
RESEARCH ARTICLE

BinPacker: Packing-Based De Novo
Transcriptome Assembly from RNA-seq Data
Juntao Liu1☯, Guojun Li1☯*, Zheng Chang1, Ting Yu1, Bingqiang Liu1, Rick McMullen2,
Pengyin Chen3, Xiuzhen Huang4*

1 School of Mathematics, Shandong University, Jinan, China, 2 High Performance Computing Center,
University of Arkansas, Fayetteville, Arkansas, United States of America, 3 Crop, Soil, and Environmental
Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America, 4 Department of
Computer Science, Arkansas State University, Jonesboro, Arkansas, United States of America

☯ These authors contributed equally to this work.
* guojunsdu@gmail.com (GL); xhuang@astate.edu (XH)

Abstract
High-throughput RNA-seq technology has provided an unprecedented opportunity to reveal

the very complex structures of transcriptomes. However, it is an important and highly chal-

lenging task to assemble vast amounts of short RNA-seq reads into transcriptomes with

alternative splicing isoforms. In this study, we present a novel de novo assembler, Bin-

Packer, by modeling the transcriptome assembly problem as tracking a set of trajectories of

items with their sizes representing coverage of their corresponding isoforms by solving a

series of bin-packing problems. This approach, which subtly integrates coverage informa-

tion into the procedure, has two exclusive features: 1) only splicing junctions are involved in

the assembling procedure; 2) massive pell-mell reads are assembled seemingly by moving

a comb along junction edges on a splicing graph. Being tested on both real and simulated

RNA-seq datasets, it outperforms almost all the existing de novo assemblers on all the

tested datasets, and even outperforms those ab initio assemblers on the real dog dataset.

In addition, it runs substantially faster and requires less memory space than most of the

assemblers. BinPacker is published under GNU GENERAL PUBLIC LICENSE and the

source is available from: http://sourceforge.net/projects/transcriptomeassembly/files/

BinPacker_1.0.tar.gz/download. Quick installation version is available from: http://

sourceforge.net/projects/transcriptomeassembly/files/BinPacker_binary.tar.gz/download.

Author Summary

The availability of RNA-seq technology drives the development of algorithms for tran-
scriptome assembly from very short RNA sequences. However, the problem of how to (de
novo) assemble transcriptome using RNA-seq datasets has not been modeled well; e.g.
sequence coverage information has even not been accurately and effectively integrated
into the appropriate assembling procedure, leading to a bottleneck that all the existing (de
novo) strategies have encountered. We present a novel approach to remodel the problem
as tracking a set of trajectories of items with their sizes representing the coverage of their

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004772 February 19, 2016 1 / 15

OPEN ACCESS

Citation: Liu J, Li G, Chang Z, Yu T, Liu B, McMullen
R, et al. (2016) BinPacker: Packing-Based De Novo
Transcriptome Assembly from RNA-seq Data. PLoS
Comput Biol 12(2): e1004772. doi:10.1371/journal.
pcbi.1004772

Editor: Thomas Lengauer, Max-Planck-Institut für
Informatik, GERMANY

Received: March 19, 2015

Accepted: January 18, 2016

Published: February 19, 2016

Copyright: © 2016 Liu et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was funded by National Natural
Science Foundation of China with codes 61432010,
61272016 and 31571354 (http://www.nsfc.gov.cn/);
National Science Foundation with number 1553680
(http://www.nsf.gov/); National Center for Research
Resources with number P20RR016460 (http://
sdminutes.cit.nih.gov/about/almanac/organization/
NCRR.htm); and National Institute of General Medical
Sciences with number P20GM103429 (http://www.
nigms.nih.gov/Pages/default.aspx). The funders had

http://sourceforge.net/projects/transcriptomeassembly/files/BinPacker_1.0.tar.gz/download
http://sourceforge.net/projects/transcriptomeassembly/files/BinPacker_1.0.tar.gz/download
http://sourceforge.net/projects/transcriptomeassembly/files/BinPacker_binary.tar.gz/download
http://sourceforge.net/projects/transcriptomeassembly/files/BinPacker_binary.tar.gz/download
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1004772&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nsfc.gov.cn/
http://www.nsf.gov/
http://sdminutes.cit.nih.gov/about/almanac/organization/NCRR.htm
http://sdminutes.cit.nih.gov/about/almanac/organization/NCRR.htm
http://sdminutes.cit.nih.gov/about/almanac/organization/NCRR.htm
http://www.nigms.nih.gov/Pages/default.aspx
http://www.nigms.nih.gov/Pages/default.aspx

corresponding isoforms by solving a series of bin-packing problems. This approach, which
subtly integrates the coverage information into the procedure, has two exclusive features:
1) only splicing junctions are involved in the assembling procedure; 2) massive pell-mell
reads are assembled seemingly by moving a comb along junction edges on a splicing
graph. Being tested on both real and simulated RNA-seq datasets, it outperforms almost
all existing de novo assemblers on all the tested datasets, even outperforms those ab initio
assemblers on the dog dataset, in terms of commonly used comparison standards.

This is a PLOS Computational BiologyMethods paper.

Introduction
The advent of RNA-seq techniques are changing how transcription, splicing variations and
associated mechanisms can be studied since they provide unprecedented accuracy about the
mRNA expression level [1]. They allow accurate elucidation of all splicing variants, including
the rare and lowly expressed splicing isoforms. This clearly opens many new doors for studying
the mechanisms of various human diseases that are related to abnormal splicing [1], including
cancers. With the RNA-seq techniques, there come new challenges associated with the inter-
pretation of the generated datasets. Although sequencing reads from PacBio RS II sequencer
are long enough to cover multiple exons, they have not been commonly used to improve the
state of the art transcripts reconstruction because they are suffering from higher error rates [2].
Therefore the RNA-seq techniques for short sequencing reads [3] remain necessary. One
major challenge is how to accurately assemble the short sequencing reads into full-length tran-
scripts possibly involving multiple splicing variants, the so-called RNA-seq based transcrip-
tome assembly problem.

