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Abstract

Black carbon (BC) is a significant component of fine particulate matter (PM2.5) air pollution, 

which has been linked to a series of adverse health effects, in particular premature mortality. 

Recent scientific research indicates that BC also plays an important role in climate change. 

Therefore, controlling black carbon emissions provides an opportunity for a double dividend. This 

study quantifies the national burden of mortality and morbidity attributable to exposure to ambient 

BC in the United States (US). We use GEOS–Chem, a global 3-D model of atmospheric 

composition to estimate the 2010 annual average BC levels at 0.5 × 0.667° resolution, and then re-

grid to 12-km grid resolution across the continental US. Using PM2.5 mortality risk coefficient 

drawn from the American Cancer Society cohort study, the numbers of deaths due to BC exposure 

were estimated for each 12-km grid, and then aggregated to the county, state and national level. 

Given evidence that BC particles may pose a greater risk on human health than other components 

of PM2.5, we also conducted sensitivity analysis using BC-specific risk coefficients drawn from 

recent literature. We estimated approximately 14,000 deaths to result from the 2010 BC levels, 

and hundreds of thousands of illness cases, ranging from hospitalizations and emergency 

department visits to minor respiratory symptoms. Sensitivity analysis indicates that the total BC-

related mortality could be even significantly larger than the above mortality estimate. Our findings 

indicate that controlling BC emissions would have substantial benefits for public health in the US.
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Annual premature mortality by State attributed to exposure to ambient black carbon in the United 

States in 2010.
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1. Introduction

Black carbon (BC) is a significant component of ambient fine particulate matter (PM <= 2.5 

µm in aerodynamic diameter; PM2.5) air pollution. Recent scientific evidence has indicated 

that BC is the most strongly light-absorbing component of PM2.5. BC absorbs solar 

radiation, influences cloud processes, and alters the melting of snow and ice cover, and thus 

plays an important role in the Earth’s climate system (Bond et al., 2013). In addition to its 

climate effects, BC has been associated with adverse effects on human health (e.g. Janssen 

et al., 2011; Laden et al., 2006). Some suggested that BC may pose greater health risk as 

indicated by the higher effect estimates per mass unit for BC particles compared with PM 

mass as a whole (Janssen et al., 2011, 2012). Therefore, mitigating climate change through 

controlling BC emissions is likely to generate substantial co-benefits for human health.

Black carbon is emitted from a variety of combustion processes, mainly the incomplete 

combustion of fossil fuels, biofuels, and biomass (EPA, 2012). The US contributes about 8% 

of the global emissions of BC (EPA, 2012). Within the US, BC is estimated to account for 

approximately 12% of all direct PM2.5 emissions in 2005, and transport was the largest 

source of BC emissions in that year, which contributed to about 52% of the total BC 

emissions in the US, followed by open biomass burning (35%) (EPA, 2012).

Given the significance of BC both as a health effect agent and a climate forcing pollutant, 

the total health burden of BC would provide valuable information in developing climate and 

air pollution strategies. BC emissions will be substantially reduced by 2030 due to recently 

promulgated regulations, including the emissions standards for new engines and the retrofit 

programs for in-use mobile diesel engines (EPA), 2012). The present study aims to quantify 

the public health burden attributable to the ambient BC levels within the continental US in 

2010 prior to the expected improvement in BC levels in the future. Earlier national-level 

particle-related health impacts assessment have focused on total, undifferentiated PM2.5 

mass. For example, using the photochemical Community Multiscale Air Quality (CMAQ) 

model results in conjunction with ambient monitored data, Fann et al. (2012) estimated 

130,000 PM2.5-related deaths in 2005. Based on observational data, it has been estimated 

that BC comprises approximately 5–10% of average urban PM2.5 mass in the US (EPA, 
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2012). However, it is difficult to estimate the BC-related health outcomes based on the 

PM2.5-related estimates owing to the fact that spatial variability in concentrations for BC is 

often larger than for PM2.5, particularly in urban and populous areas. Also, given recent 

evidence that BC particles may pose a greater risk on human heath than other components of 

PM2.5, it is important to assess the national health impacts of BC separately.

We use an integrated procedure that combines exposure assessment, exposure-response 

relationships and baseline health statistics to quantify the public health burden attributed to 

BC exposure. Our methods are consistent with those used previously by the U.S. 

Environmental Protection Agency (U.S. EPA) to assess the public health burden attributed 

to criteria air pollutants in the US, such as particulate matter and ozone (Fann et al., 2012; 

Hubbell et al., 2005), and also those used to assess the global burden of disease (Anenberg et 

al., 2010; Cohen et al., 2005; Ostro, 2004). To estimate ambient BC concentrations, we use 

GEOS–Chem, a global 3-D model of atmospheric composition with a horizontal resolution 

of 0.5° latitude × 0.667° longitude (approximately 55 km × 55 km) over North America. 

Since observational data for BC are only available at limited monitoring locations, using 

simulated concentrations allows us to capture the BC impacts across the entire continental 

US.

