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Purpose: Biplane angiography systems provide time resolved 2D fluoroscopic images from two
different angles, which can be used for the positioning of interventional devices such as guidewires
and catheters. The purpose of this work is to provide a novel algorithm framework, which allows the
3D reconstruction of these curvilinear devices from the 2D projection images for each time frame.
This would allow creating virtual projection images from arbitrary view angles without changing the
position of the gantries, as well as virtual endoscopic 3D renderings.
Methods: The first frame of each time sequence is registered to and subtracted from the following
frame using an elastic grid registration technique. The images are then preprocessed by a noise
reduction algorithm using directional adaptive filter kernels and a ridgeness filter that emphasizes
curvilinear structures. A threshold based segmentation of the device is then performed, followed by
a flux driven topology preserving thinning algorithm to extract the segments of the device centerline.
The exact device path is determined using Dijkstra’s algorithm to minimize the curvature and distance
between adjacent segments as well as the difference to the device path of the previous frame. The 3D
device centerline is then reconstructed using epipolar geometry.
Results: The accuracy of the reconstruction was measured in a vascular head phantom as well
as in a cadaver head and a canine study. The device reconstructions are compared to rotational
3D acquisitions. In the phantom experiments, an average device tip accuracy of 0.35±0.09 mm, a
Hausdorff distance of 0.65±0.32 mm, and a mean device distance of 0.54±0.33 mm were achieved.
In the cadaver head and canine experiments, the device tip was reconstructed with an average
accuracy of 0.26±0.20 mm, a Hausdorff distance of 0.62±0.08 mm, and a mean device distance of
0.41±0.08 mm. Additionally, retrospective reconstruction results of real patient data are presented.
Conclusions: The presented algorithm is a novel approach for the time resolved 3D reconstruc-
tion of interventional devices from biplane fluoroscopic images, thus allowing the creation of
virtual projection images from arbitrary view angles as well as virtual endoscopic 3D renderings.
Availability of this technique would enhance the ability to accurately position devices in mini-
mally invasive endovascular procedures. C 2016 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4941950]
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1. INTRODUCTION

Fluoroscopy is established as a valuable tool in today’s clinical
practice for the guidance of minimally invasive procedures.
Therefore, an angiography system acquires a series of x-
ray images from a fixed position that shows the movement
of the device over time. Biplane systems offer a second
gantry, which allows acquiring two simultaneous fluoroscopic
image sequences from different viewing angles. This imaging
technique is used for the treatment of a wide range of vascular
conditions including arteriovenous malformations, aneurysms
and strokes.1 An exact location of the object of interest,
however, can be difficult especially in areas with a complex
vascular structure, because of vascular overlap and the lack of
depth information. The range of viewing angles that can be

reached with both planes is limited by the system geometry,
the table, and the patient so that the ideal viewing position
cannot always be found. In some cases, even if the desired
position can be reached, the detector would block the access
to the patient, which requires a compromise between viewing
position and patient accessibility.

Recently, efforts have been made to use biplane fluoroscopy
acquisitions to reconstruct the 3D shape of the device.2–7 This
would allow creating virtual images from arbitrary viewing
angles without moving the gantry or 3D renderings of the
object within the vascular system, like virtual endoscopic
views. The steps necessary to perform this reconstruction vary
with the used algorithm but usually include the estimation of
the projection matrices, motion compensation, segmentation
of the device, search for corresponding points, and 3D
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reconstruction. Several algorithms have been published in
order to solve parts of the described problem. The accuracy
of the 3D point localization from two views with known
point correspondence was investigated by Brost et al.8 They
achieved localization errors of less than 1 mm for sphere-
shaped objects with a diameter of 2 mm using a floor mounted
C-arm CT system. Baert et al.9 proposed a method for
tracking a guidewire in a 2D image sequence using third
order B-spline fitting. This is done in two steps. First, a
rough registration is applied to the result of the previous
frame using a rigid transform and then an energy term is
minimized considering the length and the curvature of the
estimated spline as well as features extracted from the image
using a Hessian filter and different preprocessing methods.
Based on this algorithm, an extended segmentation and
reconstruction method is provided in Ref. 3 where a statistical
end point detection is performed additionally to the B-spline
detection. The corresponding points for the 3D reconstruction
are found using the epipolar constraint. If multiple potential
corresponding points are found, the one closest to the previous
point along the segmented device is used. A semiautomatic
reconstruction method was published by Hoffmann et al.,4,5

which requires the manual selection of a seed point along the
device. The image is then binarized and the object pixels are
combined to a graph where edges represent point sequences
and nodes are the respective start or end points. The graph
is used to create a 2D spline representation of the device.
The point correspondences for the epipolar reconstruction are
determined by finding a monotonic function that maps the
points along the spline representation in the first image to the
second image.

