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Summary

We introduce statistical methods for predicting the types of human activity at sub-second 

resolution using triaxial accelerometry data. The major innovation is that we use labeled activity 

data from some subjects to predict the activity labels of other subjects. To achieve this, we 

normalize the data across subjects by matching the standing up and lying down portions of triaxial 

accelerometry data. This is necessary to account for differences between the variability in the 

position of the device relative to gravity, which are induced by body shape and size as well as by 

the ambiguous definition of device placement. We also normalize the data at the device level to 

ensure that the magnitude of the signal at rest is similar across devices. After normalization we use 

overlapping movelets (segments of triaxial accelerometry time series) extracted from some of the 

subjects to predict the movement type of the other subjects. The problem was motivated by and is 

applied to a laboratory study of 20 older participants who performed different activities while 

wearing accelerometers at the hip. Prediction results based on other people’s labeled dictionaries 

of activity performed almost as well as those obtained using their own labeled dictionaries. These 

findings indicate that prediction of activity types for data collected during natural activities of 

daily living may actually be possible.
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1. Introduction

Body-worn accelerometers provide objective and detailed measurements of physical activity 

and have been widely used in observational studies and clinical trials (Atienza and King 
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2005; Boyle et al. 2006; Bussmann et al. 2001; Choi et al. 2011; Grant et al. 2008; Kozey-

Keadle et al. 2011; Schrack et al. 2014a; Sirard et al. 2005; Troiano et al. 2008). However, it 

is challenging to transform the accelerometry data into quantifiable and interpretable 

information such as activity intensity or energy expenditure (Bai et al. 2014; Schrack et al. 

2014b; Staudenmayer et al. 2012; Troiano et al. 2008; Trost et al. 2005; Welk et al. 2000). 

An important goal of these studies is to transform an observed accelerometry dataset into a 

series of activity types that is time-stamped. In this paper we are concerned with predicting 

activity types at sub-second resolution using detailed triaxial accelerometry information. 

Sub-second labels seems to be the highest resolution that matters in terms of human activity 

recognition. Indeed, most human movements occur between 0.3 and 3.4 Hz (Sun and Hill 

1993). Moreover, the resolution is necessary as we are interested in capturing short 

movements such as walking 2 or 3 steps, which is a highly prevalent type of activity in real 

life and likely to become a bigger component of activity as people age. Such labeled time 

series data could then be used for health association studies, where decreases in activity 

diversity or changes in the circadian rhythm of activities may represent early strong 

indicators of biological processes or diseases. These expectations have strong face validity, 

as, for example, 1) an early indication of health recovery after surgery is the will and ability 

of a patient to use the bathroom; and 2) disease may be associated with early reduction or 

abandonment of non-essential activities.

1.1 Accelerometry Data

An accelerometer is a device that measures acceleration. When attached to the body of a 

human subject, if the subject is at rest, the accelerometer measures the subject’s orientation 

relative to the gravitational vector; if the subject is moving, the accelerometer measures a 

combination of the subject’s orientation and acceleration. Recent technology advances have 

produced small and light accelerometers that could collect data at high sample rates. For 

example, the Actigraph GT3+ device is of size 4.6 × 3.3 × 1.5cm, weighs only 19 grams, 

and could sample data at 100 Hz; see Figure 1 for pictures of this device. Thus, 

accelerometers can be easily attached to the human body and used for objectively recording 

detailed accelerations due to human physical activities.

The output from triaxial accelerometers, e.g., the Actigraph GT3+ device, is a triaxial time 

series of accelerations along three mutually orthogonal axes and expressed in units of Earth 

gravity, i.e., g = 9.81m/s2. The three axes are labeled as “up-down”, “forward-backward” 

and “left-right” according to a device-specific reference system; see Section 2.1 for details. 

These labels of axes have meaning only in the reference system of the device, as the device 

will move with the part of the body it is attached to. This means that an axis that is up-down 

relative to the device can easily be forward-backward, left-right or anything in between in 

the body-reference system. Figure 2 shows five segments of data for two subjects wearing 

the devices at hip. From top to bottom, subjects perform 5 replicates of standing up from a 

chair and sitting back (chairStands), walk 20 meters at normal speed (normalWalk), mimic 

vacuuming, stand still, and lie down on the back. From the data we observe that: 1) 

variability for active periods (normalWalk, chairStand and vacuum) is higher than inactive 

periods (standing and lying); 2) within each subject, the ordering and relative position of the 

three axes are different for standing and lying as the orientation of the accelerometer with 
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respect to the gravity differs for the two postures. Observations indicate that accelerometers 

can detect and differentiate various human activities. Moreover, we see that for chairStand 

and normalWalk, data for both subjects exhibit rhythmic patterns, suggesting that within the 

subject movements for same activities appear similar in the accelerometry data.

