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Markov state models (MSMs) are an extremely useful tool for understanding the conformational
dynamics of macromolecules and for analyzing MD simulations in a quantitative fashion. They have
been extensively used for peptide and protein folding, for small molecule binding, and for the study of
native ensemble dynamics. Here, we adapt the MSM methodology to gain insight into the dynamics of
misfolded states. To overcome possible flaws in root-mean-square deviation (RMSD)-based metrics,
we introduce a novel discretization approach, based on coarse-grained contact maps. In addition, we
extend the MSM methodology to include “sink” states in order to account for the irreversibility (on
simulation time scales) of processes like protein misfolding. We apply this method to analyze the
mechanism of misfolding of tandem repeats of titin domains, and how it is influenced by confinement
in a chaperonin-like cavity. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4941579]

I. INTRODUCTION

Recently, Markov state models (MSMs) have become one
of the tools of choice for the analysis of molecular dynamics
(MD) simulations in the study of biological systems.1,2 In
this type of model, the dynamics of the biomolecule are
modeled as a stochastic network of transitions between
metastable conformational states. Although MSMs were first
introduced in the study of peptide folding,3–7 and they
continue to reveal new insights into small systems,8–10 their
principal applications have been extended to include protein
folding,11–20 the native dynamics of protein structures,21,22

ligand binding,23–26 the dynamics of nucleic acids,27–29 and
even the study of large macromolecular machines like
dynamin.30 In spite of their versatility, and the availability
of dedicated software packages such as MSMbuilder31 or
Emma32 that automate their generation, there are nonetheless
still challenges in deriving MSMs from simulation data.
Here we focus on two of these issues: the discretization
of the conformational space sampled during the simulation,
and the ergodicity of the resulting stochastic network. We
analyze a coarse-grained simulation model for the misfolding
via domain swapping of titin33,34 as a biologically relevant
example where these two problems are manifested.

When constructing an MSM, the atomic coordinates
of the biomolecule in the myriad of conformations visited
during the simulation are typically clustered into thousands of
discrete states. Although novel methods are being derived for
the clustering,35 many times the root-mean-square deviation
between the cartesian coordinates of pairs of structures
(RMSD) is employed as a structural metric to identify
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these clusters. However, a global RMSD suffers from the
problem that structures separated by a large energy barrier
may nonetheless be separated by a very small RMSD;
on the other hand, using a very small RMSD cutoff can
lead to an unmanageable number of states, and difficulty in
determining their connectivity from equilibrium simulations.
Recent work suggests that alternative similarity metrics, based
on the contact map of the protein18,20 or the backbone
dihedral angles36 may perform better in identifying kinetically
connected states. These metrics have the advantage of
being closely correlated with local minima in the energy
landscape, i.e., rotameric states in the case of dihedrals and
formation/breaking of atomic contacts in the case of contact
maps. Still, the number of states based on possible dihedral
angle combinations (2N in the simplest description, consid-
ering just 2 possibilities α and β for each of the N protein
residues7) or alternative contact maps (naively, 2nc, where nc

is the number of contacts in the contact map20) can make the
use of these discretizations challenging. Here, we introduce
coarse contact maps37 in the context of MSMs, as a means of
alleviating the clustering problem.

A second difficulty is that strong connectivity within the
network of microstates is usually assumed in the dynamical
model. In other words, the conformational dynamics of the
protein are modelled as an ergodic Markov chain, where
for every pair of microstates i and j one can define a path
from i → j and from j → i. In practice this is done by
identifying ergodic subgraphs in the clustered data and then
restricting the analysis to the maximal ergodic subgraph.31

However, this presents a problem for systems where there
exist very stable states or traps, from which the system never
(or very rarely) escapes on the simulation time scale. In these
situations, trimming the network so that its largest ergodic
part is retained may severely distort the results if some of
the discarded states turn out to be important for the system
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properties. In our case, for example, they may be very long-
lived misfolded states that appear to be traps (experimental
evidence suggests these states to be stable on a time scale of
days33). While one possibility would be to obtain additional
data in order to sample the reverse transitions (out of traps),
if such transitions only occur on a much longer time scale
they may not be of practical interest anyway. Here, we present
an approach to including such states in the model, where a
standard analysis is done for the largest ergodic subgraph,
but absorbing states are also included in the final model,
resulting in alternative stationary distributions. For this type
of Markov state model with absorbing states the solution can
be calculated analytically, for given initial conditions. The
resulting method is generally applicable to scenarios where
the condition of ergodicity is not fulfilled.