Attempts have also been made to reconstruct the 3D device
shape using monoplane angiography systems. Since no depth
information is available using only a single projection image,
additional information has to be included to determine the 3D
shape of the device. In Refs. 10–12, a previously acquired 3D
volume of the vascular structure is used to decrease the number
of possible solutions. Brückner et al.10 use a probabilistic
approach to find a B-spline representing the most likely device
path within the vessel volume. In Ref. 11, a feature image is
created from the 3D vessel volume, which is then used for
a snake optimization to find the 3D path. Petković et al.12

use the skeleton of the vessel tree to determine the topology
of possible segments and then use a greedy algorithm to
extract feasible 3D reconstructions. The downside of most
monoplane reconstruction methods is that the exact position of
the device within the vessel cannot be determined and shifting
or transformation of vessels during the procedure might make
the reconstruction impossible. A different approach for the
3D location tracking of the tip of an ablation catheter, which
does not rely on a previously acquired 3D image, is proposed
in Ref. 13. It calculates the depth of the device tip using
the change of its size in the 2D image due to perspective
projection. Model based reconstruction of ablation catheters
from 2D projections has also been investigated.14,15 The
arrangement of the radio opaque electrodes in the tip of the
catheter is used to create a dynamic 3D model, which can then
be optimized to represent the 3D device reconstruction. For the

reconstruction of more generic devices, such as guidewires,
however, this method would not be suitable since it requires
distinguishable parts like radio opaque electrodes, whose
positions define the shape of the device. Finally, reconstruction
methods based on iterative optimization of 3D B-snakes have
been published.6,7 In this case, no explicit device segmentation
in the 2D planes is required. Instead, an energy functional is
minimized representing the curvature of the device and the
conformity with detected image features.

The main contributions of the proposed work are that
it provides a complete algorithmic framework for the time
resolved 3D reconstruction of interventional devices from
biplane fluoroscopy sequences, that it is able to extract the
device path in the 2D projection images without relying
on iterative optimization of 2D splines or 3D snakes3,6,7,9

and that it is performed fully automatically and does not
require manual seed point selection.4,5 Instead, topology
preserving thinning is used to extract the centerline of
curvilinear segments, which are then connected based on
spatial distance and directional difference between endpoints.
This method has the advantage that arbitrary device shapes
can be described as a list of connected pixels and it is not
limited by the number of parameters used to describe splines or
snakes. Although these methods have been used successfully
for the reconstruction of curvilinear devices, the iterative
optimization procedure might increase the computation time,
which could make a potential real time implementation of
the algorithm difficult. Furthermore, good initialization is
required for the optimization in each frame, which might
not be given for fast device movement between adjacent
frames. Finally, certain device shapes might cause the fitting
procedure to fail.3 The proposed algorithm uses the first time
frame of each sequence as mask, which is registered to and
subtracted from the following frames. The images are then
preprocessed by a noise reduction algorithm using directional
adaptive filter kernels and a ridgeness filter that emphasizes
curvilinear structures. A threshold based segmentation of the
device is then performed, followed by a flux driven topology
preserving thinning algorithm to extract the segments of the
device centerline. The exact device path is determined using
Dijkstra’s algorithm16 to minimize the curvature and distance
between adjacent segments as well as the difference to the
device path of the previous frame. The 3D device shape is
then reconstructed using epipolar geometry and a monotonic
function mapping the corresponding points of each 2D device
centerline.

2. RECONSTRUCTION PIPELINE

Figure 1 shows an overview of the reconstruction pipeline.
First, an offline calibration step is performed to estimate the
projection matrices for the desired C-arm positions. The first
frame of the fluoroscopic image sequence is used as mask
and is subtracted from the subsequent frames to isolate the
device. In case of patient motion, the subtraction might cause
artifacts. Therefore, a registration step is introduced to adjust
the mask to the current frame. The subtracted frames are then
preprocessed to reduce the noise and emphasize curvilinear
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F. 1. Flow diagram of the reconstruction pipeline. The first frame of
both planes is used as a mask image and registered to the current frame.
A noise reduction and ridgeness filter is then applied to the subtraction of
current frame and mask. Subsequently, the image is binarized to separate the
device from the background and the centerline is extracted using topology
preserving thinning and Dijkstra’s path search algorithm. Finally, an epipolar
reconstruction is performed using the projection matrices from an offline
calibration step to obtain the 3D shape of the device.

structures in the image followed by an automatic threshold
segmentation. A topology preserving thinning algorithm is
then applied to extract the segments of the 2D device center-
line. The exact device path connecting the segments is found
using Dijkstra’s algorithm,16 minimizing the curvature and
distance between adjacent segments as well as the difference
to the device path of the previous frame. Finally, the best
point correspondences for each line segment of the centerline
are found and an epipolar reconstruction is performed.
Sections 2.A–2.F give detailed descriptions of each step.