We quantify the excess mortality and morbidity impacts associated with anthropogenic BC 

emissions nationwide and also the effects at the State and county level. In addition, previous 

health risk assessments of PM2.5 generally assume that all constituents of PM2.5, including 

BC, are equally toxic (Levy et al., 2012). We conducted a literature review of epidemiologic 

studies that investigate the health risks from both BC and total PM2.5 mass. In this analysis, 

we use both the concentration response (CR) functions for PM2.5 and several BC-specific 

CR functions to indicate the possible species potency of BC Finally, we discuss the 

significant sources of uncertainty associated with the health impact assessment and quantify 

their impacts on incidence estimates.

The remainder of the paper is organized as follows. Section 2 reviews the current 

epidemiologic literature on the health effects of BC and describes the methods used to 

quantify the public health burden (mortality and morbidity) associated with BC exposure in 

the US. Section 3 presents our estimates of BC-related premature mortality at the nation, 

State and county level, as well as the national estimates of various morbidity effects. Section 

3 also discusses the uncertainty in our estimates. Section 4 summarizes the major 

conclusions of this study and issues to be further investigated in future work.

2. Methods

2.1. Health effects of ambient black carbon pollution

The negative impacts of PM2.5 on public health have been well documented by 

epidemiological studies. Time-series studies of the short-term effects of air pollutants, 

conducted around the world, have consistently reported significant associations between 

daily mortality and daily exposure to PM2.5 (Ostro, 2004). Cohort studies usually aim at 

investigating possible long-term chronic effects of exposure to air pollution. Two large-scale 

cohort studies conducted in the U.S. – the Harvard Six Cities Study and the American 
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Cancer Society (ACS) study – both reported increased mortality associated with an increase 

in annual average PM2.5 levels (Dockery et al., 1993; Krewski et al., 2000, 2009; Laden et 

al., 2006; Pope III et al., 2002, 1995).

While existing epidemiological studies provide compelling evidence that PM2.5 increases 

mortality rates, it is uncertain whether some components of PM2.5 have a stronger 

relationship with mortality than other components. Some studies report that traffic-related 

fine particulate air pollution, indicated by black carbon, may pose greater risk on human 

health than PM2.5 from other sources (Gan et al., 2011; Laden et al., 2006; Peng et al., 

2009), while others report that some other constituents of PM2.5, such as sulfates or organic 

carbon have stronger or more robust associations with adverse health effects (Ostro et al., 

2010; Smith et al., 2010). However, in spite of this evidence, U.S. EPA maintains that “there 

is insufficient information at present to differentiate the health effects of the various 

constituents of PM2.5” and “the limited scientific evidence that is currently available about 

the health effects of BC is generally consistent with the general PM2.5 health literature” 

(EPA, 2012).

A recent systematic review on health effects of black carbon performed by the World Health 

Organization Regional Office for Europe found that effect estimates from both short- and 

long-term studies are much higher for BC compared to PM10 and PM2.5 when the particulate 

measures are expressed per µg/m3 (Janssen et al., 2012). This report suggests that BC might 

be a better indicator of harmful particulate substances from combustion sources (especially 

traffic) than undifferentiated PM2.5 mass (Janssen et al., 2012). Moreover, Janssen et al. 

(2011) conducted a systematic review and meta-analysis of health effects of BC compared 

with PM2.5 based on data from studies that measured both exposures. The study found that 

the pooled estimates of relative risk per 1 µg/m3 for all-cause mortality related to long-term 

exposure to PM2.5 and BC are 1.007 and 1.06, respectively, suggesting that the 

concentration–response coefficient β for BC could be up to ten times larger than that for 

PM2.5.

Given the uncertainty with regard to the species potency of BC, we reviewed existing 

epidemiological studies that report the health effects of both PM2.5 and BC. Both time-series 

studies of the short-term effects and cohort studies of long-term chronic effects were 

reviewed. As shown in Tables AI and AII in the Appendix A, our review indicates that 

effect estimates for BC are mostly higher than those for PM in terms of effect per µg/m3 

particulate. Among the studies we found that report the effects of both PM2.5 and BC in the 

same analysis, ratios of BC/PM2.5 effects vary from 3 to 27.7 for long-term mortality by 

different causes (Table A.I), and from 0.33 to 50 for short-term mortality or morbidity by 

different causes (Table A.II). Levy et al. (2012) is the only study we found that reports a 

smaller effect of BC than the effect of PM2.5. That study conducted a meta-analysis that 

pooled existing short-term mortality estimates for the individual constituents as well as the 

total PM2.5 mass. However, the meta-analysis includes three studies in the early 2000s that 

relied on coefficient of haze (COH) as a measurement of BC, and all these studies found a 

significant smaller effect of COH than that of PM2.5.
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Janssen et al. (2011) summarize six studies that include both single-and two-pollutant 

models of time-series studies including PM (PM10 or PM2.5) and BC (measured as black 

smoke in all the studies). It was found that the effect of PM was reduced or became negative 

when moving from single- to two-pollutant model in all six studies, whereas the effect of 

BC was increased in half of the studies and reduced in the remaining studies. The fact that 

the effect of PM diminishes or disappears when BC is controlled in the model also supports 

the argument that BC may pose greater toxicity than the other components of PM2.5.