In this study we focus on the misfolding of tandem
immunoglobulin domains from the giant protein titin. This
system has been studied extensively using both experiments33

and simulations.38,39 In this work we use a simple model
for protein folding/misfolding that successfully predicted the
formation of domain-swapped structures.33 Here we probe
multiple misfolding scenarios by analyzing simulations of the
tandem repeat protein in isolation and in different confinement
conditions, which we have reported before.40

This paper is organized as follows. First, we very briefly
describe the simulation model. Second, we introduce the
Markov state model methodology. Then, we describe the
details in the construction of the MSM, with particular detail
in the description of the two main contributions of this work,
the new coarse contact map discretization, the construction
of a transition matrix that does not require ergodicity and the
calculation of the infinite time population of the Markov state
model with absorbing states. Finally, we show the analysis of
the MSM for the titin domain swapping.

II. METHODS

A. Molecular system and MD simulations

We analyse coarse-grained molecular simulations of titin,
including the possibility of domain-swapped misfolding. The
protein simulation model, described in an earlier publication,33

is summarized briefly here. The protein representation was
generated using the 1tit PDB structure, using the Cα-based
Gō model of Karanicolas and Brooks.41 An additional linker
with sequence RSEL was introduced between the domains, as

in the experiment. Linker-protein interactions were treated by
short-ranged repulsive potentials. In addition to the standard
Gō-like contacts within each domain, we introduced additional
native-like contacts between domains, i.e., if (i, j)was an intra-
domain native contact, the contacts (i + N, j) and (i, j + N)
were added as interdomain contacts, where N = 93 is the
length of one domain plus linker.

In addition to free titin (see Fig. 1(a)), we considered
several additional scenarios of titin under confinement similar
to those described in our previous study.40 The titin was
confined within a spherical cavity with an additional short
range contact potential between the protein residues and
the boundary, such that the energy for a residue contacting
the wall was −ε. We considered the following scenarios:
essentially repulsive walls (ε = 10−4 kJ mol−1, Fig. 1(b)),
“weakly” attractive walls (ε = 0.5 kJ mol−1, Fig. 1(c)), or
“strongly” attractive walls (ε = 1.0 kJ mol−1, Fig. 1(d)).
A cavity radius of 35 Å was used to provide a volume
comparable to that of the GroEL interior. In the interest
of investigating the robustness of our MSM analysis to
potentially complex folding scenarios, simulations were also
performed of titin inside a residue-level coarse-grained model
of GroEL, analogous to previous simulations of rhodanese
in GroEL42 (Fig. 1(e)). Interactions between titin and
GroEL were described using the Kim-Hummer protein-protein
interaction model, rescaled appropriately for the simulation
temperature.43 Long first passage time simulations were run,
50 per folding scenario, starting from a high-temperature
unfolded state, at a temperature of 270 K, using Langevin
dynamics with a friction of 0.1 ps−1. Simulations were
carried out using a modified version of GROMACS 4.0.5
software package.44 Further details may be found in our
earlier work.33,42

B. MSM theory

Here, we give a brief overview of relevant MSM theory;
more detailed descriptions are available elsewhere.5,6,45

We describe the dynamics of the system as a Markov
chain, where memory-less transitions occur between non-
overlapping regions of configurational space, which we term
microstates. The probability of finding the system in a certain
microstate at time t + ∆t hence depends only on the microstate
of the system at time t and not on the previous history. The
time evolution of the system can be described by a transition
matrix T(∆t) through the equation

FIG. 1. Cartoons of the titin folding scenarios. (a) Free titin, (b) repulsive cavity, (c) “weakly” attractive cavity, (d) “strongly” attractive cavity, and (e) GroEL.
The two repeat domains of titin are shown in different colours.
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p(n∆t) = T(n∆t)p(0) = [T(∆t)]np(0), (1)

where p(t) is a vector of microstate populations at time t and
p(0) the set of initial populations. The matrix T has a set
of eigenvalues {λ}, that outline the transition modes of the
system and the time scales {τ} on which they occur through
the relation

τi = −
∆t

ln λi
. (2)

The corresponding set of left ({φ}) and right ({ψ})
eigenvectors describes the transitions associated with each
mode.

C. Coarse contact map discretization

To define the microstates of the model, the continuous
conformational space explored in the titin simulations was
discretised using a novel approach. As mentioned above,
using the pairwise RMSD can prove problematic when the
configuration space to be covered becomes large. Residue
contact maps are a more intuitive and concise way to
distinguish individual structures, especially for the native-
centric modelling used here. Residue-level contact maps were
calculated for each structure as follows:

Cstructure
i j =




1 if ri j < λrnative
i j

0 otherwise
, (3)

where ri j is the separation between residues i and j in the
structure of interest and rnative

i j is the native or domain-swapped
contact separation, as defined by the inter-residue distance in
the native structure of titin. λ was a scaling factor set to 1.2,
allowing for fluctuations about the minimum energy contact
distance.

