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Summary

Sample size and power calculations are an important part of designing new sequence-based 

association studies. In this paper, we explore an efficient and accurate approach to computing 

sample size and power (particularly at small significance level, e.g., 10−6) for the sequence kernel 

association test (SKAT), which is a powerful and widely used approach for testing variant set 

association. The recently developed SEQPower (Wang et al., 2014) and SPS programs (Li et al., 

2015) adopted random Monte Carlo simulations to empirically estimate power for a series of 

variant set association test methods including the SKAT, which could be very computing intensive 

and time consuming. It is desirable to develop methods that can quickly and accurately compute 

power without intensive Monte Carlo simulations. To our knowledge, the only analytical approach 

to computing power for SKAT was proposed by at Lee et al. (2012), who used an approximate 

non-central χ2 distribution to efficiently compute sample size and power for SKAT and related 

methods. However we will show that the computed power based on the analytical approach of Lee 

et al. (2012) could be inflated especially for a small significance level, which is often of primary 

interest for large-scale whole genome and exome sequencing projects. We propose a new non-

central χ2 approximation based approach to accurately and efficiently compute sample size and 

power. In addition we study and implement a more accurate “exact” method to compute power, 

which is more efficient than the Monte Carlo approach though generally involves more 

computations than the χ2 approximation method. The exact approach could produce very accurate 

results and be used to verify alternative approximation approaches. We implement the proposed 

methods in publicly available R programs that can be readily adapted when planning sequencing 

projects.

Keywords

Sample size; sequencing study; sequence kernel association test

*baolin@umn.edu. 

HHS Public Access
Author manuscript
Ann Hum Genet. Author manuscript; available in PMC 2017 March 01.

Published in final edited form as:
Ann Hum Genet. 2016 March ; 80(2): 136–143. doi:10.1111/ahg.12147.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

Sample size and power calculations are a crucial step for designing sequence-based 

association studies. Software programs exist for single SNP based association tests in the 

genome-wide association studies (GWAS) (see, for example, Purcell et al., 2003; Skol et al., 

2006). Single variant based association tests have proven useful in discovery of hundreds of 

disease-associated common variants (Welter et al., 2014). However these identified common 

variants only explain a small proportion of most human trait variance and disease heritability 

(Manolio et al., 2009), which indicates more variants with small to moderate effects or rare 

variants with large effects may yet to be discovered. Recently there is growing interest in 

detecting the joint association of a set of variants in a gene or region, which can aggregate 

multiple weak effects to boost detection power. Many methods have been proposed for 

detecting variant set association (VSA). Among them, the two widely used approaches are 

the burden test (BT) and sequence kernel association test (SKAT) (see, for example, 

Morgenthaler and Thilly, 2007; Li and Leal, 2008; Kwee et al., 2008; Madsen and 

Browning, 2009; Morris and Zeggini, 2010; Price et al., 2010; Liu and Leal, 2010; Lin and 

Tang, 2011; Wu et al., 2010; Neale et al., 2011; Wu et al., 2011; Lin et al., 2011; Lee et al., 

2012; Schaid et al., 2013; Wang et al., 2013; Zhang et al., 2014; Lee et al., 2014; Wu et al., 

2015; Wang et al., 2015).

Compared to the well developed VSA test methods, sample size and power calculation 

methodology for VSA tests is greatly lacking in the literature. This is partly due to two 

challenges: the complicated population dependent genetic variant distribution and the 

mathematical intractability of most VSA test methods. A common strategy to overcome the 

first challenge is to simulate sequence data based on, for example, the Wright-Fisher 

formula, forward-time simulation, or coalescent theory (Hudson, 2002; Schaffner et al., 

2005; Hellenthal and Stephens, 2007; Peng and Liu, 2010). With the availability of well 

characterized reference panels of outside samples (for example, the HapMap and 1000 

Genome Projects) and more and more real-word sequencing datasets, for example, the 

National Heart, Lung, and Blood Institute Exome Sequencing Project (Tennessen et al., 

2012), we can also efficiently simulate sequence data by resampling from the real data (Li 

and Li, 2008). As for the second challenge, a straightforward solution is the Monte Carlo 

approach. For example, the recently developed SEQPower (Wang et al., 2014) and SPS 

programs (Li et al., 2015) adopted the random Monte Carlo simulations to empirically 

estimate power for a series of rare variant set association test methods including the SKAT. 