Our review provides supporting evidence that BC may be more toxic than the other 

components of PM2.5 and thus the effect estimates for BC is larger than that of 

undifferentiated PM2.5 mass when expressed as effect per unit of concentration. However, 

the existing studies are subject to several caveats. First, as shown in Tables AI and AII, the 

correlations1 between PM2.5 and BC reported in the studies we review are generally high 

(greater than 0.5 in most cases). In this case, it may be difficult to estimate separate effects 

of PM2.5 and BC via regression analysis. For example, Peng et al. (2009) argues that any 

reduction in effect size of either component when moving from the single-pollutant to the 

multipollutant model could be a result of the correlations between components. Also, as 

argued by Smith et al. (2010), it may be difficult to draw conclusions about the health 

effects of individual species because atmospheric black carbon, ozone, and sulfate are 

associated and could interact with related toxic species. Second, many studies focus on the 

effects of PM and BC in a single metropolitan area. In urban environments, both spatial and 

temporal variations of BC are greater than that of PM since BC is mostly governed by 

vehicle exhaust emissions, while PM concentrations are also governed by regional non-

traffic emissions (Janssen et al., 2011; Reche et al., 2011). For example, Kinney et al. (2000) 

measured concentrations of PM2.5 and elemental carbon (EC) on sidewalks in a community 

in New York City. They reported that mean concentrations of PM2.5 exhibited only modest 

site-to-site variation (37–47 µg/m3), whereas EC concentrations varied 4-fold across sites 

(from 1.5 to 6 µg/m3), and were associated with bus and truck counts on adjacent streets. 

Also, in a study on the long-term exposure to traffic-related air pollution and the risk of 

coronary heart disease hospitalization and mortality in metropolitan Vancouver, Canada 

(Gan et al., 2011), the variation of PM2.5 concentrations (mean value: 4.08 µg/m3; standard 

deviation (SD): 1.63) is much smaller compared to that of BC concentrations (mean value: 

1.49 µg/m3; SD: 1.1). Relatively small variation of PM2.5 may explain the reason that the 

effect of PM2.5 is attenuated when BC is included in the model. Third, in multi-city studies 

BC concentrations measured at a single outdoor monitoring site have often been used to 

reflect exposure within a city. However, within-city variability in concentrations for BC is 

larger than for PM2.5 owing to the considerable effect of local primary combustion sources, 

especially traffic, on BC concentrations (Janssen et al., 2012). Within-city variability may 

exceed between-city variability, which underlines the importance of taking into account 

small-scale variations in BC in epidemiological studies (Janssen et al., 2012).

In summary, current epidemiology studies provide supporting evidence that BC may be 

more harmful than other constitutes of PM2.5, but evidence to differentiate the health effects 

1In most cases, cohort studies report the spatial correlations between pollutants and time-series studies report temporal correlations.

Li et al. Page 5

Sci Total Environ. Author manuscript; available in PMC 2016 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of the constituents of PM2.5 is still insufficient. Given this, for our main analysis we use a 

risk estimate for PM2.5 drawn from epidemiological studies to estimate BC-related 

premature mortality, the most significant health outcomes due to exposure to air pollution. 

In sensitivity analyses, we also apply BC-specific mortality risk estimates to reflect the 

species potency. For morbidity, we use risk estimates for PM from epidemiological studies.

2.2. Methods for quantifying public health burden

2.2.1. Overview of the method—Our quantitative assessment of the health impacts of 

ambient BC pollution is based on the following components: ambient BC concentration 

assessment based on air quality modeling, the affected population, the health effects of 

interest (e.g. mortality, morbidity), the baseline incidences of those health effects, and 

concentration–response functions abstracted from epidemiologic literature. These factors are 

combined in an integrated procedure using a health impact function. A log-linear health 

impact function to quantify the excess mortality or morbidity attributed to air pollution is 

(Anenberg et al., 2012; Li et al., 2010):

(1)

where,

Δy: BC attributable health endpoints (i.e. mortality or morbidity);

β: concentration–response coefficient from epidemiological studies (increase in the 

health endpoint assessed per unit increase in BC);

Δx: change in air quality, taken here as the modeled BC concentration;

y0: the baseline incidence rates for the health endpoint assessed; and

Pop: the affected population, i.e. the number of people exposed to ambient BC 

pollution.

Here we use BenMAP (Environmental Benefits Mapping and Analysis Program, version 

4.0.67 (Abt Associates, 2013)) to calculate the health impacts of exposure to BC. In the 

following sections, we first describe the GEOS–Chem air quality model used to simulate 

annual average BC concentrations across the continental U.S. We then discuss how we 

select the concentration–response coefficient (β) used to estimate BC-related health impacts, 

and how we characterized the affected population (Pop) and the baseline incidence rates (y0) 

in Eq. (1).

2.2.2. Modeling annual average pollutant concentrations—To simulate the annual 

average BC concentrations across the continental US., we use GEOS–Chem (Bey et al., 

2001) (www.geos-chem.org), a global 3-D model of atmospheric composition driven by 

assimilated meteorological observations from the Goddard Earth Observing System (GEOS) 

of the National Aeronautics and Space Administration (NASA) Global Modeling 

Assimilation Office. Global simulations are performed at the 4° latitude × 5° longitude 

degree resolution, with a six month spin-up beginning in July 2009, through the end of 2010. 

