, was 

associated with increased risk for a serious ADR. The authors also found that the number of 

prescribed drugs is positively correlated with an increased risk for serious ADRs.

The correlation between number of disease comorbidities and ADR risk may be the result of 

adverse polypharmacology, where a drug binds to an off-target in the target tissue, or to the 

therapeutic target in a non-target tissue.91 For example, Human Epidermal Growth Factor 

Receptor 2 (HER2) inhibitors used in the treatment of breast cancer, which may cause 

cardiac toxicity in off-target cardiac tissue.91-93 These types of ADRs are more likely to 
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occur if a patient is on multiple prescription drugs, which may explain the epidemiological 

findings.90

Systems biology methods have been applied to understand the etiologies of adverse 

polypharmacology effects.91 Specifically, systems biology can be used to probe the effects 

of a drug and its interaction with a non-target regulatory network, or signal propagation 

within the regulatory network, that leads to the ADR.91 Signaling networks are vital in 

understanding the complex interplay among diseases, their various comorbidities and the 

therapeutic effect of the drug target of interest.91

Another important facet of comorbidity-induced ADR susceptibility involves DDIs resulting 

from the treatment of comorbidities. Currently, data-driven approaches predict ADRs from 

drugs administered alone or in combination.94 These statistical approaches generally do not 

incorporate systems biology techniques to account for polypharmacological effects95 and the 

biological aspects of the drug targets.96 Systems biology methods to reveal and understand 

the mechanism responsible for DDIs and their resulting ADRs would significantly benefit 

this field of inquiry.

4.2 Systems Biology Approaches and Personalized ADR Prediction

Many factors can affect an individual's response to a given drug therapy: genetics, lifestyle 

(e.g. diet), and comorbidities. Each of these factors may mask, exacerbate, or otherwise 

change an individual's personal ADR risk. Several of these factors are shown in Figure 1. 

For example, genetic/microbiomic factors can disrupt the absorption of a drug (Figure 1A), 

while lifestyle choices such as dietary factors can disrupt the absorption of certain drugs 

(Figure 1B). In some cases, the primary disease may cause a decrease in a key metabolite, 

and a drug may be administered to increase this metabolite in the bloodstream. However, if a 

given patient has a comorbidity that also increases this metabolite, the administration of the 

drug could exacerbate the comorbid condition, depending on the drug's specific mechanism 

of action (Figure 1C). The ADR in this particular case would be the result of an exacerbation 

of the patient's comorbid condition. Personalized approaches are required that take into 

account the entire patient state (i.e. diet, lifestyle, comorbidities, disease). Systems biology 

methods have been developed to probe the interaction of ADR risk and genetic/ethnicity, 

lifestyle, and comorbidity factors. However, each of these methods focuses principally on 

one area. Currently, there is a paucity of research that integrates all of these methods and 

directly ties the result to personalized medical outcomes. More research is needed to harness 

these data in interesting, novel ways to realize the potential of personalized medicine.97

5. Systems Pharmacology of Biologically Sourced Compounds

In addition to commercially available pharmaceuticals, there are many naturally occurring 

plant- and animal-produced compounds that were recently rediscovered for their clinical 

validity in treating disease.98 Typically, these take three forms: small-molecule 

metabolites,99 peptides, and immunologic components. Together, these pharmaceutically 

active biomolecules are called ‘biopharmaceuticals’ (colloquially, ‘biologics’). Peptides and 

antibodies often have an incredibly high specificity for a distinct molecular target,100 
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making them ideal candidates for therapeutic use. Large libraries of potentially useful 

biologically active compounds are actively being developed.101,102

Despite their potential, there are substantial barriers that prevent the discovery and 

widespread adoption of clinically useful biologics. The staggering diversity and structural 

complexity of biological molecules presents a nearly intractable problem with regards to 

their identification, classification, and isolation from a living organism.103 Auxiliary 

compounds that coexist with the compound of interest may themselves be biologically 

active with the ability to interact with other drugs in unexpected ways. For example, St. 

John's-wort, a common herbal supplement,104 often interacts with traditional synthetic drugs 

(e.g. cyclosporine) and results in ADRs (e.g., transplant rejection).104,105 Some of these 

effects may be due to synergistic perturbations to the underlying biological system. Modern 

computational techniques are enabling the automated identification and classification of 

novel biopharmaceuticals,106 but the complexity of their behavior in a diverse biological 

system still poses a daunting challenge.