2.A. Calibration

As a first step, a calibration of the desired C-arm positions
of the angiography system has to be performed to estimate
the projection matrices Pa |b for both image planes A and B,
respectively, which describe the transformation of a 3D point
into the 2D image space of each plane. The existing system
calibration used to reconstruct rotational 3D acquisitions
cannot be used, since it is performed for dynamic C-arm
trajectories and would not be accurate enough for static
C-arm positions. Furthermore, only plane A is calibrated
to perform 3D acquisitions. The calibration for the biplane
fluoroscopy reconstruction can be done in advance and does
not have to be repeated for every case, as long as the system
geometry does not change. Small variations of the C-arm
positions, however, are expected depending on the system
accuracy. A cylindrical calibration phantom with metal beads
in two different sizes, arranged in a helical pattern, is used.
A rotational 3D acquisition of the phantom is performed as
well as 2D fluoroscopic acquisitions from the desired view
angles (anteroposterior and lateral). The coordinates of the
center of the metal beads are segmented both in the 3D and
2D images and an iterative optimization is performed that
minimizes the mean squared distance between the forward
projected 3D coordinates and the 2D coordinates to estimate

the projection matrix. A more detailed description on camera
calibration and projection matrices can be found in Refs. 8,
17, and 18.

2.B. Registration

For most neuroradiological interventions in the head, little
motion can be expected, which allows subtracting previously
acquired mask frames to remove the background and facilitates
the segmentation. However, in some cases, breathing motion
near the neck or small variations of the head position can
be observed, which causes curvilinear structures along the
border of high contrast objects such as the skull. To avoid
interference of this artifacts with the device segmentation, an
elastic grid registration technique is used, based on the method
presented in Ref. 19. The image is partitioned into distinct
blocks, where the center of each block serves as node of the
elastic grid as demonstrated in Fig. 2. The registration method
estimates a translation vector for each of these nodes. The
image transformation is then determined by interpolating the
translation vector for each pixel using a spline interpolation.
The optimization of the node translation vectors is done using
a gradient descent method, where the gradient can be estimated
by calculating the image metric within the surrounding block
of the node only. In this case, the mean squared error (MSE)
is used as image metric,

MSE=

∀x⃗∈I

[IF (x⃗)− IM (x⃗+∆(x⃗))]2/ |I | , (1)

where I is the set of all x⃗ in the image and ∆(x⃗) is the
translation of the pixel x⃗ calculated by
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F. 2. Illustration of the elastic grid registration. The solid line represents
the image blocks. Their centers are the node for the elastic grid, shown as
dashed line. A translation vector is estimated for each node, which is used to
calculate the final image transformation by spline interpolation.
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The block size in this equation is given by m0 and m1, respec-
tively, and ai j(b0,b1) represents the cubic spline coefficients
for the image block (b0,b1).

2.C. Preprocessing

The subtracted image frames are preprocessed to reduce the
noise and emphasize the curvilinear structures of the device.
The noise reduction algorithm uses binary masks to determine
a directional filter kernel for pixels close to line structures
and an isotropic kernel for background pixels.20 Which type
of kernel is used for each pixel is determined by a line
conformity measure (LCM) calculated using the mean squared
error in the local neighborhood along different directions. A
detailed description of the algorithm can be found in Ref. 20.
Additionally, a ridgeness filter is applied based on a method
described in Ref. 21 for a fixed scale to emphasize curvilinear
structures (ridges) in the image. The ridgeness values R for
image I are calculated by

R=−0.5 ·*
,

∂2I
∂x2

0

+
∂2I
∂x2

1
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-
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− ∂
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(3)

2.D. Segmentation

The segmentation step is based on two thresholds τh and
τl with τh > τl, where each pixel with a gray value above the
threshold τh is considered to be part of the object, herein,
referred to as initial device pixel. Candidate pixels with a
value within the interval [τl,τh] are only considered part of
the device, if they are connected to an initial device pixel.
Here, the term connected refers to each candidate pixel which
has at least one neighboring initial device pixel or candidate
pixel within the four-connected neighborhood, which is itself
connected to an initial device pixel. The threshold values
are determined automatically using the image histogram as
illustrated in Fig. 3. Since the device only covers a small

number of pixels compared to the background area, a Gaussian
function can be fitted to the histogram in order to estimate
the probability distribution GB of the background pixels. A
maximum likelihood estimation22 is used to determine the
parameters of the Gaussian function. The upper and lower
thresholds are then determined by calculating the values where
the probability for the pixel to be part of the background area
is lower than 0.1% and 10−5%, respectively.