Initially, we attempted to cluster these residue-level
contact maps using the leader algorithm,46 which generates a
number of clusters of fixed radius rc. The distance metric
for clustering was the difference between contact maps
(L1 norm)

d(A,B) =


contacts i, j

���C
A
i, j − CB

i, j
��� . (4)

However, d(A,B) is highly sensitive to noise arising from
small differences in individual contacts and therefore, at small
cluster sizes, structures that were essentially the same were
separated into distinct clusters; on the other hand, increasing
the cluster radius resulted in dissimilar structures being placed
in the same cluster.

In order to reduce the sensitivity of the clustering to
individual contacts, we exploited the observation that the
structures of folded and misfolded titin mostly differ in the
positioning of individual β strands on the titin domains. We
subsequently calculated coarse-grained, strand-based contact
maps S by defining a contact between two strands as being
present when at least half of the native or domain-swapped
contacts between those strands were formed (see Figure 2)

Si j =



1 if qi j/qnative
i j > 0.5

0 otherwise
. (5)

Here, qi j is the total number of native and native-like misfolded
contacts between residues in strand i and strand j and
qnative
i j is the number of contacts between these strands in

the native structure. A total of 14 β strands were defined, 7 on
each domain, reducing the contact map size from 1822/2
to 142/2 elements, significantly reducing the amount of
data stored and the variation seen between identical states
due to thermal fluctuations of individual residue-residue

FIG. 2. Coarse-grained representation
of titin misfolding. (a) Natively folded
titin; (b) domain-swapped, misfolded
titin. Top row shows structures with
the N-terminal domain coloured blue
and the C-terminal coloured red. Mid-
dle row shows residue-residue contact
maps corresponding to each structure
and bottom row shows the contact maps
defined between secondary structure el-
ements (β-strands).
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contacts. The strand-based contact maps also made it easier
to identify folded and misfolded states since domain-swapped
contacts between entire strands were now more clearly distin-
guishable from the correctly formed intradomain contacts
(see Fig. 2).

A strand-based contact map was calculated for every
frame of the 250 trajectories, maintaining a count for the
number of times each unique map appeared. Maps seen fewer
than 50 times over all the simulations were discarded as they
were considered to be highly unstable or transient states. The
contact maps were then clustered based on similarity using
the leader algorithm with the d(A,B) metric, as described
above, so that structures differing by fewer than the cluster
radius of rc = 5 strand-strand contacts were classed into
the same microstate. Any conformation with fewer than 8
strand-strand contacts was considered to be in a separately
defined unfolded cluster. The clusters generated by this
scheme defined a consistent set of conformational microstates
for constructing the MSM, shared between the folding
scenarios.

D. Constructing the Markov state model

For the system of interest a number of innovations
have been introduced within the traditional set of steps
(i.e., assignment, estimation, and lumping) involved in
producing a Markov state model from the discretized
simulation data.6 A general scheme of the procedure we
introduce here is shown in Figure 3. In summary, first, the
simulation trajectories are assigned to the microstate space
defined above using coarse contact maps (a). Then, the raw
count matrix is calculated. At this point the ergodic and non-
ergodic subgraphs are separated (b), and the largest ergodic
subgraph (Folded SCC) is aggregated into conformational
macrostates via the Perron cluster analysis (c). The folded
and remaining subgraphs (d) are finally combined into a
global model that combines detailed information about the
folding mechanism as well as information about the events
that may result in the molecule getting stuck into a misfolded
conformation.

1. Constructing the microstate transition matrix

For each folding scenario a count matrix N was generated
by iterating over the frames of the trajectory using non-
overlapping windows of width ∆t. The lag time ∆t used
was 1 ns, which was sufficient to identify transitions to the
folded and misfolded states via intermediates, while ignoring
unimportant processes that occurred on shorter time scales.
The transition matrix T (Figure 3), giving the probability of
making a transition from microstate j to i was calculated using
the maximum likelihood estimator45

Ti j =
Ni j
iNi j

. (6)

2. Separation of ergodic and non-ergodic sub-graphs

In order to gain a more intuitive description of the
processes corresponding to the slow dynamics of the system
we further coarse grain the microstate MSM by lumping the
microstates into a few macrostates.6 An eigenvector-based
clustering method using the microstate MSM would be an
obvious way to reduce the overall number of states. However,
the standard PCCA clustering analysis requires an ergodic
transition matrix,47 while our microstate transition matrix
includes sinks such as the fully folded and misfolded states
(Fig. 2).