6. Integrative approaches to identifying ADRs (Basic Biology and Clinical 

Medicine)

Most efforts to predict ADRs have relied either on clinical data mining or systems 

pharmacology analyses. However, several groups have begun to combine these two data 

types with the promise of generating models that account for lingering biases and limitations 

and are better able to identify and understand drug-ADR pairs. In contrast to using clinical 

data as a sole validation of the systems pharmacology approach, these studies incorporate 

clinical data into the model itself.78 We illustrate these integrative approaches in Figure 2, 

where edge thickness between pairs of data sources (nodes) corresponds to the number of 

publications that have combined the two (Figure 2).

Cami et al. generated predictive pharmacosafety networks that integrated clinical drug-ADR 

data (a 2005 snapshot of the Lexicomp database), taxonomic data (the ATC taxonomy of 

drugs and the MedDRA taxonomy of ADRs), and biological data (DrugBank and 

PubChem).107 The authors used these data to train a logistic regression classifier to predict 

new ADRs and performed a prospective method evaluation by comparing their predicted 

results to the 2010 version of the same drug safety database. While the method is highly 

novel and achieved high specificity (0.95), sensitivity was limited to 0.42, and the method 

did not account for the reporting biases present in drug safety databases. Nonetheless, the 

prospective method employed by the authors provides a valuable template for how to use 

clinical data both for model creation and realistic validation.

While the previous study relied on a proprietary drug-ADR database, other methods have 

been developed to utilize publically available data. In a study combining clinical data 

mining, network analysis, and experimental validation, Zhao et al. sought to identify drugs 

taken concurrently with rosiglitazone that could reduce the incidence of rosiglitazone-

associated myocardial infarction (MI) in type II diabetic patients.108 To do this, the authors 

mined the FDA Adverse Event Reporting System (FAERS) for such safe combinations, 

finding that concurrent use of exenatide led to decreased occurrence of MI. The authors 
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replicated these results using EHRs. Beginning with peroxisome proliferator–activated 

receptor γ (PPARγ), the target of rosiglitazone, the authors used GO term annotations and 

DrugBank targets to identify a subnetwork in the human interactome associated with 

rosiglitazone-induced MI and mechanistically investigate the positive effects of concurrent 

exenatide use. Their hypothesis was finally validated in a mouse model. While the method 

does not account for potential off-target effects, it highlights a powerful pipeline leveraging 

clinical data as well as both in silico and in vivo biology.

To address the inability of many clinical data mining approaches to eliminate false positives 

and false negatives, Lorberbaum et al. developed the Modular Assembly of Drug Safety 

Subnetworks (MADSS), a network analysis-based algorithm that identifies adverse event 

neighborhoods within the human interactome.109 Drugs targeting proteins within this 

neighborhood are predicted to be more likely to cause the ADR than drugs targeting proteins 

outside the neighborhood. Beginning with a small “seed” set of highly interconnected 

proteins with a direct genetic link to an ADR of interest, the authors then scored every 

protein in the human PPI network on how well-connected it was to the seed set using 

multiple network connectivity functions including shortest path and shared neighbors. They 

then trained a random forest classifier using each of the connectivity metrics as features to 

generate drug safety subnetwork (SubNet) models. The authors then evaluated drug safety 

using both known and predicted drug targets. Combining SubNet and the results of a clinical 

data medication-wide association study (MWAS)110 using logistic regression led to 

significant improvements in drug safety predictions, and at a false positive rate of 10%, 

sensitivity increased from 0.32 (MWAS alone) to 0.59 when systems pharmacology 

approaches were combined with pharmacovigilance statistics.

The success of each of the above studies to accurately predict ADRs suggests that future 

work will greatly benefit from the continued integration of biological, chemical, and clinical 

data. This work is required to realize the vision of precision medicine. Therefore, we provide 

a data model framework (Figure 3) to illustrate how integrating diverse data types can allow 

for unique views of individual ADR risk. The microbiome, metabolomics, genetics, and 

nutritional information are all necessary to provide precise treatment regimens for individual 

patients. Nutrition can affect gene expression; genetic mutations may render genes non-

functional, and the microbiome can affect biological interactions. Finally, metabolomics 

studies are important to understanding rate-change relationships between compounds, which 

may affect the speed of interactions in turn. Systems biology methods may be able to 

integrate these disparate data sources, and research in this area is of utmost importance.