Simulated 3-hourly concentrations from this global calculation are used as the boundary 

conditions to drive a higher resolution nested simulation over North America at the 0.5° 
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latitude by 0.667° longitude resolution (Chen et al., 2009; Wang et al., 2004). We then 

convert the model results to the national 12 × 12 km2 grid using a two-step process. GEOS–

Chem binary punch output is first converted to Climate Forecasting compliant NetCDF with 

PseudoNetCDF (pseudonetcdf.googlecode.com), and then regridded using a first-order 

conservative method as implemented in the Climate Data Operators (code.zmaw.de/projects/

cdo). The 12 × 12 km2 resolution is required by the standard BenMAP configuration to 

evaluate gridded air quality model output.

GEOS–Chem simulations include treatment of primary elemental (BC) and organic (OC) 

carbonaceous aerosol (Park et al., 2003). BC is emitted as a hydrophobic species (80%) that 

converts to hydrophilic carbon with an e-folding time of 1.15 days. Global fossil fuel and 

biofuel emissions of BC are from Bond et al. (2007). Over North America, these values are 

replaced by the inventory of Cooke et al. (1999), with top-down monthly seasonality 

imposed from Park et al. (2003). Monthly emissions of BC from biomass burning are from 

the third version of the Global Fire Emissions Database (GFED3) (Giglio et al., 2010; van 

der Werf et al., 2010). Wet deposition of aerosols includes large-scale precipitation and 

convective scavenging (Liu et al., 2001). Dry deposition is calculated using a resistance in 

series scheme (Wesely, 1989) that depends on meteorology and local land surface type.

In addition to carbonaceous species, fine mode aerosol in GEOS– Chem includes sulfate 

ammonium nitrate (Fountoukis and Nenes, 2007; Park et al., 2004), dust, and sea salt (Jaeglé 

et al., 2011). We did not consider here the secondary organic aerosol, which likely 

constitutes a significant fraction of PM2.5 concentrations (Jimenez et al., 2009).

Surface level BC and PM2.5 concentrations in GEOS–Chem have been evaluated with in situ 

observations in the U.S. in numerous studies (Duncan Fairlie et al., 2007; Heald et al., 2012; 

Henze et al., 2009; Leibensperger et al., 2012; Mao et al., 2013, 2011; Park et al., 2003, 

2004, 2006; Pye et al., 2009; Walker et al., 2012; Zhang et al., 2012). The initial BC 

estimates from Park et al. (2003) showed decent skill in simulating seasonal annual average 

BC concentrations (R2 from 0.68 to 0.82, slopes of reduced major axis regressions from 0.83 

to 1.17) compared to observations from the 24 h average concentrations collected one out of 

3 days at IMPROVE sites (Malm et al., 1994) (http://vista.cira.colostate.edu/improve). More 

recently, GEOS–Chem BC simulations have been evaluated in the Western US by Mao et al. 

(2011, 2013) for 2006, using a previous version of the GFED biomass burning inventory 

(van der Werf et al., 2006). Mao et al. (2013) found the model performed well for locations 

at elevations less than 1 km above sea level, while performance at mountainous sites was 

strongly impacted by uncertainties in the biomass burning emissions as well as model 

resolution. Here we reevaluate the model BC compared to measurements from IMPROVE, 

see Fig. 2 and discussion in Section 3.

2.2.3. Selection of concentration–response relationships—We estimate both 

mortality and morbidity associated with BC exposure in this study, including premature 

deaths from long-term exposure, chronic bronchitis, respiratory and cardiovascular-related 

hospital admissions, asthma-related emergency room visits, acute bronchitis, respiratory 

symptoms (lower and upper), and lost work days and minor restricted activity days.
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As discussed above, in our main analysis we use risk estimates for PM2.5 to estimate BC-

related long-term mortality. We select the estimate from the recent Krewski et al. (2009) 

extended analysis of the American Cancer Society (ACS) study, which is a prospective 

cohort study that includes a large population (500,000 adults) over 116US cities. The 

mortality risk estimates from the ACS study have been used to assess the health burden 

associated with exposure to ambient PM2.5 in the US and globally (Anenberg et al., 2010; 

Fann et al., 2012; Punger and West, 2013). We apply the all-cause mortality risk estimate 

from Krewski et al. (2009) to estimate national BC-related premature mortality as well as 

the spatial distribution of mortality (mortality by State and county). In a sensitivity analysis, 

we apply the pooled BC-specific long-term mortality risk estimate from a recent meta-

analysis of health effects of BC (Janssen et al., 2011) to estimate national BC-related 

mortality. In order to reflect the uncertainty associated with the species potency of BC, we 

also apply to the national mortality estimate two probability distribution functions (PDFs) 

that combine the Janssen and Krewski estimates: One as a uniform distribution and the other 

as a triangular distribution (Table 1).

For morbidity, we consider the same health outcomes that were estimated in Fann et al. 

(2012), which assessed the national public health burden associated with PM2.5 in the US. 

For each health outcome, BenMAP contains a library of concentration–response functions, 

and we select the one from the study that concerned the population over the broadest 

geographic area. The health endpoints considered, their concentration–response coefficients 

β (mean values and probability distribution functions, PDFs), and references of β are listed 

in Table 1.