1.2 Motivating Data

The motivating data were collected from 20 older adults who were originally enrolled in the 

Study of Energy and Aging (SEA) pilot study. These participants were invited for an 

ancillary study for validating hip and wrist accelerometry and were instructed in a research 

clinic to perform 15 different types of activities according to a protocol. Table 1 provides the 

labels, detailed description and durations for the 15 activities. The selection and design of 

these activities are intended to simulate a free-living context. The activity types are referred 

to by their labels in the paper. Throughout the study, each participant wore three Actigraph 

GT3X+ devices simultaneously, which were worn at the right hip, right wrist and left wrist, 

respectively. The data were collected at a sampling frequency of 80Hz. Based on the 

protocol and the start/end times for each activity, a time series of labels of activity types is 

constructed to annotate the accelerometry data. In this paper we will focus on the data 

collected from accelerometers located at the hip and study how well a given program of 

activities can be distinguished by the accelerometry data at the population level.

We revisit Figure 2, which displays the raw accelerometry data obtained from the hip 

accelerometers. We focus on the data for chairStand and normalWalk, which exhibit 

rhythmic patterns. An important observation is that these repetitive movements look very 

similar within the same person, though not across persons; this is a crucial observation as 

most prediction techniques are fundamentally based on similarities between signals. For 

example, for chairStand, sudden large changes in acceleration magnitudes can be observed 

in the left-right axis for subject 13 but not for subject 4. Another example is that for 

normalWalk accelerations along the up-down and forward-back axes align up very well for 

subject 4 but are far apart for subject 13. These dissimilarities seem to suggest that the 

accelerometry data are not comparable across subjects. Simply throwing prediction 

techniques at such a problem, irrespective to how sophisticated or cleverly designed they are, 

would achieve little in terms of understanding the data structure or solving the original 

problem. However, we will show that a substantial amount of these observed dissimilarities 

is due to the orientation inconsistency of the reference systems across subjects and can be 

significantly reduced by using the same orientation, i.e., a common reference system. If a 

common reference system were used, then the three axes for standing and lying in Figure 2 

would be very similar for the two subjects. This is clearly not the case for the raw 

accelerometry data as the left-right and the up-down axes for lying overlap for subject 13 but 

are quite different for subject 4.

1.3 Proposed Methods

In this paper, we first address the problem that the raw accelerometry data collected from 

different subjects may not be directly comparable. We show that the raw data are measured 

with respect to different reference systems and thus have different meanings across subjects. 
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We will provide a data transformation approach for normalizing the data, which is designed 

to mitigate these inherent problems in data collection.

Once data are normalized we proceed to predict activities using some of the subjects for 

training and the remaining subjects for testing the prediction algorithm. In particular, we will 

use movelets, a dictionary learning based approach that extends the methodology in Bai et 

al. (2012) designed for same-subject prediction. Here we describe briefly what movelets are 

and provide the intuition behind the approach. A movelet is the collection of the three 

acceleration time series in a window of given size (e.g., 1s). For example, the time series in 

the two shaded areas in Figure 2 represent two 1-s movelets. The sets of overlapping 

movelets constructed from the accelerometry data with annotated labels are organized by 

activity types, which play the role of accelerometry “dictionaries” for different activity 

types. As was illustrated in Section 1.1, the intuition is that movements, and the associated 

movelets, are similar for same activities and different for different activities. Based on this 

intuition, predictions of activity type from accelerometry data without annotated labels can 

be obtained by identifying the annotated movelet that is most similar to the data; the 

similarity is quantified by the L2 distance. An important problem with the movelets 

approach is choosing the window size for the movelets. We will introduce a criterion based 

on prediction performance, evaluate the criterion in our data, and provide specific 

recommendations for the optimal size of the movelets. This gives us a rigorous and data-

based approach that provides the necessary context for the currently used window size.

1.4 Existing Literature

A number of methods have been used for recognition of activity types, including linear/

quadratic discriminant analysis (Pober et al. 2006), hidden Markov models (Krause et al. 