In order to circumvent this problem we treated the
transition matrix as an adjacency matrix defining a directed
graph, and then identified the strongly connected components
(SCCs) of the graph. Following the methods used in previous
work,48 Tarjan’s algorithm49 was used to identify the SCCs
from the transition probability matrix T. The SCCs of a
directed graph are subgraphs which satisfy the property that
from every node in the subgraph there is a path to every other
node in both the forward and reverse directions, i.e., each
subnetwork is an ergodic Markov chain.

In general, the analysis yields one large strongly
connected subnetwork including the folded state, and this
can be further clustered using PCCA (see Section II D 3).
Each of the other subnetworks represents a potential sink in

FIG. 3. Schematic of algorithm for deriving Markov state models. In step (a), structures from the simulations are mapped to coarse-grained contact maps, which
are further reduced by clustering. In (b), the initial assignment to coarse contact maps is used to count transitions between states after a fixed lag time, ∆t . The
strongly connected network is coarse-grained via a standard PCCA procedure in (c), and by adding back the disconnected states (sinks), (d), the final set of
coarse grained states is defined and used to construct a coarse-grained transition matrix.



075101-5 Sirur, De Sancho, and Best J. Chem. Phys. 144, 075101 (2016)

the full MSM with the unfolded state as a common source,
and once entered into by the system, there is no escape except
via the unfolded state. The next step was generating a subset
of the transition matrix TF, which corresponded to the SCC
containing the folded state. Note that by design the folded
SCC did not contain the unfolded state as this was a commonly
shared state that potentially exchanged with states in all the
SCCs, not just the folded SCC.

3. PCCA of the folding subgraph

In practice, the eigenspectrum of the transition matrix for
the folded SCC, TF, was first calculated. This provides a good
indication of the number of significant processes taking place
within the native folding subnetwork. The relative time scales
{τ} were calculated in order to determine the existence of a
large separation in time scale after a certain number of modes,
M − 1; based on the first M − 1 modes, a “macrostate” model
with M coarse-grained states could be constructed.

Next, the Perron-cluster cluster analysis (PCCA) method
was applied to hierarchically lump the microstates in the native
folding subnetwork together into a set of M macrostates in
order to maximise the metastability of each macrostate.6,50 For
M expected macrostates, the right eigenvectors {ψ} associated
with the M slowest modes (ignoring the first, stationary mode)
were inspected in order to lump the microstates based on their
participation in the transition. Specifically, microstates were
progressively lumped based on the sign of each ψk, for
k = 1, . . . ,M , i.e., for each k, all states where ψk < 0 were
separated from those states where ψk > 0. The procedure was
repeated for each eigenmode until the desired number of
macrostates, M had been obtained.

4. Merging the SCCs

Transitions from the unfolded state (a source) and to the
other SCCs (sinks) were now incorporated into the simplified
transition matrix. In order to generate the coarse-grained count
matrix, the trajectory frames were reassigned based on their
corresponding lumped macrostate if they were part of the
native folding subnetwork (labelled Fi in the figures) or based
on the non-folded SCC of which they were a member (labelled
Si in the figures). The folded state was sampled far more
frequently in the simulations than any misfolded states, and
therefore some transitions were observed leaving the folded
state while this was not the case for most misfolded states,
which we presume is due to their lower population. Therefore,
the transition rates out of the folded state PCCA cluster were
set to zero, in order to obtain p(∞) populations of the folded
state. Thus, our infinite time solution really corresponds to the
situation after a few minutes in experiment, where the protein
has initially folded to the native or domain-swapped dimer.
Subsequent equilibration via unfolding (of either misfolded,
or native states) occurs on a much longer time scale of days33

and is not sampled here.

E. Infinite time solution

In order to determine the ultimate fate of the system at
long times the population distribution p(∞) can be calculated

for an absorbing Markov chain using the solution devised by
Kemeny.51 The criterion that a Markov chain be absorbing
is that there exists a state which cannot be escaped even at
infinite times and that it is possible to access an absorbing
state in the chain from any non-absorbing state (potentially
via intermediate states). Since there was always at least one
absorbing (sink) state, the native state PCCA cluster (see
Subsection II D 4), this solution could be universally applied
to all the folding scenarios.