2.2.4. Exposed population and baseline incidence rates—We use the 2010 

population and baseline incidence rates data that have been preloaded in BenMAP. BenMAP 

uses 2010 U.S. Census block-level population data, and aggregates to population grid-cells 

at different scales (Abt Associates, 2013). We use the population at the national 12-km grid 

resolution, and the modeled BC concentrations are matched with the population in each 12-

km grid cell. We assume that the modeled BC value in each grid is the best measure of 

population exposure in that grid. Also, the BenMAP population data are stratified by age as 

well as other demographic categories such as sex, race and ethnicity. We use the population 

data that are consistent with the age groups in the original epidemiological studies from 

which we draw the risk estimates β (see Table 1).

To estimate national mortality rates, the BenMAP group used individual-level mortality data 

from 2004 to 2006 for the whole United States from the Centers for Disease Control (CDC) 

and National Center for Health Statistics (NCHS) (Abt Associates, 2013). These data were 

combined with U.S. Census Bureau postcensal population estimates to estimate age-, cause-, 

and county-specific mortality rates. The age- and county-specific mortality rates in 2010 that 

were used in this study were estimated using adjustment factors, which were calculated 

based on a series of Census Bureau projected national mortality rates (Table A.III). 

Hospitalizations and emergency room visits were calculated using data from the Healthcare 

Cost and Utilization Project, which is a family of health care databases developed through a 

Federal-State-Industry partnership and sponsored by the Agency for Healthcare Research 

and Quality (Table A.III). The other morbidity incidence and prevalence rates used in this 
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study were estimated using national or regional averages depending on the best available 

data sources (Table A.IV).

2.2.5. Public health burden calculation—Using the modeled BC concentrations, 

concentration–response coefficients, population and baseline incidence or prevalence data, 

we calculated the number of excess deaths and illnesses due to BC exposure nationwide. In 

estimating the 95% confidence interval (CI)of the national estimates, the only source of 

uncertainty that is taken into account is the uncertainty in β values. The uncertainty analysis 

was conducted in BenMAP using Monte Carlo simulation with a sample size of 5000. We 

explored the effects of uncertainties in the BC risk estimate via sensitivity analyses, as noted 

above. Other sources of uncertainty are discussed qualitatively. We also estimated the 

excess number of deaths and percent of baseline mortality by State and county and mapped 

the spatial variations in mortality and in percent of baseline mortality using the mean value 

of the risk estimate (β) for all-cause mortality from Krewski et al. (2009).

3. Results and discussion

3.1. BC air quality simulation

Fig. 1(a) shows the simulated annual average BC concentrations from anthropogenic sources 

in 2010. The maximum simulated BC value in the continental US is 3.0 µg/m3, the mean BC 

value is 0.3 µg/m3, and the 95th percentile value is about 1.0 µg/m3. In general, the highest 

BC values are in the northeastern United States, with some ‘hotspots’ in California.

Fig. 1 (b) and (c) show the spatially-weighted average concentrations in 2010 at the State 

and county level, respectively. At the State level, New Jersey had the highest spatially-

weighted annual average BC concentration in 2010 (2.5 µg/m3), followed by Delaware (1.9 

µg/m3) and Connecticut (1.7 µg/m3). At the county level, the top 10 counties that have the 

highest average levels of BC are all located in New Jersey and New York and surrounding 

New York City (NYC). These counties are Bergen, Passaic, Somerset, Mercer, Morris, 

Essex and Middlesex in New Jersey, and Bronx, Rockland New York in New York.

Our evaluation of the modeled BC concentrations compared to measurements from 

IMPROVE indicates that the annual average BC simulations have a normalized mean bias of 

0.10%, a standard error of 0.39 µg/m3. The slope of a reduced major axis fit through the 

origin is 1.10 (Fig. 2(a)). The spatial plot of the model error (GEOS–Chem – IMPROVE) in 

Fig. 2(b) shows the model to overestimate BC concentrations in the Northeast and 

California. This is likely owing to the use of BC emission factors that may not accurately 

reflect decreasing trends in BC from particulate standards for diesels (Murphy et al., 2011).

3.2. Comparing the spatial variations of BC to total PM2.5 mass

In order to quantitatively compare the spatial variations of BC to total PM2.5 mass, we 

simulated annual average PM2.5 concentrations from anthropogenic sources over North 

America in the same year, and calculated the ratio of BC to total PM2.5. As shown in Fig. 3, 

the ratio of annual average BC to total PM2.5 mass concentration varies in the range of [0–

20.9%] across the continental US, and the ratio tends to be larger in the northeast and the 
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West Coast regions, particularly in populous urban centers. This is explained by the fact that 

BC is a primary aerosol whose distribution is more closely coupled with population centers.

3.3. Estimates of national mortality and morbidity attributed to BC exposure in 2010

Using the all-cause mortality risk estimate for PM2.5 among adults aged over 30 drawn from 

the Krewski et al. (2009), we estimate 14,000 (95% CI: 9400–18,000) BC-related premature 

deaths to result from the 2010 ambient BC levels (Table 1). Given the current evidence that 

the effect estimate might be higher for BC compared to PM2.5 in terms of effect per µg/m3, 

we consider the mortality estimate based on the risk coefficient for PM2.5 as a lower-bound 

estimate. We estimate approximately ten times the BC-related premature deaths using the 

BC-specific risk estimate drawn from Janssen et al. (2011) (mean: 133,807; 95% CI: 

92,259–174,523) compared to the estimate based on Krewski et al. (2009). Also we estimate 

approximately 75,000 deaths using the two PDFs of β generated by combining the Krewski 

and the Janssen risk estimates.