2003), artificial neural networks (see, e.g., Staudenmayer et al. 2009; Trost et al. 2012), 

support vector machines (see, e.g., Mannini et al. 2013) and combined methods (see, e.g., 

Zhang et al. 2012). Bao and Intille (2004) and Preece et al. (2009) reviewed and evaluated 

methods used in classifying normal movements. The major limitations of these methods 

include: 1) they usually require at least a 1-minute window to conduct feature extraction; 2) 

they do not capture finer movements that last less than 1 minute, such as falling or standing 

up from a chair; and 3) the prediction process is usually hard to understand and interpret. In 

contrast, our proposed method is fully transparent, easy to understand, requires minimal 

training data, and is designed both for periodic and non-periodic movements.

The rest of the paper is organized as follows. In Section 2 we consider two main factors for 

making the raw accelerometry data not comparable and propose a transformation method for 

normalizing the data. In Section 3, we describe in detail the movelet-based prediction 

methods. In Section 4 we apply our prediction method to some real data. We conclude the 

paper with a discussion about the feasibility of movelet-based movement prediction and its 

potential relevance to public health applications.
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2. Triaxial Accelerometry Data Normalization

2.1 Raw Data Are Not Comparable Across Subjects

A fundamental problem with the raw triaxial accelerometry data is that they may not be 

directly comparable across subjects; Figure 2 provides the intuition about this problem and 

indicates that orientation inconsistency is an important factor. Another factor is device-

specific systematic bias, which we will explain in details later.

More specifically, triaxial accelerometers measure accelerations along the three axes in the 

reference system of the device. Indeed, Figure 1 indicates exactly the device-specific 

reference system. In its standard orientation and in absence of movement, the up-down axis 

of the device is aligned with Earth’s gravity and will register −1g (acceleration towards the 

center of the earth) and 0g along the other two axes (orthogonal to the gravity). If the device 

is rotated clockwise by 90 degrees towards the forward-backward (left-right) axis then in 

absence of movement the forward-backward axis will continuously record −1g, while the 

acceleration in the other two directions will be 0g. This shows that: 1) orientation of the 

device will fundamentally alter the local mean of the acceleration; 2) the relative size of the 

acceleration along the axes is a proxy for orientation of the device relative to Earth’s gravity; 

and 3) simple laws of physics may be applied to make the signals comparable across 

individuals by using a common reference system. Our paper is dedicated to showing that 

using a common reference system is a crucial step for across-individual prediction of 

movement type, and providing a simple way to predict across individuals using the 

dictionary of movement of others (movelets). In some applications (e.g., Kim et al. 2013), 

accelerometers are mounted on a rigid body to maintain the standard orientation. However, 

when worn by human subjects, the orientations of accelerometers could depend on many 

factors. First, the device can be flipped, turned or attached to a slightly different part of the 

human body. Another factor is the shape of the human body that the device is attached to; 

for example, waist circumference or relative height of the hip with respect to the body can 

alter what we generally describe as “position”. To illustrate the problem, we have extracted 

two segments of data (3s for each segment) for standing and lying for each of the 20 subjects 

in our study and computed the means of three axes for each segment; see the left panel of 

Figure 3. If the orientation of the accelerometers respected our intuition of directions then 

the means should be (−1, 0, 0) for standing and (0, −1, 0) for lying. Here we use a length-3 

vector to denote the acceleration in the order of up-down, forward-backward, and left-right 

axes. The left panel of Figure 3 indicates that the orientations of the accelerometers are 

rarely they are expected to be and vary considerably across subjects. It is interesting to see 

that almost all accelerometers were flipped in the up-down direction because for those 

accelerometers the means of data for standing are (1, 0, 0); this probably indicates that even 

something as simple as up-down relative to the device can be easily misinterpreted. An 

example of device placement that is inconsistent with the protocol is subject 10, for whom 

the mean of data for standing is (0, 0, 1). The means for subjects 13 and 15 show strong tilt/

rotation effects. These simple exploratory tools indicate the need of rotating the data to 

ensure that they have about the same interpretation across subjects; we believe that the lack 

of appreciation of this fact is the major obstacle to current attempts to predict movement 

types across individuals.
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Another problem is that the accelerometry data have small but non-ignorable systematic 

biases; more precisely, the magnitude of the acceleration vector differs when it should not, 

that is, when subjects stand still. To separate the bias from the orientation inconsistency, we 

have computed the magnitude of the mean acceleration vector, which is  if the 

mean acceleration vector is denoted by (x1, x2, x3)T. Note that the magnitude of the mean 

acceleration vector is invariant to rotation. Figure Web-1 in Web Appendix A displays the 

magnitude of the mean acceleration vector for standing, which should be 1g. An inspection 

of the graph indicates that the magnitude is rarely equal to 1 and it differs from 1 by as much 

as 6% for two subjects. We have found that these differences can have serious consequences 

for activity type prediction, because a change of this magnitude can fundamentally affect the 

geometry of the activity space. Using a simple model where we assume that subjects have 

random moves while standing still (see Web Appendix B) we could show that the gravity-

inflation (note that magnitudes are typically larger than 1) is most likely not due to random 

movements for most devices. Thus, for the purpose of our research we will treat these 

differences as systematic biases that are associated with the devices. A more in-depth and 

principled analysis of this assumption is beyond the scope of the current paper.