In general, these simulations are very computing intensive and time consuming. It is 

desirable to develop methods that can quickly and accurately compute power without 

intensive Monte Carlo simulations. To our knowledge, the only analytical approach to 

computing power for SKAT is studied at Lee et al. (2012), who used an approximate non-

central χ2 distribution to efficiently compute sample size and power for SKAT and related 

methods. However we will show that the computed power based on the analytical approach 

of Lee et al. (2012) could be inflated especially for a small significance level, which is of 

primary interest for large-scale whole genome and exome sequencing projects. We study a 

new non-central χ2 approximation based approach to accurately and efficiently compute 

sample size and power. In addition we also study and implement a more accurate “exact” 
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method to compute power, which is more efficient than the Monte Carlo approach though 

generally involves more computations than the χ2 approximation method. The exact 

approach could produce very accurate results and be used to verify alternative 

approximation approaches. We implement the proposed methods in R programs that can be 

readily adapted when planning sequencing projects.

Sample size and power calculation for sequence-based association study

For illustration we consider a continuous trait with no covariates. We note that the following 

results can be easily extended to accommodate covariates and various outcomes (for 

example, disease status) following the approach of Lee et al. (2012). Consider n unrelated 

individuals. Denote the n outcomes as Y = (y1, …, yn)T, and the m-vector of genotype scores 

as Gi for individual i = 1, …, n. We assume the linear regression model, yi = β0 + μi + εi, 

where εi is a zero mean normal random variable with variance σ2,  is the 

contribution from the variant set, and β is a m-vector of regression coefficients. Without loss 

of generality, we assume the genotype scores have been centered and the outcome is 

standardized with unit variance σ = 1.

We can write the SKAT test statistic as Q = (Y − Ȳ)TGWWGT (Y − Ȳ)/n, where 

, G = (G1, …, Gn)T, and W = diag(w1, …,wm) is a diagonal matrix of weights 

pre-specified for each variant (typically determined by the variant MAF). Here we have 

scaled the typical SKAT statistic by n for ease of derivation. Let . We 

have Q = ZTZ. Our sample size and power calculation will be based on the m-vector Z 

(typically m ≪ n).

Note that G is centered, therefore , and hence Z follows a multivariate 

normal distribution with mean  and covariance matrix Σ = WGTGW/n. 

Note that GTG/n is the pairwise covariance matrix of the m genotype scores. Σ can be 

readily computed from simulated sequencing data or existing real-world sequencing data. 

Denote the eigen decomposition Σ = UDUT, where U is an orthogonal matrix and D = 

diag(λ1, …, λm) consists of the eigen values. Note that UUT equals to the identity matrix, 

hence we can write Q = (UTZ)T (UTZ). Here UTZ follows a multivariate normal distribution 

with mean UTη and covariance matrix UTΣU = D. So Q is essentially the sum of squares of 

m independent normal random variables. Therefore Q asymptotically follows a mixture of 

one degree of freedom (DF) non-central χ2 distributions, , where the vector 

of non-centrality parameter (δ1, …, δm) equal to the square of 

.

Conditional on the genotype scores G, Lee et al. (2012) approximated the distribution of Q 

using the non-central χ2 distribution under the null and alternative derived by matching the 

first four moments of Q based on the approach of Liu et al. (2009). This moment-matching 

based non-central χ2 approximation enables us to analytically and quickly compute the 

sample size and power. As shown in Duchesne and Lafaye De Micheaux (2010), the 

computed probabilities from the non-central χ2 approximation of Liu et al. (2009) could be 
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very far from the true values. For small significance level in the magnitude of 10−6, which is 

typically of our main interest in whole genome and exome sequencing studies, the approach 

of Lee et al. (2012) can lead to over-estimated power as we show in the following. To 

account for the randomness of G, we can easily average over randomly generated sequence 

data, or approximately replace η and Σ with their expected values following Lee et al. 

(2012), which often leads to accurate results for relatively large sample size.

In the following we first derive a general formula to calculate power for SKAT and then 

discuss various computation approaches.