2.E. Centerline extraction

Giving the binarized images, a topology preserving thinn-
ing algorithm is applied to extract the device centerline. The
algorithm is based on the average outward flux (AOF) as
proposed in Ref. 23. The distance map D is calculated which
contains for each device pixel the Euclidean distance to the
closest background pixel. The AOF is then calculated by

AOF(x⃗)=


∀∆⃗∈Nx


∂D
∂x1

(x⃗+ ∆⃗), ∂D
∂x2

(x⃗+ ∆⃗)

· ∆⃗∆⃗


|Nx | , (4)

where Nx is the eight-connected neighborhood of x⃗. The
segmented device is then converted to a one pixel thin
centerline by subsequent removal of simple boundary pixels
of the segmented area in descending order of the AOF value.
A boundary pixel is called simple according to the definition
in Ref. 24, if its removal does not change the topology of
the object or the background. For 2D images, this is true
if the Hilditch crossing number25 equals one. Following the
leftover device pixels after applying the thinning algorithm,
the centerline can be extracted, represented by one or more
curvilinear segments. Each segment is described by a list
of connected pixels. Multiple segments might be necessary
to describe a single device in cases where the centerline
is interrupted due to bad image contrast or noise or if the
centerline overlaps itself. In the latter case, the path from each
intersection point or end point to the next is described by a
separate line segment.

F. 3. Automatic threshold detection by fitting a Gaussian function to the image histogram. The lower and upper thresholds are then determined by the points
where the estimated probability distribution reaches 0.1% and 10−5%, respectively.
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The device segments S1–Sn are connected to a single
centerline using Dijkstra’s algorithm16 to find a path that
minimizes the distance and direction change between adjacent
ridges as well as the difference to the device path of the
previous time frame. The costs ccon for the connection of two
segments is calculated by

ccon(Si,Sj)= �
η+

�
v⃗i, j

��φ ·

2− ˙⃗s⊤

i,mi
·v⃗i, j−v⃗⊤i, j ·(− ˙⃗s j,1)


+1
, (5)

with

v⃗i, j = s⃗i,mi
− s⃗ j,1, (6)

where each segment Si is a list of connected points s⃗i,1 to
s⃗i,mi

and the direction vector at each point is given by ˙⃗si, j.
The parameters η > 1 and φ > 0 determine the weighting of
the direction change between segments. For the purpose of
this work, η = 1.5 and φ = 0.5 were chosen empirically in
previous 2D tracking experiments. The difference between
the extracted device path and the device path of the previous
time frame D(t−1) =

(
d⃗(t−1),1,. . .,d⃗(t−1),n(D(t−1))

)⊤
is calculated

using

cdis(s⃗i, j,d⃗(t−1),k)=
(
η+

���⃗si, j− d⃗(t−1),k���
)φ ·(1− ˙⃗s⊤

i, j ·
˙⃗
dt−1,k

)
+1
. (7)

The overall cost function for a series of segments S
=

�
S1,S2,. . .,Sn(S)

�
is defined by

c(S) =
n(S)
i=2

ccon(Si−1,Si)+
n(Dt−1)
k=1

cdis

(
ψ (S,k),d⃗t−1,k

)
+


∀Sk<S

n(Sk) · ϵ, (8)

where ψ (S,k) is the monotonic function, which maps d⃗(t−1),k
to its corresponding point in the sequence S and the parameter
ϵ determines the cost of unused line segments. For the purpose
of this work, ϵ = 0.5 was used.