Using the all-cause mortality risk estimate from Krewski et al. (2009), Fann et al. (2012) 

estimate 130,000 PM2.5-related deaths to result from 2005 air quality level. Our estimate of 

BC-related deaths in 2010 based on the same risk estimate from Krewski et al. (2009) equals 

to about 11% of the total PM2.5-related death estimate in 2005 above. Since the 

observational data show that BC comprises approximately 5–10% of average urban PM2.5 

mass in the US, our estimate indicates that the ratio of national BC-PM2.5 related mortality 

is slightly higher than the ratio of BC-PM2.5 mass concentrations. This is not surprising 

given that BC is a primary aerosol, with concentrations highest near urban sources, where 

people are also concentrated.

We also estimate 32 (95% CI: 13–52) infant deaths due to BC exposure in 2010, and a range 

of morbidity impacts, including nearly 20,000 hospital admissions and emergency room 

visits, about 30,000 cases of bronchitis (acute and chronic), and hundreds of thousands of 

cases of respiratory symptoms, lost work days as well as restricted-activity days.

3.4. Spatial variability in BC-related mortality estimates

Fig. 4(a) and (b) shows the annual BC-related mortality and the percent of baseline mortality 

in 2010 by State, respectively, ranked from the highest values to the lowest. States are 

ranked differently by total number of deaths and by percent of deaths. Three States, namely, 

New York, Pennsylvania and New Jersey are ranked among the top 5 States in both rankings 

(Fig. 4).

Fig. 5(a) and (b) shows the annual BC-related mortality and the percent of baseline mortality 

in 2010 by county, respectively. Table 2 shows the top 10 ranked counties based on total 

BC-related deaths versus percent of deaths. Two counties, i.e. Bergen county, NJ and 

Westchester county, NY are listed among the top 10 counties in both rankings. The top 10 

counties ranked based on percent of deaths are all located in the States of New Jersey or 

New York and surrounding NYC.
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3.5. Uncertainty analysis

Uncertainties exist in every component of the health impact assessment, including the 

concentration–response coefficients, the simulated pollutant concentrations, the population 

and the baseline incidence rates. A significant source of uncertainty derives from published 

estimates of concentration–response coefficient, β which we have already taken into account 

in estimating the national BC-related mortality and morbidity. The wide confidence intervals 

around the mean estimates of mortality of morbidity show the considerable uncertainty in 

these estimates (Table 1). Also, the uncertainty associated with the species potency of BC 

can significantly affect the estimates of BC-related health outcomes. As indicated in Table 1, 

if we apply a BC-specific risk coefficient, the national total BC-related mortality estimate 

could be up to ten times larger than the estimate based on PM2.5-related risk coefficient. On 

the other hand, BC-related health impact estimates are also highly sensitive to the 

assumptions about exposure to ambient BC, which is represented using air quality model 

output here. In order to investigate how the uncertainty in annual average BC concentrations 

might alter our best estimate of national BC-related mortality, we repeat our calculation by 

increasing the BC concentrations by 10%, 20%, 30%, 40% and 50%, and also decreasing the 

concentrations by the same percentages. The results indicate that the changes in mortality 

estimate are nearly 100% linearly related to the changes in BC concentrations over the range 

of BC concentrations relevant to health impact assessments in the US.

Some degree of uncertainty is also associated with air quality model resolution. In this 

study, we use a global model with a horizontal resolution of approximately 55 km, which is 

a relatively coarse resolution compared with some regional air quality models, such as the 

Community Multiscale Air Quality (CMAQ) model that runs with 12 km and 36 km 

resolutions. Punger and West (2013) examined how estimates of mortality in the US 

attributable to PM2.5 at coarse resolutions differ from those at the finest resolution (12 km). 

They report that coarse grid resolutions produce mortality estimates that are biased low for 

PM2.5, particularly for primary PM2.5 species. More specifically, their analyses show that at 

the resolution of 55 km that is used in this study, the estimate of mortality attributable to BC 

was approximately 15% lower than the 12-km resolution estimate. If we apply the bias 

identified by Punger and West (2013) here, the estimates of national BC-related mortality in 

this study could be increased by about 15%. This indicates that our estimates of health 

benefits associated with BC mitigation might be conservative. In contrast, from the 

comparison of the simulated to observed concentrations (See Fig. 2), the model may 

overestimate current BC concentrations in the North East and California, hence some 

cancelation of error owing to emissions and downscaling may be expected.

Overall, we consider the value of concentration–response coefficient contributes the most to 

the uncertainty in the estimated health outcomes related to BC exposure, particularly 

premature mortality. Thus, reducing uncertainty in this input variable would substantially 

reduce the uncertainty in the estimated mortality attributable BC.