2.2 Normalization of Raw Triaxial Data

The purpose of normalization is to make same-activity data more comparable across subjects 

so that we can use the dictionary of movements of one or several subjects (movelets) to 

predict the activity of others. To achieve this, a desired normalization procedure should be 

able to correct the orientation inconsistency and reduce the bias in the raw data.

The proposed procedure is to apply a particular linear transformation to the raw data. This 

consists of two steps: rotation and translation. We first rotate the triaxial data so that all the 

data are in the standard orientation (reference system) and then translate the rotated data to 

reduce systematic biases. To be precise, assume u = (u1, u2, u3)T is a single data point in the 

raw data space, R is a rotation matrix, and b = (b1, b2, b3)T is the vector of systematic bias. 

Then we have

(1)

In practice, accelerometers might be moving from time to time relative to the human body, 

which could make their orientation time-dependent. We assume that the accelerometers do 

not move with respect to the human body and apply the same transformation in (1) to all raw 

data within the same subject. This simple approach has worked well in practice.

We need to determine R and b based on the subject-specific raw data; both R and b depend 

on the subject, but the notation was dropped for presentation simplicity. We extracted two 

small segments from the raw accelerometry data, one segment for standing and another for 

lying; the segments can be very short, say 2-3s. The approach then proceeds by calculating 

the means of the three axe for both activities, which results in two three dimensional vectors 

a1 for standing and a2 for lying. If the up-down axis for the orientation of the device aligns 
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well with the negative direction of Earth’s gravity and the data have no systematic bias, then 

a1 should be close to −e1 = (−1, 0, 0)T and a2 should be close to −e2 = (0, −1, 0)T. Hence, 

we select R from the class of rotation matrices that minimizes  and 

satisfies , where e3 = (0, 0, 1)T and a1 × a2 is the cross product of a1 and 

a2. The latter condition ensures that we have a right-hand coordinate system for the rotated 

data. It can be shown that R is uniquely determined and can be computed, as shown in Web 

Appendix C. Then we let b = Ra1 + e1, which by (1) implies that the mean of standing 

accelerometry is exactly −e1. Note that b is the systematic bias when the accelerometer is 

measuring standing, the choice of which is due to the practical consideration that the body 

posture for activities like walking and chair standing are close to standing and hence 

reducing bias for standing is important for accurate activity prediction. This also implies 

rotation precedes translation when normalizing accelerometry data.

We note that estimation of the rotation matrix R might be affected by the existence of 

systematic bias. For our accelerometry data, the systematic bias is small (see Figure Web-1 

in Web Appendix A) and seems to have negligible effect on rotation. In Web Appendix D, 

we consider an alternative method for a joint estimation of rotation matrix and the 

systematic bias. Both methods gave very similar results when applied to the real data

2.3 Normalized Data

We applied the normalization method to the accelerometry data and re-calculated the means 

of standing and lying for the 20 subjects. As expected, the right panel of Figure 3 shows that 

the means of standing (lying) are close to −e1 (−e2) for all subjects. Comparing the two 

panels in Figure 3 we see strong indications that the normalized data are more comparable 

across subjects. The fact that means are closer to what they are designed to be after 

normalization is satisfying, though not surprising. To show the dramatic effects of 

normalization we investigate the changes from the raw to normalized data in activities that 

were not used for normalization. The top panels of Figure 4 display the raw data for normal 

walking for 2 subjects. A close inspection of the two graphs indicate periodic movements, 

though the patterns and the size of the means of movement make it very hard for any method 

developed for one subject to recognize the patterns of the other subject. After normalization 

the patterns are much more comparable (see bottom panels in Figure 4), which will allow 

powerful techniques, such as movelets, to be generalized across individuals. It is interesting 

that while the signal is visually similar, the amplitude of the up-down axis (the black solid 

line in the bottom panels in Figure 4) differs quite substantially between the two subjects. 