According to the literatures [4–6], there are various alternative splicing events capable of
producing multiple isoforms in eukaryotic genes. Event types include skipped exons, retained
introns and mutually exclusive exons. Even more complicated, some exons may be partially
involved in transcripts during the alternative splicing process. At first glance, the transcriptome
assembly is similar to genome assembly, but they are actually fundamentally different. In con-
trast, the following facts make the transcriptome assembly more challenging: (i) some tran-
scripts have a very low expression level, while others may be expressed in a dramatically high
level [7]; (ii) each locus usually produces multiple transcripts due to various alternative splicing
events [8]; (iii) some transcripts with low expression level may be submerged due to the
sequencing errors [8,9]. Therefore, a successful transcriptome assembler should overcome all
these difficulties, and be capable of recovering all full-length transcripts of variable lengths,
expression levels and noises.

Computational strategies for transcriptome assembly can be generally divided into two cate-
gories, ab initio and de novo [1,8]. If a reference genome is available, ab initio approaches, such
as Cufflinks [10] and Scripture [11], usually start by mapping RNA-Seq reads to the reference
genome, and then sequences with overlapping alignment are merged into a connectivity graph
on which the well studied min-cost minimum path cover model is subtly employed to extract a
minimum set of paths which explain the RNA-seq dataset. A very recently published ab initio
assembler, StringTie [12], also first maps RNA-Seq reads to the reference genome, then

BinPacker-Transcriptome Assembler

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004772 February 19, 2016 2 / 15

no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

constructs alternative splicing graphs and then assembles transcripts by using a maximum-
flow network model. De novo approaches, such as ABySS [13], SOAPdenovo-Trans [14], Oases
[15] and IDBA-Tran [16], directly use the reads to assemble transcripts, without mapping
them to a reference genome, which is important when the reference genome is unavailable,
incomplete, highly fragmented or substantially altered as in cancer tissues. These de novo
approaches which were developed based on the techniques used in genome assembly are not
solving all the transcriptome assembly problems in general [7]. Trinity [8] which was designed
specifically for de novo transcriptome assembly has substantially improved the state of the art
de novo transcriptome assemblers. It starts by extending short reads through overlaps into con-
tigs, connecting contigs into a graph, and then extracts paths from this graph to construct splic-
ing variants based on a brute-force enumeration strategy. Trinity does improve previous de
novo assemblers which have their roots in genome assembly techniques, but it does not intro-
duce an appropriate model to optimize its solution, and even not incorporate sequencing cov-
erage depth information into the assembly procedure either, although the authors in Trinity
have noticed that similarity of the coverage depth across different coding regions in a transcript
could be useful. To this end, we have recently presented a new de novo transcriptome assem-
bler, Bridger [17], which “bridges” between Cufflinks and Trinity so that the techniques used
in Cufflinks can be employed to overcome the limitations of Trinity. Bridger does incorporate
the coverage information into the assembly procedure via an appropriate model, but it could
not guarantee a genuine solution due to (1) in-weight and out-weight are defined somewhat
arbitrarily in Bridger; (2) a node with both in-edges and out-edges has no chance to be an end
of any transcripts. Therefore, there still remains room for improvement.

In this paper we develop a novel de novo algorithm, BinPacker, to assemble full-length tran-
scripts by remodeling the problem as tracking a set of trajectories of items over a splicing
graph, which is constructed by employing the techniques used in Bridger [17] with several
updates described in Methods. The set of trajectories of items over the splicing graph can be
achieved by solving a series of variants of the bin-packing problem, which are different from
the traditional bin-packing problem, which is defined to pack a given number of items of dif-
ferent sizes into as few bins of a given size as possible, and each bin can only hold items with
the sum of their sizes no more than the size of the bin. We have tested and compared BinPacker
with seven competitive de novo assemblers, Trinity [8], ABySS [13], Trans-ABySS [18], SOAP-
denovo-Trans [14], Oases [15], IDBA-Tran [16] and Bridger [17] on real and simulated data-
sets. The simulation dataset is generated as described in Results section. For the real datasets,
three datasets are used, including two standard RNA-seq datasets, one dog and one human,
and one strand-specific mouse RNA-seq dataset. The comparison results show that BinPacker
outperforms almost all the compared assemblers on all datasets, including real and simulated,
in terms of commonly used standards for evaluation of transcriptome assemblers. Even more
surprisingly, it outperforms StringTie, a most recently published ab initio assembler [12], on
dog dataset.

Results
We ran BinPacker, and seven other de novo assemblers: ABySS (version 1.3.4), Trans-ABySS
(version 1.4.4), Trinity (version 2012-10-05), Velvet (version 1.2.01) + Oases (version 0.2.02),
SOAPdenovo-Trans (version 1.01), IDBA-Tran (version 1.1.1), and Bridger, and also the most
recently published ab initio assembler StringTie on real and simulated datasets below, and
tested their performance with the optimized parameters on the same server with 512GB of
RAM (see S1 Text for details).

BinPacker-Transcriptome Assembler

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004772 February 19, 2016 3 / 15

The criteria that have previously been used to test the assemblers are employed in our test-
ing. All assembled transcripts are matched against all known transcripts in the annotation
(referred to as ‘‘reference transcripts”) using BLAT [19], with 95% identity as the cutoff. If an
assembled transcript full-length covers a reference transcript with at least 95% sequence iden-
tity and at most 0.5% indels, this reference transcript is counted as full-length recovered, and
noted as a true positive. The indel cutoff is used to avoid the over-estimated consistencies
between the predicted and the references. In this paper, sensitivity is defined as the number of
full-length recovered reference transcripts, and accuracy is defined as the true positive rate. We
further consider two types of accuracy. One is related to a reference true positive rate which is
the rate between the number of full-length recovered reference transcripts and the number of
assembled transcripts, and the other is related to an assembled true positive rate which is the
fraction of assembled transcripts that are in the reference transcripts. The reliability of an
assembler is defined by the distribution of its recovered reference transcripts against recovered
sequence length rates ranging from 80% to 100%. An assembler is considered of higher reliabil-
ity if it recovers more reference transcripts with recovered sequence length rates ranging from
90% to 100%.