For a system with r absorbing states and t transient states
(those that are not sinks), the transition matrix can be arranged
as follows:

P = *
,

Q 0
R I

+
-
, (7)

where Q is a t × t matrix, R a t × r matrix, 0 an r × t zero
matrix and I an r × r identity matrix. We know that the
expected probability of making a transition from transient
state i to transient state j after n steps is Qn

i, j. Summing the
matrix Qn quantity over all n gives the fundamental matrix
N,52 which we later use to determine the remaining properties
of the absorbing Markov chain,

N =
∞
k=0

Qk = (It −Q)−1, (8)

where It is a t × t identity matrix. The elements of N denote
the expected number of times the system enters state j given
it started in state i. From there it is simple to obtain the
probability of entering an absorbing state j from transient
state i as each element of the matrix

B = RN. (9)

III. RESULTS AND DISCUSSION

A. Assignment of the titin misfolding datasets
to the coarse contact maps

Coarse-grained simulations of titin, based on native and
native-like interactions, have given powerful insights into
the types of misfolded species which may be formed at long
times, with the results being very consistent with experimental
FRET data when available.33,40 However, a detailed analysis
of the intermediates involved in both folding and misfolding
is currently lacking. Part of the reason is that it is difficult
to find simple reaction coordinates which capture the diverse
range of species that can be populated. Therefore, we set out
here to analyze the pathways for misfolding by constructing
a representative Markov state model. The main questions we
seek to answer are: (i) what are the major pathways and
metastable states of folding and misfolding? and (ii) is there a
possibility of rescue from misfolding pathways via reversible
transitions.

Here, we analyze Gō model MD simulations of titin
that have previously been performed under a range of folding
scenarios: the unconfined protein “free in solution”, and within
confining spheres having (i) repulsive walls, (ii) moderately
attractive walls, or (iii) strongly attracting walls, as well
as an explicitly atomistic model for the GroEL chaperonin
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cavity (see Figure 1).40 For each folding scenario, frames
from the simulation trajectories were assigned to different
microstates defined using strand-based contact maps, and
transitions between pairs of these states after a lag time of
1 ns were counted, producing a matrix of transition counts
N, Fig. 2. In Figure S1 of the supplementary material,53 we
show the dependence of the slowest modes on the lag time
for the unconfined case. We observe a variation of a factor
of ∼2 in the slowest modes for a change in lag time of more
than two orders of magnitude, suggesting that the Markovian
approximation is quite reasonable, and we use the shortest lag
of 1 ns in order to retain the most detailed kinetic information.
We have also tested the sensitivity of the results to the amount
of data used. When using only half the data (Figure S253), the
observed relaxation times are very similar.

In Table I, we can see that at the chosen lag time of 1 ns,
over a million unique states in total are visited over all the
folding scenarios, a substantial number of which have very
low population and would be highly transient intermediates on
a (mis)folding pathway. These are first pruned by discarding
those contact maps which were visited fewer than 50 times
over all the simulations, and then clustering the surviving
states. States that differed by fewer than 5 contacts in their
contact maps were placed in the same cluster, and some
representative clusters are shown in Figure 3(a). Evidently, not
all the microstates obtained in this global clustering procedure
are visited by the trajectories of every folding scenario.

While the folding mechanism is unlikely to change
drastically for different confinement conditions, the relative
populations of the misfolded microstates may be affected
by excluded volume effects and protein-cavity interactions.
Looking at the number of states visited by each folding
scenario, nv (Table I), allows us to get some preliminary
ideas about the effect each type of confinement has on the
folding pathways of titin. Relative to the unconfined case,
the repulsive sphere and GroEL cavity reduce the number
of unique microstates visited by the system. Introducing
attractive interactions increases nv, to a degree proportional
to the strength of the interaction. A possible cause for this
is stabilisation of the folded and misfolded states due to the
volume exclusion effects of repulsive confinement, thereby

TABLE I. Clustering statistics for the individual titin folding scenarios,
where n is the total number of unique contact maps, np is the number of
contact maps seen more than 50 times, nc the total number of microstates,
post-clustering, nv the number of microstates visited under each folding
scenario, n f is the number of states in the folded SCC, M the number of
PCCA clusters, and nCG the number of final coarse-grained states.

Scenario: Unconfined Repulsive Weak Strong GroEL

n 1 149 021
np 9 520
nc 153

nv 88 53 64 102 56
SCCs 9 21 16 5 20
n f 30 28 28 31 31
M 8 5 7 9 7

nCG 17 26 23 14 32

accelerating folding towards these stable states and restricting
exploration of the conformational space.