This is likely due to the stronger up-down acceleration of subject 4 compared to subject 13.

3. Movelets Prediction

In this section, we first describe the subject-level movelets prediction method developed by 
Bai et al. (2012) and introduce some notation. Then we propose a population-level movelets 

prediction method that could predict a subject’s activity labels with no knowledge about how 

this subject’s accelerometry data look when doing various activities. Finally, we provide a 

simple automatic approach for tuning the window size/length of movelets, an important 

component in the movelets prediction procedure.

Xiao et al. Page 7

Biometrics. Author manuscript; available in PMC 2016 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.1 Subject-level Movelets Prediction

We denote the normalized triaxial accelerometry data by  (t) = {Xi1(t), Xi2(t), Xi3(t)} 

where t ∈  and i ∈ . Here  is a time domain on the scale of seconds and  denotes the 

collection of subjects. Associated with the data is a label function Li(t) which takes values in 

 = {Act1, …, ActA}, a collection of labels each denoting a distinct activity. If subject i is 

standing at time t, Li(t) will be the label in  that represents standing. Let  and  be a 

disjoint union of . Then the subject-level prediction is to predict the labels {Li(t) : t ∈ } 

for the data { (t) : t ∈ }, assuming { (t) : t ∈ } is the training data with {Li(t) : t ∈ } 

being known. For the subject-level prediction, data and label information across subjects are 

not used.

The idea of movelets prediction (Bai et al. 2012; He et al. 2014) is to first decompose the 

accelerometry data into a collection of overlapping movelets. A movelet of length h at time t 
is defined as Mi(t, h) = { (s) : s ∈ [t, t+ h)} and it captures the acceleration patterns in the 

time interval [t, t + h). For simplicity we drop the parameter h from Mi(t, h) hereafter. The 

accelerometry data can be decomposed into a continuous sequence of overlapping movelets 

with (t) being contained in all the movelets starting at s ∈ (t −h, t]. The approach of 

overlapping movelets, as a type of sliding window technique, is advantageous to other 

windowing techniques such as event-defined windows or activity-defined windows (Preece 

et al. 2009). The latter windowing techniques require either locating specific events or 

determining the times at which the activity changes; but the use of overlapping movelets 

requires no such “preprocessing” and is better for real-life applications. Another advantage 

of overlapping movelets is that they are computationally easy and simple to construct, which 

makes them well suited for analyzing ultra-dense acceleration data.

Using movelets, the training data can be represented as {Mi(t) : t ∈ } and similarly for the 

unlabeled data, {Mi(t) : t ∈ }. Here  = {t ∈  : [t, t + h) ⊂ } and  = {t ∈  : [t, t + h) 

⊂ }. Note that in the new data representation with movelets, a data point will be lost if it is 

not contained in any time interval of length at least h in  or . To avoid ambiguity for 

prediction, the movelets in the training data that do not belong exclusively to a single type of 

activity are deleted. For the movelets in the training data, we define the label function 

L̄i{Mi(t)} := Li(t).

Given an unlabeled movelet Mi(t), t ∈ , the method is to find the closest match in the 

training data, i.e., to search for t* = t*(t) ∈  such that

(2)

where f(·, ·) is some function that measures distance between movelets; this type of 1-nearest 

neighbor works exceptionally well in conjunction with the sliding window movelets. The 

idea is that movelets with similar pattern or shape should belong to the same activity. A 

simple f that will be adopted in the paper is

Xiao et al. Page 8

Biometrics. Author manuscript; available in PMC 2016 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(3)

The above L2 distance measures explicitly the amplitude difference between two movelets; 

in addition, because movelets are always of the same length, the distance between movelets 

from activities of different frequencies can also be large.

Since Mi(t*) is the best match for Mi(t), the label of the movelet at time t can be predicted by 

PL̄i(Mi(t)) := L̄i (Mi(t*)) = Li(t*). We may use the predicted label for Mi(t) as the prediction 

for (t). However, this may not always be an accurate prediction because we use data as far 

as h seconds away in making the prediction with the underlying assumption that the activity 

type remains the same in the time interval [t, t + h). So if the movelet actually contains some 

transitional period between different activity types, this prediction can be wrong. Using the 

facts that (t) contributes to the prediction of all the movelets that start at s ∈ (t − h, t] and 

that human physical movements are in general continuous, the predicted label can be the 

most frequently predicted label for all the movelets that contain  (t). Formally we let

where 1{·} is 1 if the statement inside the bracket is true and 0 otherwise.