1. Tests on real datasets
We ran and tested all the 9 assemblers on three real RNA-seq datasets which include two stan-
dard (non-strand specific) Illumina datasets from dog and human, and one strand-specific
dataset from mouse.

1.1. Collection of real datasets. The dog dataset was collected from NCBI SRA database
(Accession Code: SRR882093), the human dataset was collected from the DDBJ SRA database
(Accession Codes: SRX011545 and SRX011546) and the mouse dataset was collected from
C567BL/6 mouse primary immune dendritic cells (Accession Code: SRX062280 in the DDBJ
SRA database). The reference transcripts of dog were downloaded from UCSC [20]. The human
and mouse reference transcripts were downloaded from Ensemble Genome Browser [21].

1.2. Comparing BinPacker to the other assemblers on real datasets. We compare Bin-
Packer to the other assemblers on the real datasets mentioned above in terms of sensitivities,
accuracies and their distributions against recovered sequence length rates ranging from 80%
to 100%.

1.2.1 Comparison of sensitivities and their distributions against recovered sequence length rates
on dog and mouse datasets.We run all the de novo assemblers on dog and mouse datasets. The
results show that BinPacker reaches the highest sensitivity, recovering 1149 and 10012 full-length
transcripts among 33665 and 39060 candidates respectively on dog and mouse datasets, while
Trinity recovers 1091 and 9599 among 49311 and 78333, and Bridger recovers 1147 and 9991
among 37234 and 50051. Bridger performs a little worse than BinPacker, but better than Trinity
and all the other de novo assemblers (Fig 1A and 1C, shaded area). Trinity performs worse than
BinPacker because it uses an exhaustive enumeration algorithm to search for paths in de Bruijn
graphs without using sequencing depth information in the searching process, which results in
the increase of false positives and the decrease of true positives. Bridger performing worse than
BinPacker is due to the facts: 1) the weights in compatibility graph are defined a bit arbitrarily,
and 2) a node with both in-edges and out-edges in the splicing graph will never be an end of a
transcript. Apart from the three best de novo assemblers mentioned above, Trans-ABySS per-
forms best on dog dataset, while Oases does best on mouse dataset. We further compared Bin-
Packer with StringTie, a most recently published ab initio assembler. As expected, StringTie
performs best on mouse dataset. Surprisingly, while it is defeated by BinPacker on dog dataset,
StringTie recovers 1072 full-length transcripts, compared to 1149 recovered by BinPacker.

BinPacker-Transcriptome Assembler

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004772 February 19, 2016 4 / 15

To test the reliability of these de novo assemblers, we compare their sensitivity distribu-
tions against recovered sequence length rates ranging from 80% to 100%. As shown in Fig 1A
and 1C, BinPacker keeps the highest sensitivity in the whole interval [80%, 100%] on both
dog and mouse datasets. Bridger's sensitivity is a little lower than BinPacker's, while Trinity
is lower than both BinPacker and Bridger, but higher than the others in the whole interval
[80%, 100%].

1.2.2 Comparison of accuracies and distributions against recovered sequence length rates on
dog and mouse datasets. Our comparison results show that BinPacker outperforms all the other
de novo assemblers we are comparing with in terms of both types of accuracy on dog and
mouse datasets (Figs 2A and 2C and 3A and 3C, shaded area). Of all the other assemblers, Brid-
ger performs best on dog dataset in terms of both types of accuracy, while ABySS performs best
on mouse dataset in terms of both types of accuracy. Trinity suffers from very low accuracy on
both dog and mouse datasets because of its large false positives. StringTie as expected performs
best on mouse dataset, but unexpectedly worse than BinPacker on the dog dataset in terms of
both types of accuracy.

The comparison results of accuracy distributions against recovered sequence length rates
ranging from 80% to 100% (Figs 2A and 2C and 3A and 3C) show that BinPacker keeps the
highest accuracy level in the interval [90%, 100%] on both dog and mouse datasets. The follow-
ing are some details of the performances of the other assemblers excluding BinPacker. Bridger
keeps the highest accuracy level among the others on dog dataset in terms of both types of
accuracy in the interval [90%, 100%]. On the mouse dataset, ABySS keeps the highest among
the others excluding Bridger in terms of reference true positive rate in the interval [90%,
100%], and Oases keeps the highest among the others excluding Bridger in terms of assembled
true positive rate in the interval [80%, 100%] excluding [94%, 99%]. Trinity again loses in accu-
racy of both types in the interval [80%, 100%] on both dog and mouse datasets.

Therefore we conclude that BinPacker has the highest reliability among all the de novo
assemblers we are comparing with in terms of their distributions of sensitivity and accuracy
against recovered sequence length rates on real dog and mouse datasets.