To reduce the number of states visited, such that the
transition network is more comprehensible, we would like
to construct a coarse-grained transition network reflecting
only the populations of the important metastable states. To
do so, we first decompose the transition network of each
folding scenario into individual subnetworks, i.e., the strongly
connected components (SCC’s) of the graph represented by
the global transition matrix combining the data from all
simulation trajectories. The largest SCC is designated the
folded SCC, as the majority of transitions occurs around the
native state and its intermediates. All the SCCs are connected
via the unfolded state and therefore it is isolated as a source for
the derivation of the coarse-grained transition matrix T (also
since the unfolded state, defined using a simple maximum
threshold on the number of contacts formed, is already highly
coarse-grained).

B. Clustering the folded SCC

Next, we set out to simplify the states in the folded
SCC so that only metastable states are represented. The
first 20 eigenvalues of the folded SCC for the unconfined
folding scenario are shown in Figure 4(a). The corresponding
eigenvalues for the other confinement scenarios are shown
in Figure S3.53 As an outcome of separating the global
transition network into its constituent SCCs, the native
folding subnetwork for each scenario has only one stationary
eigenmode (λi = 1), corresponding to the equilibrium
distribution of states within the subnetwork. The remaining
eigenvalues shown in Figure 4 correspond to the 19 slowest
processes in the system. Naturally, only the slowest modes
are of concern, as they represent the transitions taking
place between the most metastable states in the system. By
examining the eigenspectrum of each folding scenario, the
slowest modes can be identified and an appropriate number
of clusters, M , can be chosen for the PCCA lumping (see
Table I). As an example, the PCCA macrostates obtained for
the unconfined titin are shown in Figure 4. Notably, all the
folding scenarios have roughly the same number of states in
their folding SCCs and, more importantly, similar macrostates
are obtained for all the folding scenarios, comprising the
native folded state and the intermediates corresponding to
either domain being folded.

The coarse-grained transition matrix is generated by
defining each of the PCCA-derived macrostates of the folded
SCC as separate states, with the other misfolded SCCs, and
the unfolded cluster, each being described by a single state.
The PCCA cluster containing the native folded state (F1, F1,
F3, F3, and F2 for the unconfined, repulsive sphere, weakly
attractive sphere, strongly attractive sphere, and GroEL,
respectively) is enforced to be a sink by setting all rates
for leaving it to zero.

C. Graphing the networks

The transition matrix represents a directed graph, which
is plotted for each of the folding scenarios in Figure 5. The
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FIG. 4. PCCA clustering. (a) Eigenvalue spectrum for the folded SCC of unconfined titin and (b) corresponding PCCA clusters from the strongly connected
clusters (SCCs).

graphs allow us to see the complexity of the transition network
under each type of confinement, with the width of the graph
roughly corresponding to the number of parallel sinks that the
system can enter and the height of the graph to the complexity
of the native folding subnetwork. Note that in these graphs,
states of the MSM which are part of the folded-state SCC are
labelled F1, F2,. . . , while the remaining states are labelled
S1, S2,. . . . While many of the “S” states are sinks, several are
merely misfolded intermediates en route to the sink states.

For the unconfined scenario (Fig. 5(a)), the majority of
the misfolded sink states are isolated from the native folding
subnetwork, though the system can irreversibly enter the
misfold S6 via the F5 intermediate. Interestingly, few of the
intermediates are able to make transitions back to the unfolded
state at the lag time with which we make observations; only
F5 and F8 make reversible transitions with the unfolded state.
However, once the system has entered the native folding
subnetwork, there are numerous parallel pathways to the
native state via the intermediates, and in fact at the chosen
lag time there are transitions directly from the unfolded to the
folded state (although a small number).

For the repulsively confined scenario (Figure 5(b)) the
emerging picture is more complicated. Notably, we see

macrostates that are not part of the folded SCC and yet
are not true sinks (S7 and S14), indicating the possibility of
transitioning to the native state from an apparently initially
misfolded state. In addition, the reversibility of transitions
towards the folded state is reduced, with only states F2-
F4 and F3-F5 able to exchange with one another and,
unlike the unconfined case, no transitions are made back
into the unfolded state, presumably due to the stronger
bias towards folded or misfolded states arising from the
excluded volume effect. Some interesting features include the
existence of both terminal-end and central domain nucleating
misfold intermediates, for example S18, S19 → S1 and S15,
S16 → S2.