3.2 Population-level Movelets Prediction

The movelets method described in the previous section considers only prediction at the 

subject level as the training data and the data to be predicted are from the same subject. We 

now extend the movelets prediction method to the population level. We assume , the 

collection of subjects, are divided into two disjoint sub-collections,  and . For subjects in 

 the activity labels are known while for these in  the labels are unknown. The problem is 

to predict the activity labels for subjects in  using the data from .

Given an unlabeled movelet Mi(t), i ∈ , the proposed method is to search for {i*, t*(t)} 

such that

(4)

where f is defined in (3) and  = {t ∈  : [t, t + h) ⊂  }. With small modifications, equation 

(4) reduces to (2) when we consider a single subject. The idea of the proposed method is that 

we will be able to label the movelet accurately as long as it could match the movelet to a 

same-activity movelet of at least one subject in . This is the key for a successful 

population-level prediction, as movements from different subjects usually exhibit different 
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patterns and hence movelets from different subjects have large within-activity variation. 

However, having a sizable group of subjects in the training set will cover multiple patterns in 

the normalized data, which will lead to improved prediction. In some sense, ours is the 

implementation of the intuition that “many people move differently, but some people move 

like you”. For example, for fast walking with arm swinging in the accelerometry data, the 

time for completing two steps ranges from about 0.70s to 1.13s. Hence, rather than requiring 

a subject’s movement to be similar to the collection of movements of the same activity from 

all subjects in , our method only requires this subject’s movement to be similar to at least 

one subject’s movement of the same type. As long as there are people in the training dataset 

whose times for completing two steps are similar to the subject we try to predict, prediction 

should work reasonably well.

Finally, the predicted label for Mi(t) is PL ̄{Mi(t)} := L̄i* {Mi*(t*)} = Li*(t*) and we let

3.2.1 Evaluation of Prediction Results—We evaluate the performance of the proposed 

prediction method by defining the following two quantities: for activity type Actj ∈  and 

subject i ∈ , the subject-specific true prediction rate is defined as

(5)

and the corresponding false prediction rate is

Note that rij is the proportion of subject i’s data points in activity type Actj that are correctly 

identified as belong to Actj, while wij is the proportion of subject i’s data points that are 

identified as in activity type Actj but do not belong to Actj. A successful prediction method 

should have high rij and low wij.

3.2.2 Selection of Movelets Length—An important problem in movelets prediction is 

the selection of h, the length of movelets. Bai et al. (2012) and He et al. (2014) noted that h 
should be selected such that movelets contain sufficient information to identify a movement 

while avoiding redundant information; based on the guideline both papers used h = 1s. This 

choice is based on the reasonable observation that human movement happens on the 0.5–

2Hz scale, though no objective criterion has been explored so far. Here we propose a simple 
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automatic approach for selecting h using only the training data. Our approach is based on 

leave-one-subject-out cross validation applied to the training data.

Let i ∈ . For activity type Actj ∈  of subject i, we calculate its true prediction rate defined 

in (5) with subjects in  − {i} as training data; denote the accurate prediction rate by . 

Then the average prediction accuracy over all subjects and all activity types is 

. As r̄* depends on h, we propose to select h* := arg maxh r̄*.

4. Results of Movelet Prediction

We now apply the movelets prediction method to the 20 participants of the accelerometry 

validation study. As described in the Introduction, data from hip, left and right wrist-worn 

accelerometers were collected. The participants were instructed to perform 15 activities with 

some resting breaks (3 minutes each break) between activities. Activities were chosen 

specifically because they were representative of activities that older adults may commonly 

do in their daily lives; please see Table 1 for specific details. The resting breaks were 

removed from the data and the transitional periods between consecutive activities were also 

removed. We focus on applying our method to data from hip-worn accelerometers.

The raw data were first normalized using the transformation in Section 2. The 20 

participants were then split into two groups: 10 for training and 10 for testing. Because the 

accelerometry data for each subject contain dense triaxial time series, it will become 

computationally challenging if all the training data are used for prediction. For activities 

with explicit starting and ending, e.g., chairStand, two consecutive replicates from each 

subject were used as training data. For other activities, a segment of 5s for each subject were 

used. The shortness of the training periods is a hallmark of the movelets prediction 

approach. Indeed, movelets only need a quick look at some quality data to recognize the 

data.