Fig 1. Comparison of recovered reference sensitivity and its distribution against recovered sequence length rates (sequence identity) ranging
from 80% to 100% on (A) dog, (B) human and (C) mouse datasets. Solid colored circles in shaded areas represent the number of full-length recovered
reference transcripts for different assemblers.

doi:10.1371/journal.pcbi.1004772.g001

BinPacker-Transcriptome Assembler

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004772 February 19, 2016 5 / 15

1.2.3 BinPacker maintains a stable performance on human dataset. The human dataset is
also adopted to test the performance of BinPacker and the other assemblers. The results show
that BinPacker outperforms all the other de novo assemblers except Trinity on some cases. The
following are some details. For the sensitivity, BinPacker, Bridger and Trinity recovered 5859,
5822 and 6122 full-length reference transcripts from 41691, 41470 and 54315 candidates,
respectively. StringTie recovered 9177 full-length reference transcripts out of 43757 candidates.
Again Trinity gets more false positives than BinPacker and Bridger. The reference true positive
rate of BinPacker is 14.05%, best of all de novo assemblers, while that of Trinity is 11.27%,
higher than all the other assemblers except Bridger, which performs only a little worse than
BinPacker in this measure, with its reference true positive rate 14.03%; the assembled true posi-
tive rate of BinPacker achieves 10.37%, while Trinity reaches 11.14%, highest among the

Fig 2. Comparison of assembled true positive rate and its distribution against recovered sequence length rates (sequence identity) ranging from
80% to 100% on (A) dog, (B) human and (C) mouse datasets. Solid colored circles in shaded areas represent the assembled true positive rate for different
assemblers.

doi:10.1371/journal.pcbi.1004772.g002

Fig 3. Comparison of reference true positive rate and its distribution against recovered sequence length rates (sequence identity) ranging from
80% to 100% on (A) dog, (B) human and (C) mouse datasets. Solid colored circles in shaded areas represent the reference true positive rate for different
assemblers.

doi:10.1371/journal.pcbi.1004772.g003

BinPacker-Transcriptome Assembler

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004772 February 19, 2016 6 / 15

compared de novo assemblers, including Bridger, with its assembled true positive rate 9.56%.
We also compute the sensitivity and accuracy distributions against recovered sequence length
rates ranging from 80% to 100%. For the sensitivity distribution, the three curves of BinPacker,
Bridger and Trinity are almost coincident with the highest sensitivity among all de novo assem-
blers. For the accuracy, the reference true positive rate of BinPacker keeps the highest in the
interval [90%, 100%]. For the assembled true positive rate, BinPacker performs a little worse
than Trinity, which reaches the highest in the whole interval, but much better than the others.
The performance of the other assemblers on human dataset is almost the same as on dog and
mouse datasets (See Figs 1B–3B for details).

2. Tests on simulated dataset
It is necessary to test the assemblers using simulated RNA-seq dataset since we may know all
the genuine transcripts hidden in it in advance. An in silico RNA-Seq data generator, Flux Sim-
ulator [22], is applied to UCSC hg19 gene annotation to generate an error-free dataset of
approximately 50 million paired-end strand-specific RNA-seq reads. To demonstrate the
advantage of BinPacker over other assemblers on the simulated dataset, we ran all the assem-
blers and did comparison among them in terms of their sensitivities, accuracies and their distri-
butions against recovered sequence length rates.

Our comparison results show that BinPacker not only reaches the highest sensitivity, but
also the highest accuracy levels of both types. Furthermore, BinPacker keeps the highest sensi-
tivity and accuracy of both types in the whole interval [80%, 100%]. Therefore it can be con-
cluded that BinPacker has the highest reliability among all the de novo assemblers we are
comparing with in terms of their distributions of both sensitivity and accuracy against recov-
ered sequence length rates on the simulated dataset. See Fig 4 and S1 Text for details.

3. Comparison of running time and memory usage on real datasets
We examined the computing resources required by these de novo assemblers: the running time
and the memory usage on the same server. The results are shown in Figs 5 and 6. ABySS uses

Fig 4. Comparison of assemblers on simulated dataset. (A) Recovered reference sensitivity and its distribution against recovered sequence length rates.
The solid colored circles in shaded areas represent the number of full-length recovered reference transcripts for different assemblers; (B) Reference true
positive rate and its distribution against recovered sequence length rates. The solid colored circles in shaded areas represent the reference true positive rate
for different assemblers; (C) Assembled true positive rate and its distribution against recovered sequence length rates. The solid colored circles in shaded
areas represent the assembled true positive rate for different assemblers.

doi:10.1371/journal.pcbi.1004772.g004

BinPacker-Transcriptome Assembler

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004772 February 19, 2016 7 / 15

the least memory (Fig 5), while SOAPdenovo-Trans takes the shortest time (Fig 6). Oases
performs well on dog dataset but it consumes the most memory and has almost the longest
running time on both human and mouse dataset. We noted that the computing resource
requirement by Oases is sensitive to the k-mer value, which had also been found in another
research paper [23]. As an enumeration algorithm, Trinity consumes the most memory on dog
dataset and takes the longest time on both dog and mouse datasets. For the memory usage (Fig
5) BinPacker and Bridger almost require the same amount of memory, more than most of the
compared assemblers except Trinity and Oases, which consume much more memory than Bin-
Packer on human and mouse datasets. For the time usage (Fig 6), BinPacker is among the fast-
est assemblers and it has also made a great improvement compared to Bridger, which takes
much more time than BinPacker on both human and mouse datasets.

Fig 5. RAM usage for each assembler on (A) dog, (B) human and (C) mouse datasets. Same parameter values are used for all assemblers: k = 25 and
CPU = 6.

doi:10.1371/journal.pcbi.1004772.g005

Fig 6. Running time for each assembler on (A) dog, (B) human and (C) mouse datasets.

doi:10.1371/journal.pcbi.1004772.g006

BinPacker-Transcriptome Assembler

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004772 February 19, 2016 8 / 15