4. Conclusions

Using the all-cause mortality risk estimate for PM2.5 from Krewski et al. (2009), we 

estimate that 13,910 (95% CI: 9419–18,391) deaths to result from anthropogenic BC 
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emissions in 2010. These deaths account for approximately 0.6% (95% CI: 0.4%–0.8%) of 

the national deaths occurring in the US in 2010. Using morbidity risk estimates for PM2.5 

drawn from epidemiological studies, we also estimate hundreds of thousands of cases of 

BC-related illnesses, such as hospital admissions, emergency room visits, bronchitis, and 

respiratory symptoms.

These health impact estimates are highly sensitive to the assumptions about the risk 

estimates drawn from published epidemiological studies. Given recent evidence that BC 

particles may pose a greater risk on human heath than other components of PM2.5, we 

conducted a comprehensive literature review of existing epidemiological studies that report 

the health effects of both total PM2.5 mass and BC particles in a single study. Our review 

indicates that there is supporting evidence that BC may be more harmful that other 

constitutes of PM2.5 and the PM2.5 mass as a whole, but there are also limitations of existing 

studies to differentiate the health effects of various constituents of PM2.5. Based on our 

review, we performed sensitivity analysis of the national BC-related mortality using a BC-

specific risk estimate from a recent review and meta-analysis of the health effects of BC by 

Janssen et al. (2011). Using the latter risk estimate, we estimate 133,807 (95% CI: 92,259– 

174,523) BC-related mortality, which is approximately ten time larger than the mortality 

estimate based on Krewski et al. (2009).

To our best knowledge, this is the first study of its kind that assesses the public health 

burden of ambient BC at the national, state and county level in the US. Earlier studies focus 

on the health impacts of total PM mass other than different constituents of PM. A recent 

study conducted by the U.S. EPA (Fann et al., 2012) estimate 130,000 PM2.5-related deaths 

to result from 2005 ambient PM2.5 levels in the US based on the same risk estimate drawn 

from Krewski et al. (2009) used in this study. Therefore, our estimate of BC-related deaths 

accounts for approximately 11% of the total PM2.5-related deaths. We consider this as a 

lower bound estimate. When the BC-related mortality is calculated using the risk estimate 

for BC drawn from Janssen et al. (2011), it could account for up to 100% of the total PM2.5 

estimate. The uncertainty associated with the concentration–response coefficients of BC 

might be reduced in future health impact assessments as epidemiological studies focusing on 

the exclusive long-term health effects of exposure to BC become available.

Despite the uncertainties in our estimates, our findings indicate that controlling BC 

emissions would have substantial benefits for public health in the US, as indicated by 

avoided premature deaths and illnesses. Furthermore, our analysis of the spatial variations in 

BC-related mortality show that the metropolitan areas of Los Angeles, Chicago, New York 

City, Philadelphia and Detroit are the locations with the greatest numbers of BC-related 

mortality, and the metropolitan areas of New York City, Philadelphia and Newark are the 

locations with the greatest percentages of BC-related mortality. Therefore, further 

investigations of BC emissions, air quality and control measures in these metropolitan areas 

are warranted.
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Appendix A

Table A.I

Summary of concentration–response (C–R) coefficients of mortality related to long-term 

exposure to PM2.5 and BC.

Reference Health endpoint
(mortality)

Location and study 
group

C–R coefficient
per 1-µg/m3

BC/PM2.5
effect ratio

Coefficient of
the 

correlation
between 

PM2.5
and BC

PM2.5 BC

Janssen et al. 
(2011)

All-cause Meta-analysis, 
including 4 studies: 2 
in the US, 1 in
France and 1 in 
Netherlands2

0.007 0.058 8.4 N/A

Smith et al. 
(2010)

All-cause 66 US cities, 
American Cancer 
Society cohort, age > 
30

0.006 0.058 9.8 N/A

Cardiopulmonary 0.012 0.104 8.7

Lipfert et al. 
(2006)

All-cause 70,000 male, US 
veterans cohort

0.006 0.166 27.7 0.54

Beelen et al. 
(2008)

Natural-cause 120,852 adults aged 
55–69; The 
Netherlands,

0.006 0.049 8.2 0.82

Respiratory 0.007 0.182 26.1

Cardiovascular 0.004 0.039 9.8

Filleul et al. 
(2005)

Natural-cause 14,284 adults, age 25–
59, France

0.010 0.058 5.9 0.87

Cardiopulmonary 0.012 0.049 4.1

Ostro et al. 
(2010)

All-cause 133,479 female school 
teachers, California

0.077 0.486 6.3 0.84

Cardiopulmonary 0.091 0.523 5.8

Gan et al., 
(2011)

Coronary heart disease 452,735 residents, 45–
85 years of age in 
Vancouver, Canada

0.013 0.039 3 0.13

2
These four studies are also listed in this Table: Smith et al., 2010; Lipfert et al., 2006; Beelen et al., 2008; Filleul et al., 

2005. The concentration–response coefficients of these four studies were converted from the Relative Risks listed in Table 
2 in Janssen et al. (2012) rather than drawn directly from the original papers.
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Table A.III

National rates of all-cause mortality, hospital admissions and emergency room visits (per 

100 people per year) by age group used in this study (Source: Abt Associates Inc., 2013(Abt 

Associates, 2013)).