4.1 Activity Groups and Selection of Movelets Length

According to Table 1, there are 8 types of upper body activities in the data. For prediction, 

we will group these activities into a new subgroup, “upper body activities”. There are two 

reasons for doing this. First, these activities involve mainly movements from the upper body 

such as arms and hands and are not well detected by accelerometers worn on the hip (He et 

al. 2014). Second, it was shown in He et al. (2014) that upper body activities require a series 

of distinct sub-movements that can be similar across activities and difficult to differentiate 

even within the same subject. Differentiating these upper body activities across subjects 

becomes even more challenging because of the increased heterogeneity of activities across 

subjects.

For the lower body activities, there are four types of walking activities: normal walking 

without arm swinging, normal walking with arm swinging, fast walking without arm 

swinging, and fast walking with arm swinging. Arm swinging belongs to upper body 

activities and is not well detected by accelerometers worn on the hip (He et al. 2014). 

Although distinguishing normal and fast walking can be done relatively easily when training 
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data are available for the same subject (He et al. 2014), it will be difficult to do so across 

subjects. The reason is that there is a lot of heterogeneity in the subjects’ walking speed and 

one subject’s fast walking speed may well be close to another subject’s normal walking 

speed. Indeed, for the 10 subjects used as training data, the time for two normal-walking 

steps ranges from 0.96s to 1.25s while it is between 0.70s and 1.13s for two fast-walking 

steps. Thus, a new subgroup of activities, “walking”, is created to include all four walking 

types.

We now have 5 new activity types: “standing”, “lying”, “chairStand”, “walking”, and “upper 

body activities”. We will use the new activity labels for evaluating our population-level 

movelets prediction method. We selected the movelet length h = 0.75s by the criteria in 

Section 3.2.2; see Figure Web-2 in Web Appendix A for cross-validated mean prediction 

accuracy for different choices of h. The high cross-validated mean prediction accuracy (near 

90%) indicates that the population-level movelet method is capable of identifying activity 

types across subjects.

4.2 Prediction Results

We used the true prediction rate and false prediction rate described in Section 3.2.1 to 

evaluate the results. To illustrate the importance of the preprocessing step, we also applied 

the proposed method to the raw data and to the rotation-only data. As a comparison, the 

results by the within-subject movelets method applied to the 10 testing subjects are also 

shown. Note that for the within-subject movelets method, 2-3 s of labeled accelerometry 

data for each activity are used for predicting the activity type of the rest of the accelerometry 

data. The top panel of Figure 5 shows box plots of the true prediction rates for the 5 activity 

types and the bottom panel shows box plots of the false prediction rates. The two figures 

indicate that the population-level method for the normalized data performs similarly with the 

within-subject method, i.e., having high mean true prediction rates (> 90%) and low mean 

false prediction rates (< 20%). For the population-level method, there is larger variability in 

both true and false prediction rates across subjects, reflecting the increased uncertainty due 

to heterogeneity of same activities across subjects. Moreover, the results demonstrate that a 

naive application of the population-level movelets method to the raw data could lead to low 

true prediction rates and high false prediction rates. In particular, standing can not be 

identified across subjects. The role of translating the rotated data is also non-trivial (compare 

the results for “rotated” and “normalized”). Indeed, the prediction performance is improved 

for chairStand and for distinguishing other activities from chairStand.

To illustrate that the four types of walking are essentially indistinguishable across subjects 

for accelerometers worn on the hips, we plotted the prediction results for one subject’s data 

for walking; see Figure Web-3 in Web Appendix A. The results show that this subject’s fast 

walking with arm swinging is identified as fast walking without arm swinging and his or her 

fast walking without arm swinging is identified as normal walking without arm swinging.

5. Discussion

We have proposed a movelet-based method that could predict activities types across 

subjects. Compared to feature extraction-based methods, a significant advantage of the 
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movelet-based methods is that they can achieve high prediction accuracy at sub-second 

level. We have found in free-living data that walking 2 or 3 steps is common in older 

individuals. To accurately quantify how much time an older person spends on walking, an 

important biomarker for elderly’s health, sub-second labels will be required to capture very 

short walking periods.

The population-level movement prediction is a non-trivial step forward compared to the 

subject-by-subject methods in Bai et al. (2012) and He et al. (2014). Indeed, the methods 

therein require training data for all subjects, which is likely unavailable in large 

epidemiological studies. Moreover, these methods do not consider normalization, which is a 

crucial problem when devices are worn for many days, are taken off and put back on, and 

may be subject to unknown movements relative to the body they are attached to. Our 

proposed methods, require training data for a subset of all subjects.