Discussion
In this study, we presented a novel de novomethod BinPacker for transcriptome assembly
using short RNA-seq reads. Compared with Trinity, one of the most popular de novo assem-
blers, BinPacker has the following advantages: (i) Trinity uses a fixed k-mer length 25, which is
not necessarily optimal for all datasets, while BinPacker allows different user-specified k-mer
values for different problems for optimal performance. One crucial parameter of BinPacker is
the k-mer length. Generally speaking, with larger k values it performs better on high expression
datasets or longer reads and with smaller k values it performs better on low expression datasets
or shorter reads [17]. In light of our testing results, k = 25 is chosen to be the default value,
however, larger k values are recommended for reads with length longer than 75bp. (ii) Com-
pared to the exhaustive enumeration method used in Trinity, BinPacker uses a rigorous mathe-
matical model to search for an optimal set of paths from the splicing graph, which makes
BinPacker achieve a lower false positive rate at the same level of sensitivity. (iii) BinPacker
makes full use of the sequencing depth information, which is applied to define the junction
weights of the splicing graphs, constraining the deconvolution of splicing graphs into individ-
ual transcripts, and hence making its assembly results more accurate. (iv) BinPacker makes a
different use of the paired-end information compared with Trinity. While Trinity uses the
paired-end information to search for paths in the de Bruijn graphs, this information is mainly
used in our process of constructing splicing graphs. Firstly, the paired-end information is used
to help reconstruct more complete splicing graphs, making contigs even not covered by over-
lapping k-mers be recovered during assembly. Secondly, paired-end information is also used to
trim error branches of the constructed splicing graphs, removing error junctions from splicing
graphs. In practice, BinPacker uses less memory space and shorter running time.

As showed in Results section, the assemblers have a high variance in sensitivity, accuracy
and time and memory usage across the different RNA-seq datasets. Several facts may cause
such a variance. 1) Different RNA-Seq datasets may contain different transcripts expression
levels and different sequencing depths, both of which lead to the same transcripts in different
RNA-Seq datasets covered by quite a different number of reads. And so they could have a large
effect on sensitivity, accuracy and time and memory usage. 2) The reads in different RNA-Seq
datasets may have different lengths, maybe shorter than 50, and maybe longer than 100, which
may also cause differences in sensitivity, accuracy and time and memory usage. 3) The qualities
of reference transcripts for different species are also quite different. For example, human and
mouse genomes have been studied more extensively than dog genome, so the rate of known
reference transcripts will certainly be larger than that of dog. We have seen in our comparison
the sensitivity and accuracy of dog is lower than that of human and mouse. 4) Other reasons,
such as different sequencing error rates, the usage of paired-end reads or single-end reads, may
also contribute to the variance in sensitivity, accuracy and time and memory usage.

The E. coli dataset is also adopted to evaluate the performance of the de novo assemblers on
low complexity genome species without alternative splicing isoforms. Since the dataset is much
smaller than that of dog, human and mouse, all the compared assemblers use much less run-
ning time and memory usage. For the sensitivity and accuracy, because most compared assem-
blers are designed to assemble transcripts from genes with alternative splicing events, they all
do not perform very well on low complexity genome species such as E. coli without alternative
splicing isoforms. Details are described in the first section of the S1 Text.

As far as we know, BinPacker is the first algorithm using the bin-packing strategy for de
novo assembly, without the utilization of any other reference information. Tested on both real
and simulated RNA-seq datasets, BinPacker shows the best sensitivity and accuracy compared
to all the other de novo assemblers, and even outperforms the most popular ab initio assembler

BinPacker-Transcriptome Assembler

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004772 February 19, 2016 9 / 15

StringTie on real dog dataset, only slightly worse than Trinity in some aspects on real human
dataset. In addition, it requires fewer computational resources and less running time compared
to most of the other assemblers. With these demonstrated advantages, we anticipate that Bin-
Packer will play an important role for new discoveries in transcriptome study using RNA-seq
datasets, especially for cancer transcriptomic data analyses.

Methods
The splicing graph was first introduced by Heber, et al in 2002 [24]. BinPacker assembles tran-
scripts on each splicing graph it constructs. Each splicing graph constructed by BinPacker is a
directed acyclic graph, with its nodes and edges representing exons and splicing events of the
gene. The nodes in the splicing graph are continuous genome sequences without any alternative
splicing events, which may not be real exons of the gene. Based on the generalized definition of
exons, BinPacker first builds splicing graphs for all expressed genes encoded in the genome
using the given RNA-seq datasets. Ideally, each splicing graph constructed by BinPacker has a
correspondence to a specific (expressed) gene. Unfortunately, it may not always be this case due
to the existence of sequencing errors, homologous genes and low expression levels of some
genes. But it does not cause a serious impact on our full-length transcripts recovery of individual
genes even though some splicing graphs cover multiple genes or only parts of a gene. Without
loss of generality, we assume that each splicing graph represents one expressed gene. Having
constructed all the splicing graphs, BinPacker searches for an optimal edge-path-cover over all
the individual splicing graphs by iteratively solving a series of bin packing problems. Each edge-
path-cover output by BinPacker can explain all the observed splicing events encoded in the cor-
responding splicing graph. A flowchart of the BinPacker algorithm is given in Fig C in S1 Text.

1. Construction of splicing graphs
BinPacker constructs splicing graphs based on the method of Bridger [17] with several updates
as follows. First of all, while Bridger is not able to process RNA-Seq reads with different lengths,
BinPacker can handle reads with variable lengths. Secondly, Bridger trims the branches of the
splicing graphs after all splicing graphs have been constructed. However, BinPacker trims splic-
ing graphs during the construction of splicing graphs.

2. Topological ordering of splicing graph and detecting a maximal set of
pairwise incompatible edges
Two directed edges in a splicing graph are said to be compatible if they may come from one
directed path, and incompatible otherwise (see Fig I in S1 Text). We may imagine that the
splicing graphs one-to-one correspond to the expressed genes, with nodes corresponding to
exons and edges corresponding to splicing junctions. Since exons are linearly arranged in a
gene, we may suppose that the nodes in the splicing graph of the gene are also linearly
arranged, but not necessarily to be identical to that of the gene. We did this linearly arrange-
ment by topological ordering of the splicing graph, which can be solved in linear time [25].
After topological ordering, all nodes with only out-edges are moved to the leftmost of the
graph and all nodes with only in-edges to the rightmost. From now on, we refer to the splicing
graph with all nodes being linearly arranged as a canonical splicing graph. Note that each
directed edge in the canonical splicing graph can only go in the direction of the gene (Fig I in
S1 Text). Each edge in a splicing graph is assigned a weight using its sequencing depth (number
of reads spanning the junction edge in the splicing graph). It is obvious that the edges crossing
two consecutive nodes in the splicing graph are pairwise incompatible (Fig J in S1 Text). In
fact, the maximum set of edges crossing two consecutive nodes in a canonical splicing graph

BinPacker-Transcriptome Assembler

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004772 February 19, 2016 10 / 15

must be a maximal set of pairwise incompatible edges in the splicing graph (see Theorem 1 in
S1 Text). BinPacker will iteratively execute a series of bin packing programs based on such a
maximal set of pairwise incompatible edges.