In the weakly attractive cavity (Figure 5(c)), titin displays
a somewhat more diverse set of folding pathways within the
folded SCC, compared with the repulsive case, and many
of those transitions are reversible — an effect which can be
understood in the context of attractive interactions, which
have an overall slight destabilizing effect on more folded
or ordered states. However, interactions with the cavity are
clearly insufficient to rescue titin from the numerous and
diverse misfolded sinks, as reverse transitions to the unfolded
state are never observed on the time scale of the simulations.
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FIG. 5. Connectivity graphs describing coarse-grained Markov state mod-
els for different scenarios. (a) Unconfined, (b) repulsive cavity, (c) weakly
attractive cavity, (d) strongly attractive cavity, and (e) GroEL. Each state is
represented by the average coarse-grained contact map over its members.
Unfolded and folded are highlighted in cyan and green, respectively, while
states with a pink border are misfolded sink or trap states.

Upon increasing the strength of attractive interactions
with the cavity (Figure 5(d)) we see a striking difference
in the transition network of titin. Above all, there are no

sink states sampled, apart from the native folded state, and
the single misfolded state is not a trap and can unfold. It
is unclear why only one type of misfolded conformation is
observed within the strongly attractive spherical cavity, but
one possibility is that the folding nuclei for state S1 (S2,
S3, and S4) are particularly favoured by strong interactions
with the wall due to attachment of the termini on the cavity
wall. The termini are still able to diffuse until they come in
contact and form the intermediate shown in S3; however, it
is also possible, and potentially more likely, that the misfold
nucleates in the central region, indicated by states S2 and S4,
before the termini come into contact and the system enters
S1. The native folding subnetwork is similar to that produced
in the weakly attractive cavity, though transitions show more
reversibility.

The transition network of titin in the GroEL cavity
(Figure 5(e)) is similar to that of the weakly attractive scenario.
The native folding subnetwork is complex and can be entered
not only via native folding intermediates but also via the
misfolded SCCs S1 and S10. Some misfolded states (S2, S18,
S19) are able to return to the unconfined state but clearly,
when compared with the strongly attractive spherical cavity,
the GroEL cavity is unable to rescue trapped misfolded states
to the same degree.

D. Simulating the time evolution

Mechanistic information can also be obtained from the
evolution of the populations of states in time. Time-dependent
populations p(t) were simulated using Equation (1), where
p(0) was initialised with 100% of the population in the
unfolded state (see Figure 6). As expected, the unfolded state
population decays with time, while the native folded state
population increases. In the unconfined case (Figure 6(a)),
folding clearly progresses via the native-like intermediates F6
and, to a lesser degree, F8. The misfolded state S1 is the next
most dominant state at long time scales but the populations of
other states are negligible.

When placed in the repulsive cavity (Figure 6(b)), the
time scale on which the folded state F1 appears is comparable
to that of the unconfined case, although the final population
of the folded state is significantly decreased. The misfolded
sink S12 can be seen increasing towards the end of the time
series as the populations of states S3 and S5 decay and has
not equilibrated at the final time step.

In the weakly attractive sphere, the folded state population
at long time scales is recovered, relative to the repulsive case,
and convergence toward the final populations occurs more
rapidly than in the repulsive or unconfined scenarios. Also
evident is the early growth of the population of state S2, which
decays as it makes transitions to sink S1. Additionally, the
populations of numerous intermediates in the native folding
subnetwork can be seen to increase and decay at early time
scales as population drains into the native folded state F3.

The strongly attractive cavity recovers a significant
amount of the folded state population observed in the
unconfined scenario at long time scales and at the end of the
time series is still increasing. Folding occurs predominantly
via the F5 intermediate, since this plays a central role in the
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FIG. 6. Evolution of populations as a function of time. (a) Unconfined, (b)
repulsive cavity, (c) weakly attractive cavity, (d) strongly attractive cavity, and
(e) GroEL. Definitions of states are given in Figure 5.

native folding subnetwork, as is evidenced by the network
graph, and filters into numerous other folded intermediates
as well as the native state. The continual increase in the
population of state F3 is due to the reversibly formed
misfolded state S1 which can make transitions back to the
unfolded state and therefore feed population back into the
folding subnetwork. The time scale on which the folded state
population equilibrates is somewhat slower in the strongly
attractive cavity than in the unconfined, repulsive and weakly
attractive cases due to the initial division of population
between the native folding subnetwork and intermediate states
of the S1 misfold.

Surprisingly, in the GroEL cavity the picture we have is
more complex. Folding is significantly slower within GroEL
and, at time scales of 100 ns, there is competition between the

native state F2 and misfolded state S1, with the population
of S1 initially being larger. However, since S1 in fact makes
transitions to states within the native folding subnetwork, its
population eventually decays while that of the folded state
grows.