Power calculation

Denote the p-value function P(Y ; n,β,G) which computes the significance p-value for n 

individuals with observed outcome Y and genotype G. Here β is the postulated standardized 

genotype regression coefficients. For a given significance level α and genotype G, the power 

can be computed as S(α; n,β,G) = EY {I[P(Y; n,β,G) ≤ α]}, where the expectation is with 

respect to the outcome distribution conditional on G. Then we can compute the power as θ = 

EG[S(α; n,β,G)], where the expectation is with respect to the genotype distribution.

The SEQPower (Wang et al., 2014) and SPS programs (Li et al., 2015) computed θ by 

Monte Carlo simulation of both sequence data and outcomes to approximate EY and EG. Lee 

et al. (2012) computed S(α; b,β,G) analytically based on the non-central χ2 distributions, and 

then approximately computed EG(S) by evaluating S at the expected genotype covariance 

matrix and non-centrality parameters based on simulated sequence data. We can invert the 

power formula to compute the sample size.

Exact and approximation approaches

We can analytically compute S(α; n,β,G) for given genotype using the Davies’ method 

(Davies, 1980), which is based on the numerical integration to invert the characteristic 

function of Q. The Davies’ method can achieve very high accuracy but generally requires 

very large number of integration terms. It has been implemented in the R package 

CompQuadForm (Lafaye De Micheaux, 2013). To accurately compute small p-values using 

the Davies’ method, we set the error bound as 10−12 and maximum number of integration 

terms as 108. For a given significance level α, sample size n, and G, we first numerically 

solve the quantile under the null hypothesis (setting β = 0) based on the Davies’ method, 

which is then used to compute the corresponding power for the given β. Specifically we use 

the R ‘uniroot()’ function to numerically solve the null quantile. We need to calculate the 

expectation EG to compute the exact power, which can be approached by averaging over 

randomly simulated G to estimate the power. We will also evaluate a more computationally 

efficient approach where we use EG(Σ) and EG(η) to compute the corresponding power to 

approximate the exact average power.

For fast and accurate computation of more extreme significance p-values, we use the the 

non-central χ2 approximation approach of Wu and Pankow (2015), which is based on 

matching the higher moments of Q to achieve more accuracy, while Lee et al. (2012) 

matched the first four moments as in Liu et al. (2009). Specifically we approximate the 
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distribution of Q using a k-DF non-central χ2 distribution  with non-centrality 

parameter γ ≥ 0. Following the approach of Liu et al. (2009), we compute

where , μχ = k + γ, and . Here k and γ can 

be estimated by moment-matching. Specifically Liu et al. (2009) matched the skewness and 

minimized the kurtosis difference. Lee et al. (2012) proposed to match the kurtosis to 

improve the tail probability estimation. Both approaches lead to analytical solutions for k 

and γ. We can check that the jth cumulant of Q is  (see, 

for example, Liu et al., 2009), and the jth cumulant of  is κ̃
j = 2j−1(j − 1)!(k + jγ). From 

the cumulants, we can easily compute their central moments denoted as νj and ν̃
j for Q and 

 respectively (see, for example, Lange, 2010). Let  and . When 

, let , both the Liu and Lee method have γ = s1a3 − a2 and k = a2 − 

2λ. When , the Liu method has γ = 0 and , and the Lee method has γ = 0 and k 

= 1/s2. Both methods provide poor approximation to small tail probabilities (Wu and 

Pankow, 2015). To improve the tail probability approximation accuracy, we can match 

higher moments. Specifically we follow the approach of Wu and Pankow (2015) to 

minimize the standardized (J − 1)th and Jth moments differences

We set J = 12 to accurately compute small tail probabilities under the null hypothesis 

following Wu and Pankow (2015). For approximating relatively large tail probabilities 

under alternative, setting J = 6 leads to an overall good performance in our numerical 

studies. Note that both k and γ just need to be solved once and can be stored for power 

calculation for any significance level.

For a given sample size n and genotype G, denote the estimated non-central χ2 distribution 

parameters as k0, γ0 under the null hypothesis (β = 0), and k1, γ1 under the alternative 

hypothesis. Under significance level α, the power can be computed as 

, where  is the cumulative distribution function 

of . To compute the average power over genotype distribution EG, we can average over 

randomly simulated genotype G to compute the power. Generally we need relatively small 

number of simulations (for example, 100) to obtain accurate power estimate. Instead of 

computing the average of power over random sequence data, we can estimate EG(Σ) and 
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EG(η) and use them to compute the corresponding power to approximate the exact average 

power.