3. Bin packing
BinPacker iteratively calls a variant of bin packing model to comb all the transcripts encoded
in a splicing graph. To do so, we add a source node s and a sink node t into the splicing graph
(Fig I in S1 Text), and connect s to the nodes with only out-going edges, and connect all the
nodes with only in-coming edges to t. The weight of the new edge connecting s and u is
assigned to be the sum of the weights of the edges going out from u. Similarly, the new edges
going to t can be weighted.

Step 1: Balancing splicing graphs. Let u be a node in a splicing graph, the sum of the
weights of the in-edges of u is said to be in-weight of u, denoted by win(u). Out-weight of u is
defined similarly, denoted by wout(u). Let wmin = min{win(u), wout(u)}, c = α(γ—β)/wmin + β,
where α, β and γ are parameters that users can specify (see Methods and Fig M in S1 Text for
details). When there is a significant difference between win(u) and wout(u), the node u is sup-
posed to be an end of a transcript. We handle this by adding a new edge from the source s to
the node u, with weight wout(u)−win(u) whenever wout(u)/win(u)� c, which means that the dif-
ference between win(u) and wout(u) is significant. Similarly, we may add a new edge from the
node u to the sink t if win(u)/wout(u)� c. BinPacker sets α = 10, β = 1.4 and γ = 1.5 as default.

Step 2: Iterations of the bin packing. Suppose that we have a maximal set I of pairwise
incompatible edges crossing the two consecutive nodes obtained above. BinPacker identifies
each edge in the splicing graph as a bin with its capacity being the weight (sequencing depth)
of the edge, and puts an item i in each bin (edge) in I. The size of the item i, denoted by wi, is
simply the weight of the edge (bin) where the item i resides. During the execution, BinPacker
always faces a bin packing problem, which is slightly different from the traditional bin packing
model. In our model, each item must be packed into one and only one bin and each bin can
hold several items with the sum of their sizes smaller or larger than or equal to the capacity of
the bin. At the very beginning, all the |I| items are one-to-one put in the |I| bins accordingly.
Let nL denote the left one of the two consecutive nodes and nR the right one.

Starting from nL, BinPacker carries out the first iteration of the bin packing. The first instance
of bin packing towards left is formed as follows: we have as input the |I| items defined from the
edges in I, and a set I' of bins (edges) crossing the two consecutive nodes nL-1 and nL. What we
are going to do is to optimally pack the |I| items into the |I'| bins. For the (heuristic) algorithm
design, we partition the edges in IU I' into three sets Iin, Iout and Im, with Iin consisting of the
edges coming to nL, Iout of the edges going out of nL, and Im of the remaining edges. Clearly,
edges in Iin belong to I' but not to I, edges in Iout belong to I but not to I', and edges in Im belong
to both I and I'. For the first instance, we have that |Iout|�|Iin| since |I|�|I'|. Executing the bin
packing, BinPacker keeps the items in the bins (edges) of Im staying unchanged, and optimally
packs the items in the bins (edges) of Iout into the bins (edges) of Iin whenever |Iout|�|Iin|, then
reset nL = nL-1, Iin and Iout accordingly. Repeat this procedure until encountering a trap node nL
with |Iout|<|Iin|, which may happen in two cases (see Methods in S1 Text), or reaching the source
node s. If the former occurs in some iteration, BinPacker replaces the n (= |Iout|) items in the
bins (edges) of Iout bym (= |Iin|) new items with sizes, w1, w2,. . ., wm, the weights of them edges
of Iin, while the other items in the bins (edges) of Im stay unchanged, and then executes the next
iteration starting from the trap node nL towards the opposite direction until encountering
another trap node or reaching the sink node t; otherwise, the latter occurs, BinPacker jumps
back to the starting node of the current iteration and processes the remaining nodes one by one

BinPacker-Transcriptome Assembler

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004772 February 19, 2016 11 / 15

until encountering a new trap node or reaching the sink node t. Repeat the procedure until all
nodes are processed (see Fig 7). The forth and back iteration must terminate within a few times
(no more than |V| times, where V is the node set of the splicing graph) due to the fact that the
nodes previously processed will never be trapped again (see Theorem 2 in S1 Text).

Step 3: Bin packing by 0–1 quadratic programming. Suppose that BinPacker is process-
ing the node nL towards left and we havem edges (bins) coming to nL from which the bins
(edges) containing n items go out.