E. State populations at infinite time

The infinite-time probabilities p(∞) for each confinement
scenario were calculated using the analytical solution
presented in Section II E and are shown in Figure 7. Most
importantly, note that under all confinement conditions the
probability of being in the folded state is considerably larger
than the other states, suggesting that misfolding is not as
probable as correct folding. In the case of the strongly
attractive sphere, the system will always be found in the
folded state at t = ∞, since all the misfolded states can
unfold. The repulsive spherical cavity results in approximately
equal probabilities for being in a number of misfolded
states, whereas the weakly attractive and GroEL cavities
tend to favour only one or two misfolded states. The folded
state is most disfavoured by the repulsive cavity since it
indiscriminately stabilises misfolded states and prevents the
system from escaping once trapped in a misfolded state.

An important point to highlight is that the results shown
here for the unconfined scenario and the spherical cavities
shown in Figure 7 are qualitatively similar to the previous
population distributions obtained via naive clustering of the

FIG. 7. Long-time populations for each model. The different scenarios are
(a) unconfined, confined in (b) repulsive, (c) weakly attractive, (d) strongly
attractive cavities, and (e) confined in GroEL.
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final frames of each simulation, while the results in Figure 7
were derived from an MSM. In both cases, there is an
increased population of misfolded states caused by repulsive
confinement and a partial reduction in these populations by
the introduction of attractive interactions. For the strongly
attractive cavity, misfolded states have a non-zero population
in the distributions obtained from naive clustering, whereas
the long-time solution provided by the MSM suggests that all
the misfolded states would eventually convert to the folded
state. This may be because the dynamics in the strongly
attractive cavity is slowed down such that this situation is
never reached in the direct simulations. The origin of the
slowdown can be attributed partially to slower diffusion on
the folding coordinate40 but is also probably related to the
destabilization of folded states (and misfolded states) relative
to the unfolded state, due to the greater number of interactions
the latter can make with the cavity wall.

The results reveal a complex transition network for titin,
which is very sensitive to the confinement scenarios presented
here. While repulsive confinement is generally thought to
increase folding rates via volume exclusion, the nonspecific
nature of repulsive interactions means misfolded states are
stabilised alongside the native state and the ergodicity of the
system is reduced, as progress towards a (mis)folded state
is mostly one-way. The addition of attractive interactions
with the cavity walls is able to counteract the effects
of volume exclusion and, due to binding with the walls,
disfavours the majority of misfolded states observed in
repulsive confinement. An intriguing result, evident from
the network graphs (Fig. 5) and the simulated time evolution
(Fig. 6), is the ability for some misfolded states to make
transitions towards the folded state, suggesting that nucleation
of a misfold does not resign titin to forming a stable misfold.
In fact, sufficiently strong interactions are able to completely
rescue the system from being trapped in any misfolded states.
However, it is also clear that the interactions between titin
and the GroEL cavity are not directly comparable to those
with the strongly attractive cavity and are therefore unable
to completely rescue misfolded titin; the results are more
consistent with the weakly attractive cavity.

IV. CONCLUSIONS

We have used a Markov-state model to condense a
large quantity of simulation data into networks of transitions
between discrete states in order to analyze the folding and
misfolding mechanisms of a titin dimer. MSMs provide a
useful tool for extracting kinetic details from simulation data in
situations where projecting a one- or two-dimensional energy
landscape on a set of chosen reaction coordinates cannot easily
resolve all relevant intermediates. In order to apply MSMs to
the folding landscape of titin, in which transitions to some
important states were not reversible, we needed to construct an
MSM with these sink states included. This yields populations
at long times which are completely consistent with the results
of our previous analysis of titin folding.40,42

However, the MSM approach can give us insight into the
complex folding and misfolding pathways of titin, and the
degree to which various confinement scenarios are able to

influence those pathways, especially with respect to reversing
the trapping of titin in misfolded states. An interesting finding
from this analysis was that it was possible for partially
misfolded intermediates to interconvert directly with partially
folded intermediates, without going via the unfolded state. In
retrospect, this seems reasonable, since both types of partially
folded/misfolded species share a large number of contacts.
This mechanism is in contrast to a simplified view in which
folded and misfolded states are considered to be reached from
the unfolded state via alternative “pathways.”

We anticipate that the methodology for clustering states
by coarse contact maps between secondary structure elements,
and for constructing MSMs having sink states, will be
applicable to a wide range of problems involving protein
folding, binding and misfolding.
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