2.F. Reconstruction

Given a pair of corresponding points (q⃗a,q⃗b) from both
image planes that represent the same point q⃗3 in 3D, its
coordinates can be easily calculated by finding the intersection
between the two projection rays of the 2D points, which
connect q⃗a and q⃗b with the respective view points of the image
planes. The viewpoints v⃗a |b and the direction vectors r⃗a |b of
the projection rays can be calculated using the respective
projection matrices. The direction vectors are calculated by
taking the inverse of the upper left 3×3 matrix of the projection
matrix,

r⃗a |b =
(
P(3×3)
a |b

)−1
· q⃗a |b =

*...
,

p11 p12 p13

p21 p22 p23

p31 p32 p33

+///
-

−1

· q⃗a |b. (9)

The viewpoints can be calculated using

v⃗a |b =
(
P(3×3)
a |b

)−1
·
*...
,

p14

p24

p34

+///
-

. (10)

Due to aliasing, segmentation inaccuracies, or imperfect
calibration, the two lines might not intersect; therefore, the
closest point to both lines is calculated instead by solving the
linear equation,
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c⃗

, (11)

where n⃗a1 and n⃗b1 are normal vectors perpendicular to r⃗a and
r⃗b, respectively, with

�
n⃗(a |b)1

�
2= 1 and

n⃗(a |b)2= r⃗a |b× n⃗(a |b)1. (12)

This can be solved using the Moore–Penrose inverse,

q⃗3=
�
M⊤M

�−1M⊤ · c⃗. (13)

The corresponding point qb in plane B for a point qa in
plane A can be found by calculating the epipolar line Eqa of
qa in plane B.17 Every intersection of Eqa with the device
centerline in plane B is a candidate for the corresponding
point. However, only for very simple device shapes, this
would result in a unique solution. In general, more than one
candidate might exist for every point qa. In this case, additional
information is required to find the correct corresponding point.
As suggested in Ref. 5, a monotonic constraint can be used
for the function that maps points on the centerline of the
device in plane A to their respective corresponding points. This
means that the points in plane A have to appear in the same
order on the centerline of the device then their counterparts in
plane B. To determine the point correspondences, Dijkstra’s
algorithm16 is used to find the monotonic function that
minimizes the distance between the projection rays of each
pair of corresponding points.

3. IMAGE DATA

All images are acquired using a biplane angiography
system (Artis Zee, Siemens Healthcare AG, Forchheim,
Germany). As a first step, a 3D image of the vasculature is
acquired using 3D digital subtraction angiography. Therefore,
two rotational acquisitions are performed with and without
contrast agent injection, respectively. The subtraction of
both images shows only the contrast medium within the
vascular system. The C-arms are then moved to one of the
precalibrated positions, where 2D fluoroscopic projection
images of the moving device are acquired from two different
angles, with a constant frame rate of 15 fps. For the quantitative
evaluation of the 3D reconstruction accuracy, a guidewire
was imaged within a vascular head phantom (Replicator,
Vascular Simulations, Stony Brook, NY, USA). Additionally,
a cadaver head study and canine study were performed to
verify the results. The vascular head phantom is shown in
Fig. 4; the cadaver head and canine images are shown in
Fig. 6. The guidewire was moved under fluoroscopic guidance
to five different positions in the head phantom, one position
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F. 4. Vascular head phantom: (a) surface rendering of the vascular structure within the head phantom, created by 3D digital subtraction angiography; (b)
fluoroscopic image of the catheter acquired with plane A; (c) fluoroscopic image of the catheter acquired with plane B; and (d) photo of the vascular head
phantom with pump to simulate blood flow.

in the cadaver heads and four positions in the canine. For
each position, a rotational 3D acquisition of static device
was performed as a reference of the actual device shape.
Reconstruction results of real patients will also be presented
but are not included in the quantitative evaluation since no
reference positions for the device are available.

An anterior–posterior (AP) position for plane A and a
lateral projection angle for plane B are used for all acquisitions.
Since in practice other gantry positions might also be of
interest, an additional repeatability study is performed to
investigate the influence of other projection angles on the
reconstruction accuracy. Therefore, a series of ten fluoroscopy
sequences of a calibration phantom was acquired for five
different positions of each gantry. Between two adjacent
acquisitions, each gantry was moved to arbitrary locations and
then moved back to one of the five positions. The accuracy,
each position could be reached with, was measured in terms
of the standard deviation of the calibration phantom beads

T I. Gantry positions for plane A and plane B (primary and secondary
angles) for each of the five positions evaluated in the repeatability study.
The primary angle is rotated around the longitudinal axis of the patient and
the secondary angle around the normal vector of the plane described by the
C-arm.

Position No. 1 2 3 4 5

Primary A (deg) 0 30 45 0 10
Secondary A (deg) 0 0 0 −20 −10

Primary B (deg) −90 −60 −45 −90 −80
Secondary B (deg) 0 0 0 20 10

positions. Table I lists the investigated gantry positions for
both planes.