7. Conclusion

In this review, we discuss the recent surge in systems pharmacology publications related to 

ADR discovery. Since the publication of a 2011 review also exploring these approaches,9 

the number of publications has more than doubled. The works highlighted in this review 

integrate a variety of data types and methodologies to uncover population-wide and 

precision-medicine-specific ADRs, and underscore the applications and benefits of systems 

pharmacology to ADR discovery. For example, network parameters are highly 

customizable; Jiang et al. created a novel network measure in order to identify proteins 
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associated with specific ADRs,41 and a number of methods define other novel, application-

specific, network-based measures for use in their research. In addition, systems biology 

methods are highly integrative, allowing researchers to stack various data sources. This is 

exemplified in Duran-Frigola's 2013 study,64 where the authors were able to combine 

numerous chemical and biological features to predict ADRs.

Although data integration can provide many novel insights, authors must bear in mind the 

balance of data integration versus specificity. For example, a 2013 Zhao et al. paper focused 

only on diabetes;108 further data integration may make the model more generalizable at the 

expense of decreased performance for particular ADRs.

The application of systems biology techniques to the problem of ADR detection and 

prevention continues to grow rapidly.111 However, several caveats must be stated. The first 

is the overuse of the same datasets. For example, multiple papers integrate post-market 

surveillance systems and PPI networks in order to identify ADRs using various algorithms. 

This creates a case of information saturation, and we have reached a point where identifying 

the optimal algorithm using these data sources is much more important than developing 

novel algorithms integrating the two. In this vein, Kuang et al. compared several existing 

methods for predicting ADRs112 and found that integrated approaches combining both 

intrinsic features of drugs and topological features of drug-ADR association networks 

tended to perform better in predicting side effects. More of these comparative analyses 

should be performed to assess the most accurate predictive methods given up-to-date 

datasets.

A second caveat is that of poor follow-up in confirming in silico predictions experimentally. 

At present, systems pharmacology approaches provide a list of hypothetical relationships 

between drug and ADR. These predictions can and should be integrated into everyday drug 

safety research, but experimental validation in a binding experiment, cellular assay, or 

animal model is critical for not only distilling an initial list of candidate drugs, but also for 

identifying false positives that can be used to refine the algorithm.

Finally, experimental results should – when possible – be validated in a clinical context. 

Issues with translating results from animal models to humans are well-known;113 integration 

of systems pharmacology predictions with EHRs therefore presents researchers with an 

opportunity to evaluate drug safety using retrospective “experiments” performed on humans 

during clinical care. Most importantly, validation using clinical data will help build 

confidence amongst clinicians and regulatory bodies. While such validation may not always 

be possible (e.g. during early drug development) and presents its own share of challenges,114 

post-market studies of drug safety should leverage these data to fulfill the translatable 

promise of the field.

In surveying the selection of data sources used in previous studies (Figure 2), some dataset 

combinations occur more frequently in the literature than others. For example, drug-target 

datasets such as Drug Bank have been combined with drug-ADR databases (e.g. SIDER) far 

more often than with the Connectivity Map. We encourage future work to identify dataset 

combinations that have not yet been sufficiently explored as a strategy to focus new study 
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design. The combination of rigorous algorithm comparison and dataset integration should 

pave the way for not only increased number of publications but also truly transformative 

productivity in systems pharmacology.
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Figure 1. Adverse Drug Reactions (ADRs) Can Occur Among Certain Individuals Due to 
Diverse Disruptions in the Drug's Mechanism of Action
Some examples of these disruptions include, genetic/microbiome related (Figure 1A), 

dietary or lifestyle dependent (Figure 1B) or driven by a patient's comorbidities (Figure 1C).
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Figure 2. Bipartite graph of data sources used in the literature for systems biology of adverse 
drug reactions
We surveyed data sources used in previous studies and whether or not those datasets were 

used in combination or not (singleton nodes in Figure 2). Edges in the graph represent 

datasets used in combination by the same publication. Edge-thickness indicates the number 

of publications using that particular dataset combination. Node size is based on the degree of 

the node, and color indicates the closeness centrality. Figure 2 illustrates that some datasets 

are used together often, while others are rarely used in combination. This helps indicate 

areas of opportunity for future systems biology researchers interested in using novel or 

under-utilized data sources.
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Figure 3. A Data Model Framework Illustrates How Diverse Data Types can form a Complete 
Profile of an Individual's Adverse Drug Reaction Risk
Many types of data form various fields investigate the individual aspects of ADR risk 

including: microbiome, metabolome, lifestyle, nutrition and the genome. Each of these 

contributes important information on an individual's adverse drug reaction (ADR) risk. 

Achieving precision medicine requires integrating these diverse data and the application of 

statistical modeling techniques to predict an individual's overall ADR risk for a given drug.
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