The data analyzed here were collected in a research lab and provide only a partial view of 

the heterogenous activities individuals perform in free-living environments. It remains 

unclear how in-lab prediction methods perform in real life environments. Nonetheless, with 

the proposed approaches, we are mildly optimistic about resolving the much harder problem.

A general problem with accelerometry data is that activities are usually labelled by human 

observers and this practice might be error prone (Bai et al., 2012). One way to obtain more 

accurate labeling is by pairing accelerometry with video cameras.

The proposed methods can be developed further. For example, using the data from all three 

accelerometers instead of just the hip, may provide better movement recognition of upper 

body activities as shown in He et al. (2014). Smoothing the movelets may further reduce the 

noise in the distance metric. Finally, many movements may actually be quite ambiguously 

defined. For example, a reaching arm movement could zually well correspond to “dealing 

cards”, “eating” or other qualitatively defined movements. Thus, for quantitative research we 

may need more accurate definitions of movement. Those definitions are likely to be closer in 

nature to “movelets” than to current non-quantifiable definitions. This is counter-intuitive 

and contrary to the way data are currently collected and labeled. However, learning the 

language of movement will most likely require a careful decomposition of the observed data 

into its building blocks. Pairing accelerometry with video cameras, smart phone apps, and 

other health monitors has the potential to fundamentally change the way we measure health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
An Actigraph GT3+ accelerometer and its standard orientation. The top left, right and 

bottom graphs show the acceleration due to Earth’s gravity when the corresponding axis 

aligns up with the opposite direction of Earth’s gravity. When the up-down axis is the x-axis, 

the coordinate system is right-hand oriented. This figure appears in color in the electronic 

version of this article.
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Figure 2. 
Raw data of chairStand, normalWalk, vacuum, standing and lying from hip-worn 

accelerometers for two subjects. The x-axis denotes recording time in seconds; the y-axis 

denotes the signal expressed in g units. The legend in the bottom right plot applies to all 

plots. The shaded areas contain two 1s movelets. Note that orientation and placement of the 

device may change in the reference system designed around Earth’s gravity. This figure 

appears in color in the electronic version of this article.
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Figure 3. 
Means of standing and lying using the raw data (left panel) and the normalized data (right 

panel). Filled circles are for standing while filled triangles are for lying. The x-axis denotes 

subject ID; the y-axis is g units. The top panel is for the up-down axis, the middle one is for 

the forward-backward axis, and the bottom one is for the left-right axis. This figure appears 

in color in the electronic version of this article.
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Figure 4. 
Raw and normalized data from two subjects for normalWalk. This figure appears in color in 

the electronic version of this article.
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Figure 5. 
True prediction and false prediction rates for various cases. The term “raw” means the 

population-level method is applied to the raw data; “rotated” means the population-level 

method is applied to the rotated data without further translation; “normalized” means the 

population-level method is applied to the rotated and translated data; “within subject” means 

the within-subject movelet method is applied to each subject. This figure appears in color in 

the electronic version of this article.
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Table 1

15 activity types: labels, detailed description and durations

Groups Labels Description Duration

Resting
lying lay still face-up on a flat surface with arms at sides and legs extended 10 mins

standing stand still with arms hanging at sides 3 mins

Upper body (while 
standing)

washDish fetch wet plates from a drying rack, dry them using a trying towel, and stack 
adjacent to the drying rack one-by-one

3 mins

knead knead a ball of playdough as if for cooking/baking 3 mins

dressing unfold lab jacket, put jacket on (no buttoning), then remove, place the jacket on a 
hanger, and put the hanger on a nearby hook

3 mins

foldTowel fold towels and stack them nearby 3 mins

vacuum vacuum a specified area of the carpet 3 mins

shop walk along a long shelf, remove labeled items from the upper shelf about chest 
height, and place them on the lower shelf about waist height

3 mins

Upper body (while 
sitting)

write write a specified sentence on one page of the notebook, then turn to the next page 
and repeat

3 mins

dealCards hold a full deck, and deal cards one-by-one to six positions around a table 3 mins

Lower body

chairStand starting in a sitting position, rise to a normal standing position, then sit back 
down

5 cycles

normalWalk starting from standing still, walk 20 meters at a comfortable pace 20 meters

normalWalk starting from standing still, walk 20 meters at a comfortable pace with arms 
folded in front of chest

20 meters

NoSwing fastWalk starting from standing still, walk 20 meters at the fastest pace 20 meters

fastWalk NoSwing starting from standing still, walk 20 meters at the fastest pace with arms folded in 
front of chest

20 meters
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