4. STATISTICS FOR EVALUATION

The quantitative evaluation of the 3D reconstruction accu-
racy is performed in terms of three different measures. First,
the tip accuracy et measured in terms of the Euclidean distance
between the reconstructed device tip d⃗t,0 and the reference
position d⃗∗t,0 gathered from the rotational 3D acquisition of
the device,

et =
d⃗t,0− d⃗∗t,0

. (14)

The worst conformity between the reconstructed and the
reference device shape can be measured in terms of the
Hausdorff distance eh,26 which can be defined as the maximum

T II. Reconstruction accuracy results for the phantom experiments list-
ing tip accuracy et , Hausdorff distance eh, and mean distance em for each
case. The last row shows the average results for all cases. All measurements
are given in millimeters.

Case No. et eh em

Case 1 0.30 0.33 0.31 ± 0.14
Case 2 0.31 0.49 0.32 ± 0.13
Case 3 0.43 0.80 0.70 ± 0.21
Case 4 0.47 0.47 0.31 ± 0.09
Case 5 0.26 1.13 0.91 ± 0.32

Average 0.35 ± 0.09 0.65 ± 0.32 0.54 ± 0.33
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F. 5. 3D rendering of the reference device (blue) compared to the recon-
structed device (red) within the vascular system of the head phantom shown
from two different viewing angles (see color online version).

of the longest Euclidean distance from any point d⃗t,k1 on the
reconstructed device centerline to the closest point d⃗∗

t,k2
on

the reference centerline and the longest distance from any
point on the reference centerline to the closest point on the
reconstructed device centerline,

eh =max


max
∀k1

min
∀k2

d⃗t,k1− d⃗∗t,k2

,max
∀k2

min
∀k1

d⃗t,k1− d⃗∗t,k2




.

(15)

Finally, the overall reconstruction accuracy of the recon-
structed device is measured in terms of the mean distance
em, where each point d⃗t,k1 on the reconstructed centerline is
compared to the point d⃗∗

t,k2
on the reference centerline with

T III. Reconstruction accuracy results for the cadaver head and canine
experiments listing tip accuracy et , Hausdorff distance eh, and mean distance
em for each case. All measurements are given in millimeters.

Case No. et eh em

Cadaver 1 0.21 0.59 0.23 ± 0.11
Canine 1 0.33 0.57 0.39 ± 0.12
Canine 2 0.58 0.58 0.34 ± 0.03
Canine 3 0.53 0.77 0.68 ± 0.08
Canine 4 0.14 0.59 0.39 ± 0.08

Average 0.36 ± 0.20 0.62 ± 0.08 0.41 ± 0.08

the same distance to the device tip,

em =

∀k2

d⃗t,k1− d⃗∗t,k2

/∥T ∥ , (16)

with

k1= arg min
k1

k1
k=1

d⃗t,k1−1− d⃗t,k1
−

k2
k=1

d⃗∗t,k2−1− d⃗∗t,k2

. (17)

5. RESULTS

Table II lists the accuracy results of the device reconstruc-
tion from the vascular phantom experiments, measured in
terms of the tip accuracy as well as the Hausdorff distance
of the device centerlines and the mean distance. For the
tip of the device, an average reconstruction accuracy of
0.35±0.09 mm could be achieved, while the overall Hausdorff

F. 6. Original fluoroscopic images and reconstruction results of the cadaver head and animal study. Rows 1 and 2 show the A and B planes of the original
fluoroscopic images, respectively. Row 3 shows a semitransparent overlay of the 3D reference device (blue) with the reconstructed device (red). The cadaver
head study is displayed in column 1. Columns 2–5 are the results of the animal study (see color online version).
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F. 7. Clinical data set of a patient suffering a cerebral aneurysm. First two rows show the original fluoroscopic images of planes A and B, respectively. The
third row shows the virtual endoscopic renderings of a guidewire near the MCA trifurcation. The green line represents the path to the predetermined target
location, calculated from the vessel centerlines. The last row displays an overview of the guidewire position in a 3D rendering with a semitransparent vessel
surface (see color online version).

distance, and therefore, the largest distance between the
reconstructed device centerline and the reference centerline
was 0.65± 0.32 mm on average. The mean point by point
device distance of the centerlines averaged to 0.54±0.33 mm.
Figure 5 shows a comparison of the reconstructed device
and the reference device within the vascular system of the
head phantom. A similar evaluation has been performed
for the cadaver head study. The quantitative results for the
cadaver head and canine study are listed in Table III. The
device tip was reconstructed with an average accuracy of
0.36± 0.20 mm, whereas the largest distance between the
reconstructed device centerline and the reference centerline
was 0.62±0.08 mm on average. The mean device distance
averaged to 0.41±0.08 mm. A visual comparison between the
reconstructed and the reference devices is shown in Fig. 6.
A clinical data set of a pipeline embolization procedure
in a patient suffering a cerebral aneurysm was processed
retrospectively. Figure 7 shows selected time frames of the
3D reconstruction, rendered as virtual endoscopic, and glass
pipe views showing the guidewire near the middle cerebral
artery (MCA) trifurcation. Additional clinical examples are
shown in Fig. 10. The first example is a reconstruction of
a guidewire, where additional to the reconstructed device