Ifm�n, the bin packing can be solved by the following 0–1 quadratic programming:

minf ¼
Xm
i¼1

ðci �
Xn

j¼1

wjxijÞ2

s:t:

Xm
i¼1

xij ¼ 1 8j ¼ 1; . . . ; n

Xn

j¼1

xij � 1 8i ¼ 1; . . . ;m

xij 2 f0; 1g

ð1Þ

8>>>>>>>>>><
>>>>>>>>>>:

Fig 7. An example which shows the iterations of BinPacker in the packing process. (A) The first
iteration of BinPacker starts from node 4 to the left. (B) When BinPacker processes nodes one by one to the
left, it encounters a trap node 2, and then enters the next iteration starting from node 2 to the right. (C) When
BinPacker processes nodes to the right, it encounters another trap node 6 and then enters the next iteration
starting from node 6 towards left. (D) In this iteration, BinPacker reaches a terminal s, and then jumps back to
the starting node 6 and processes the remaining nodes one by one to the right. (E) BinPacker reaches
another terminal t and terminates its iterations.

doi:10.1371/journal.pcbi.1004772.g007

BinPacker-Transcriptome Assembler

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004772 February 19, 2016 12 / 15

where ci represents the capacity of bin i, wj the size of item j, and xij is a binary variable with
xij = 1 if item j is packed into bin i, 0 otherwise. The first constraint ensures that one item
goes into one and only one bin, and the second one guarantees that each bin receives at least
one item.

Otherwise, we havem>n, and get trapped at the node nL. Then the bin packing can be
solved by the following quadratic programming:

minf ¼
Xk

i¼1

ðci �
Xm
j¼1

wjxijÞ2

s:t:

Xk

i¼1

xij ¼ 1 8j ¼ 1; . . . ;m

Xm
j¼1

xij � ni 8i ¼ 1; . . . ; k

xij 2 f0; 1g

ð2Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

where k represents the number of edges going out of nL, ni the number of items packed into bin
(edge) i (1� i� k). This constraint ensures that each bin previously packed will get at least the
same number of items as in the last iteration.

Step 4: Transformation into 0–1 ILP. The 0–1 quadratic programming can be equiva-
lently transformed into a 0–1 linear programming (see Methods and Theorem 3 in S1 Text for
details). To do so, we simply introduce a new variable xijik for each quadratic term xij�xik (or
xik�xij) in the objective function along with the constraints:

xijik � xij 8i ¼ 1; . . . ;m 1 � j � k � n

xijik � xik 8i ¼ 1; . . . ;m 1 � j � k � n

xij þ xik � 1 � xijik 8i ¼ 1; . . . ;m 1 � j � k � n

xijik 2 f0; 1g 8i ¼ 1; . . . ;m 1 � j � k � n

8>>>><
>>>>:

4. Recovery of an optimal set of full-length transcripts
All the 0–1 ILPs are optimally solved by GLPK-4.40. The GLPK (GNU Linear Programming Kit)
package is intended for solving large-scale linear programming (LP), mixed integer program-
ming (MIP), and other related problems. It is a set of routines written in ANSIC and organized
in the form of a callable library. Since each programming is modeled from one node of a splicing
graph, the number of variables of the 0–1 ILP is |Iin|�|Iout|�(|Iout|+3)/2 or |Iout|�|Iin|�(|Iin|+3)/2.
In most cases, |Iout|<3 and |Iin|<3, so the number of variables of the 0–1 ILP is almost always
less than 27 and it can be optimally solved by GLPK extremely fast. And even in many cases,
|Iout| = 1 or |Iin| = 1, in which cases, items can be directly packed into corresponding bins without
using GLPK.

The solution {xij} tells us that item j is in bin i if and only if xij = 1. All the bins (edges) con-
taining the same item induce an s-t path in the splicing graph of a gene which may correspond
to a transcript of the gene. Finally, BinPacker outputs all the transcripts induced by individual
items in the splicing graph of the gene.

BinPacker-Transcriptome Assembler

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004772 February 19, 2016 13 / 15

Supporting Information
S1 Text. Supplementary material of BinPacker.
(PDF)

Author Contributions
Conceived and designed the experiments: GL. Performed the experiments: JL. Analyzed the
data: JL TY BL. Contributed reagents/materials/analysis tools: JL ZC. Wrote the paper: JL GL
XH. Designed the software used in analysis: JL TY RM PC. Oversaw the project: GL XH.

References
1. Sharon D, Tilgner H, Grubert F, Snyder M (2013) A single-molecule long-read survey of the human

transcriptome. Nat Biotechnol 31: 1009–1014. doi: 10.1038/nbt.2705 PMID: 24108091

2. Bao E, Jiang T, Girke T (2013) BRANCH: boosting RNA-Seq assemblies with partial or related genomic
sequences. Bioinformatics 29: 1250–1259. doi: 10.1093/bioinformatics/btt127 PMID: 23493323

3. Metzker ML (2009) Sequencing technologies—the next generation. Nature Reviews Genetics 11: 31–
46. doi: 10.1038/nrg2626 PMID: 19997069

4. Matlin AJ, Clark F, Smith CW (2005) Understanding alternative splicing: towards a cellular code. Nat
Rev Mol Cell Biol 6: 386–398. PMID: 15956978

5. Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72: 291–
336. PMID: 12626338

6. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, et al. (2008) Alternative isoform regulation in
human tissue transcriptomes. Nature 456: 470–476. doi: 10.1038/nature07509 PMID: 18978772

7. Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nature Reviews Genetics 12:
671–682. doi: 10.1038/nrg3068 PMID: 21897427

8. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. (2011) Full-length transcriptome
assembly from RNA-Seq data without a reference genome. Nature biotechnology 29: 644–652. doi:
10.1038/nbt.1883 PMID: 21572440

9. Haas BJ, Zody MC (2010) Advancing RNA-Seq analysis. Nature Biotechnology 28: 421–423. doi: 10.
1038/nbt0510-421 PMID: 20458303

10. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, et al. (2010) Transcript assembly and quantifi-
cation by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation.
Nature biotechnology 28: 511–515. doi: 10.1038/nbt.1621 PMID: 20436464

11. Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, et al. (2010) Ab initio reconstruction of cell
type-specific transcriptomes in mouse reveals the conservedmulti-exonic structure of lincRNAs. Nature
biotechnology 28: 503–510. doi: 10.1038/nbt.1633 PMID: 20436462

12. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, et al. (2015) StringTie enables improved
reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology 33: 290-+. doi: 10.1038/
nbt.3122 PMID: 25690850

13. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, et al. (2009) ABySS: A parallel assembler
for short read sequence data. Genome Research 19: 1117–1123. doi: 10.1101/gr.089532.108 PMID:
19251739

14. Xie YL, Wu GX, Tang JB, Luo RB, Patterson J, et al. (2014) SOAPdenovo-Trans: de novo transcrip-
tome assembly with short RNA-Seq reads. Bioinformatics 30: 1660–1666. doi: 10.1093/bioinformatics/
btu077 PMID: 24532719

15. Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across
the dynamic range of expression levels. Bioinformatics 28: 1086–1092. doi: 10.1093/bioinformatics/
bts094 PMID: 22368243

16. Peng Y, Leung HC, Yiu SM, Lv MJ, Zhu XG, et al. (2013) IDBA-tran: a more robust de novo de Bruijn
graph assembler for transcriptomes with uneven expression levels. Bioinformatics 29: i326–334. doi:
10.1093/bioinformatics/btt219 PMID: 23813001

17. Chang Z, Li GJ, Liu JT, Zhang Y, Ashby C, et al. (2015) Bridger: a new framework for de novo transcrip-
tome assembly using RNA-seq data. Genome Biology 16.

18. Robertson G, Schein J, Chiu R, Corbett R, Field M, et al. (2010) De novo assembly and analysis of
RNA-seq data. Nature Methods 7: 909–U962. doi: 10.1038/nmeth.1517 PMID: 20935650

BinPacker-Transcriptome Assembler

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004772 February 19, 2016 14 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004772.s001
http://dx.doi.org/10.1038/nbt.2705
http://www.ncbi.nlm.nih.gov/pubmed/24108091
http://dx.doi.org/10.1093/bioinformatics/btt127
http://www.ncbi.nlm.nih.gov/pubmed/23493323
http://dx.doi.org/10.1038/nrg2626
http://www.ncbi.nlm.nih.gov/pubmed/19997069
http://www.ncbi.nlm.nih.gov/pubmed/15956978
http://www.ncbi.nlm.nih.gov/pubmed/12626338
http://dx.doi.org/10.1038/nature07509
http://www.ncbi.nlm.nih.gov/pubmed/18978772
http://dx.doi.org/10.1038/nrg3068
http://www.ncbi.nlm.nih.gov/pubmed/21897427
http://dx.doi.org/10.1038/nbt.1883
http://www.ncbi.nlm.nih.gov/pubmed/21572440
http://dx.doi.org/10.1038/nbt0510-421
http://dx.doi.org/10.1038/nbt0510-421
http://www.ncbi.nlm.nih.gov/pubmed/20458303
http://dx.doi.org/10.1038/nbt.1621
http://www.ncbi.nlm.nih.gov/pubmed/20436464
http://dx.doi.org/10.1038/nbt.1633
http://www.ncbi.nlm.nih.gov/pubmed/20436462
http://dx.doi.org/10.1038/nbt.3122
http://dx.doi.org/10.1038/nbt.3122
http://www.ncbi.nlm.nih.gov/pubmed/25690850
http://dx.doi.org/10.1101/gr.089532.108
http://www.ncbi.nlm.nih.gov/pubmed/19251739
http://dx.doi.org/10.1093/bioinformatics/btu077
http://dx.doi.org/10.1093/bioinformatics/btu077
http://www.ncbi.nlm.nih.gov/pubmed/24532719
http://dx.doi.org/10.1093/bioinformatics/bts094
http://dx.doi.org/10.1093/bioinformatics/bts094
http://www.ncbi.nlm.nih.gov/pubmed/22368243
http://dx.doi.org/10.1093/bioinformatics/btt219
http://www.ncbi.nlm.nih.gov/pubmed/23813001
http://dx.doi.org/10.1038/nmeth.1517
http://www.ncbi.nlm.nih.gov/pubmed/20935650

19. Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome research 12: 656–664. PMID:
11932250

20. Rosenbloom KR, Armstrong J, Barber GP, Casper J, Clawson H, et al. (2015) The UCSCGenome
Browser database: 2015 update. Nucleic Acids Research 43: D670–D681. doi: 10.1093/nar/gku1177
PMID: 25428374

21. Cunningham F, Amode MR, Barrell D, Beal K, Billis K, et al. (2015) Ensembl 2015. Nucleic Acids
Research 43: D662–D669. doi: 10.1093/nar/gku1010 PMID: 25352552

22. Griebel T, Zacher B, Ribeca P, Raineri E, Lacroix V, et al. (2012) Modelling and simulating generic
RNA-Seq experiments with the flux simulator. Nucleic Acids Research 40: 10073–10083. doi: 10.
1093/nar/gks666 PMID: 22962361

23. Zhao QY, Wang Y, Kong YM, Luo D, Li X, et al. (2011) Optimizing de novo transcriptome assembly
from short-read RNA-Seq data: a comparative study. Bmc Bioinformatics 12.

24. Heber S, Alekseyev M, Sze SH, Tang H, Pevzner PA (2002) Splicing graphs and EST assembly prob-
lem. Bioinformatics 18 Suppl 1: S181–188. PMID: 12169546

25. Kahn AB (1962) Topological sorting of large networks. Communications of the ACM 5: 558–562.

BinPacker-Transcriptome Assembler

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004772 February 19, 2016 15 / 15

http://www.ncbi.nlm.nih.gov/pubmed/11932250
http://dx.doi.org/10.1093/nar/gku1177
http://www.ncbi.nlm.nih.gov/pubmed/25428374
http://dx.doi.org/10.1093/nar/gku1010
http://www.ncbi.nlm.nih.gov/pubmed/25352552
http://dx.doi.org/10.1093/nar/gks666
http://dx.doi.org/10.1093/nar/gks666
http://www.ncbi.nlm.nih.gov/pubmed/22962361
http://www.ncbi.nlm.nih.gov/pubmed/12169546