Health endpoints 
and year

Infant (<1) 1–17 18–24 25–34 35–44 45–54 55–64 65–74 75–84 85+

Mortality

Calculated CDC 
2004–2006 
average

0.230 0.028 0.089 0.104 0.192 0.432 0.908 2.124 5.270 13.979

2010 ratio to the 
calculated 2004–
2006 average

0.95 0.93 0.95 0.96 0.94 0.95 0.96 0.93 0.95 0.96

Hospital 
admissions and 
emergency room 
visits

Hospital 
admissions – all 
respiratory, 2007

2.872 0.426 0.205 0.231 0.408 0.791 1.313 2.972 4.970 8.045

Hospital 
admissions – all 
cardiovascular, 
2007

0.056 0.017 0.107 0.164 0.481 1.221 2.272 4.681 7.749 11.583

Emergency room 
visits for asthma, 
2007

0.865 0.557 0.441 0.381 0.368

Table A.IV

Selected acute and chronic incidence (cases/person-year) (Source: Abt Associates Inc., 

2013(Abt Associates, 2013)).

Endpoint Age Rate Source

Acute bronchitis 8–12 0.043 American Lung Association

Chronic bronchitis 27+ 0.00378 Abbey et al. (1993)

Lower respiratory symptoms 7–14 0.438 Schwartz et al. (1994)

Upper respiratory symptoms 9–11 124.79 Pope III et al. (1991)

Asthma exacerbation Cough 8–13 24.46 Ostro et al. (2001)

Shortness of breath 27.74

Wheeze 13.51

Work loss days 18–64 2.172 Adam et al. (1999)

Minor restricted-activity days 18–64 7.8 Ostro and Rothschild (1989)
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HIGHLIGHTS

• Black carbon (BC) is a strong climate warming forcing agent.

• This study quantifies the public health burden attributed to BC exposure in the 

US.

• We use an integrated assessment approach to estimate BC-related health 

impacts.

• Our findings suggest substantial health benefits to be resulted from BC control.
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Fig. 1. 
Simulated annual average black carbon concentrations in 2010: (a) At 0.5 × 0.667° 

resolution; (b) Aggregated to State; and (c) Aggregated to county (Unit: µg/m3).
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Fig. 2. 
Evaluation of the modeled BC concentrations compared to measurements: (a) Results of a 

regression fit; and (b) The spatial plot of the model error.
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Fig. 3. 
Ratio of BC to PM2.5 annual average concentration in 2010.
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Fig. 4. 
Ranking annual BC-related mortality by State: (a) Ranked by annual number of death; (b) 

Ranked by percent of baseline mortality.
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Fig. 5. 
Spatial distribution of annual BC-related mortality at the county level: (a) Number of deaths; 

and (b) Percent of baseline mortality.
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Table 1

Estimated black carbon-related health impacts in the U.S. due to 2010 modeled air quality.

Health endpoint PDF of concentration–response
coefficient (β)

Reference of β
(age group)

Annual estimates
(95% Confidence interval)

Mortality

Adult all-cause Normal (0.005827, 0.000963) Krewski et al. (2009) (age 
≥30)

13,910 (9419–18,391)

Normal (0.05827, 0.009524) Janssen et al. (2011) (age 
≥30)

133,807 (92,259–174,523)

Uniform (0.005827, 0.05827) Krewski et al. (2009) & 74,689 (17,026–131,050)

Triangular (0.005827, 0.05827) Janssen et al. (2011) (age 
≥30)

74,882 (27,791–120,969)

Infant Normal (0.006766, 0.007339) Woodruff et al. (1997) (age 
b1)

32 (13–52)

Morbidity

Hospital admissions – all 
respiratory

Normal (0.00207, 0.0004464) Zanobetti et al. (2009) (age 
N64)

3380 (1952–4805)

Hospital admissions – all 
cardiovascular

Normal (0.00189, 0.0002832) Zanobetti et al. (2009) (age 
N64)

4344 (3070–5618)

Emergency room visits for asthma Normal (0.0056, 0.0021) Mar et al. (2010) (all ages) 10,567 (2804–18,290)

Acute bronchitis Normal (0.02721, 0.017) Dockery et al. (1996) (ages 
8–12)

20,913 (−4983–45,928)

Chronic bronchitis Normal (0.0137, 0.006796) Abbey et al. (1994) (age 
N27)

9604 (269–18,799)

Lower respiratory symptoms Normal (0.019, 0.006) Schwartz and Neas (2000) 
(ages 7–14)

269,180 (103,588–432,608)

Upper respiratory symptoms Normal (0.0036, 0.0015) Pope III et al. (1991) (ages 
9–11)

389,951 (71,557–708,006)

Asthma exacerbation Cough Normal (0.00099, 0.00075) Ostro et al. (2001) (ages 6–
18)

253,806 (−123,529–630,696)

        Shortness of breath Normal (0.0026, 0.0013) 364,800 (−7312–735,972)

        Wheeze Normal (0.0019, 0.0008) 577,220 (109,712–1,044,186)

Work loss days Normal (0.0046, 0.00036) Ostro (1987) (ages 18–64) 1,910,323 (1,618,200–2,202,217)

Minor restricted-activity days Normal (0.007410, 0.000700) Ostro and Rothschild (1989) 
(ages 18–64)

11,332,839 (9,244,613–13,417,870)
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