other objects like a stent, leftover contrast medium, and a
previous guidewire are visible in the subtracted fluoroscopy
frames. The intermediate reconstruction steps are shown in
Fig. 10 (A1–A4) including the subtracted fluoroscopic frame,
the binarized image overlaid with the extracted curvilinear
segments, the final 2D path, and finally the 3D reconstruction.
The second example shows the coiling of an aneurysm, where
the first 1.5 loops of the coil inside of the aneurysm can be
successfully reconstructed; however, after multiple loops, the
extraction of the correct 2D path is not possible anymore. The
results of the repeatability study are shown in Fig. 8. For plane
A, the highest accuracy was achieved for the 0◦/0◦ position
with an average accuracy of 0.45±0.28 pixel (0.14±0.09 mm)
and the worst repeatability for position 10◦/−10◦ with an
accuracy of 0.98±0.92 pixels (0.30±0.28 mm). For plane B,
the best results were achieved for position −90◦/20◦ with an
accuracy of 0.36±0.33 pixels (0.11±0.10 mm) and the worst
for position−80◦/10◦with 1.48±1.37 pixels (0.46±0.42 mm).
To give an impression on the influence of the registration
part, Fig. 9 shows a comparison of the subtracted fluoroscopy
frames before and after applying the registration algorithm for
two clinical acquisitions, where the head moved between the
mask frame and the current frame.
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F. 8. Results of the repeatability study measured in terms of the mean error
in pixels at five different positions for both planes. First five bars show the
accuracy of plane A; the remaining bars give the accuracy of plane B. Oblique
angles, where the secondary angle is not zero are shaded gray; other positions
are shaded white.

6. DISCUSSION

The presented algorithm offers a novel perspective for
intervascular procedures allowing to render virtual endoscopic
views of the device within the vascular system as well
as the option to generate virtual projection images from
arbitrary views without moving the gantry. In order for this
technique to provide useful information to physicians, an
accurate reconstruction of the 3D device shape is crucial.
In particular, the position of the device tip is important for
many procedures, for example, if the device tip is placed
within an aneurysm or stenosis in order to deploy coils or
stents. The accuracy of the reconstruction depends on various
factors, including the segmentation of the device centerline,
finding the correct point correspondences as well as the
calibration of the C-arm positions and the angle between the
two views. Most manufactures provide calibration phantoms
for their angiography systems to allow an accurate estimation
of the projection matrices. However, current angiography
systems can reach the calibrated C-arm positions only up
to a certain accuracy depending on the viewing angle, which
might decrease the alignment between the estimated projection
matrices and the actual C-arm positions. The presented results

have demonstrated that a reconstruction with high accuracy is
possible using anterior–posterior and lateral C-arm projection
angles. In some cases, however, different C-arm positions
might be required to allow better access to the patient. The
C-arm positions primarily affect the reconstruction accuracy
in two ways. First, the angle between the two projections of
plane A and plane B determines how well conditioned the
reconstruction of a 3D point from its 2D projections is. The
best result is achieved for orthogonal projection angles. A
thorough investigation on this topic was performed in Ref. 8.
Since the calibration of the system is performed ahead of the
procedure, the accuracy of the reconstruction also depends
on the accuracy with which the system can go back to a
previously calibrated position. The results of the repeatability
study (Fig. 8) show a considerable decrease in the repeatability
for angles other than AP and lateral for planes A and B.
Oblique angles, where the primary as well as the secondary
angle is modified, show the lowest accuracy. In general, less
accurate results can be expected for other gantry positions
than AP and lateral. However, depending on the system,
other positions with similar repeatability might be possible
as can be seen for plane B and the −90◦/20◦ position. Another
limitation regarding the accuracy of the projection matrices
is that the patient table position may not be altered between
the acquisition of the 3D vasculature and the fluoroscopic
images, e.g., to adjust the field of view, since the measurement
accuracy of the table position may not be accurate enough
to adjust the projection matrices. To solve this issue, a 2D/3D
registration step could be included whenever the table position
or the position of the C-arms is changed. This would also allow
the use of uncalibrated C-arm positions and might resolve
variations in the C-arm positions due to system inaccuracies
for calibrated positions. It should also be mentioned that
all accuracy measurements are calculated compared to a
reference device centerline calculated from a voxelized 3D
volume. Therefore, the accuracy of the reference is limited
by the voxel size of 0.47 mm. The imaging system allows
reconstructions with smaller voxel sizes only for reduced
volume sizes. This, however, would truncate the device in the
reconstructions. The calculated accuracy measures are close to
the voxel size limit, which shows that a device reconstruction
with high accuracy is possible. The reconstructions of the

F. 9. Comparison of subtracted fluoroscopy frames for two clinical acquisitions (A) and (B) before and after application of the registration algorithm. Motion
artifacts can be seen near the orbital and nasal cavities and along the contour of the skull in the unregistered subtractions of (A) and (B).
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F. 10. Example of clinical cases. (A) Guidewire in aneurysm with additional objects in the image (stent, previous guidewire, leftover contrast medium,
and registration artifacts). (1) Original fluoroscopy frame. (2) Binarized image overlaid with extracted line segments. (3) Extracted 2D path overlaid with
original fluoroscopy image. (4) 3D reconstruction of the guidewire within the aneurysm. (B) Coiling of aneurysm. (1) Extracted 2D path after 1.5 loops. (2) 3D
reconstruction after 1.5 loops. (3) After multiple loops, 2D path cannot be extracted correctly. (4) Failed 3D reconstruction after multiple loops.

clinical data set shown in Fig. 7 provide an impression of
the possibilities and advantages of using this technology
compared to conventional fluoroscopic imaging. The virtual
endoscopic view allows an easier localization of the guidewire
near the trifurcation, where the complex vessel structure
makes it hard to identify the current device position in the
original fluoroscopy images. The additional clinical examples
presented in Fig. 10 also show the abilities as well as the limits
of the presented algorithm. In general, additional objects like
stents present in the mask as well as the reconstructed frames
do not affect the reconstruction, since they are subtracted out
during the segmentation. However, if the position of these
objects changes during the procedure, they could be visible
even in the subtracted frames as shown in Fig. 10 (A1).
But, due to the lower radio opacity of the stent compared
to the guidewire, the correct path can still be identified.
Previously inserted objects that are present in the mask frame,
but have been removed afterward, show up as dark structures
in the subtracted frame, which makes it easy to distinguish
them from the current device. However, if a previous device
overlays with the curvilinear structure of the reconstructed
device, it might cancel out parts of it in the subtracted image
frame. However, in the presented cases, the algorithm is still
able to connect the extracted line segments correctly. The
aneurysm coiling case in Fig. 10 (B1–B4) demonstrates that
the algorithm is able to identify the device path of a coil
despite overlaps after about 1.5 loops. However, when the
device shape gets more complex, no feasible solution can be
found. Although a real time implementation of the proposed
algorithm is not available to this time, it is planned for future
work. In order to further reduce the computational effort, the
number of iterations for the registration step could be limited,
since only little motion is expected for most neuroradiological

applications in the head. Furthermore, the presence of patient
motion could be detected based on simple image metrics, and
the registration algorithm could be applied only to frames,
where motion was detected. Further work is also necessary to
investigate other applications of the reconstruction algorithm
besides neuroradiological interventions in the head region.
These include thoracic procedures in the lung or liver as well
as cardiac applications. In contrast to the cases presented here,
these applications usually exhibit increased motion artifacts
caused by breathing and cardiac motion, which might not be
compensated by a 2D registration as it is proposed here. This
might affect the segmentation of the device based on subtracted
image frames. Additionally, in order to create a meaningful
overlay of the reconstructed device with a previously acquired
3D vascular volume, the latter has to be adapted to reflect the
patient motion.

7. CONCLUSION

The proposed algorithm provides a novel framework to
reconstruct the 3D shape of an interventional device from
two fluoroscopic images recorded from different angles, thus
allowing the rendering of virtual fluoroscopic images from
arbitrary angles or virtual endoscopic views. This algorithm
consists of 2D/2D image registration, device segmentation,
and epipolar reconstruction. Future work has to be done
to implement the algorithm into a real time reconstruction
system, which allows viewing of virtual endoscopic views
and virtual fluoroscopic images online, while manipulating
the interventional device. Furthermore, the implementation
of a 2D/3D registration could help to further increase the
reconstruction accuracy and could provide a more flexible
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use of the C-arm CT system. The presented results show
that an accurate reconstruction of the device is possible.
This technique could considerably improve the workflow of
endovascular minimally invasive procedures.
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