In the following we evaluate the numerical accuracy of various approaches for computing 

power.

Numerical example

We compared the performance of the the analytical approach of Lee et al. (2012), the 

proposed non-central χ2 approximation and Davies’ method. We compared their estimated 

power over 1000 simulated sequencing datasets, and the approximate power based on the 

average genotype covariance matrix. For a benchmark, we also included the Monte Carlo 

approach of estimating power over 108 simulations. Specifically each time we simulate both 

outcomes and genotypes, and compute the SKAT p-values. The collection of 108 p-values 

are then used to estimate power at a given significance level α.

For illustration we analyze common and rare variant sets in the gene G6PC2 using data from 

the Atherosclerosis Risk in Communities (ARIC) Study (The ARIC Investigators, 1989). 

The ARIC study is a prospective investigation of atherosclerotic disease with a total of 

15792 individuals recruited from four U.S. communities participating in the baseline 

examination in 1987–1989. G6PC2 is a glucose-6-phosphatase gene. Both common and rare 

G6PC2 variants have shown significant associations with fasting glucose in large scale 

GWAS and sequencing studies (see, for example, Dupuis et al., 2010; Service et al., 2014; 

Mahajan et al., 2015; Wessel et al., 2015). First, we study a selected set of eighteen common 

G6PC2 variants, which have squared pairwise correlation smaller than 0.8 based on the 

GWAS data from 5947 non-diabetic white ARIC participants (Dupuis et al., 2010). Second, 

we study a set of nine rare G6PC2 variants measured using the illumina exome chip in 5866 

non-diabetic white ARIC participants (Wessel et al., 2015). We treat the subset of measured 

ARIC genotypes G as the true population and use Bootstrap resampling to generate random 

sequencing data for any given sample size. We compute the standardized residuals from 

regressing the measured fasting glucose levels on the covariates (age, gender, and study 

center). We then regress the standardized residuals on genotypes to estimate β, which is 

treated as the true values.

We set weight  for common variants and wi = (1 − pi)24 for rare variants, 

where pi is the MAF of the ith variant. We plug in the population genotype MAF and 

covariance matrix to approximate the average of Σ and η for a finite sample. Generally there 

is large variation associated with rare variants, and it is possible that we do not observe a 

rare variant in a finite sample. Following Lee et al. (2012), we compute an “observation 

probability” ri = 1 − (1 − pi)2n for the ith rare variant in a finite sample of n individuals. We 

then adjust the average of Σ and η as follows. Denote the population genotype covariance 

matrix as R with its (i, j)th element being σij. Define a matrix R̃ with its (i, j)th element being 

. We approximate the average of Σ with WR̃W, and the average of η with 

.
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Table 1 and 2 summarize the estimated power at significance level 2.5 × 10−6 for the 

common and rare variant sets respectively. Overall we can see that the Lee et al. (2012) 

approach over-estimated power. The proposed non-central χ2 approximation and Davies’ 

method lead to very similar results and both agree with the Monte Carlo approach very well. 

In general we need a very large number of simulations for the Monte Carlo approach to 

obtain stable estimates especially for the rare variant set. For the common variant set, the 

approximate powers computed at the expected genotype covariance matrix are very close to 

the average power computed from 1000 simulations. Due to the large variation of sampling 

the rare variant set, the approximate approach generally under-estimated the power for a 

relatively small sample size, but the approximation improved with increased sample size.

Effect of variant weight on rare variant set association test power

For SKAT of rare variant set, rarer variants are typically up-weighted to increase the 

detection power, which is based on the assumption that rarer variants tend to have larger 

effect sizes. Here we empirically investigate the SKAT power as a function of variant 

weight. Figure 1 compares four choices of variant weights based on the Beta density 

function, θα−1(1−θ)β−1, where θ is the variant MAF. For comparison, we have normalized 

the variant weights equal to 1 at MAF=0.01. The default weight of SKAT is (α = 1, β = 25) 

following Wu et al. (2011). Here we fix β = 25 and set α at 0.5, 0.75, 1 and 1.5. In general 

rarer variants get more weights with smaller α. For the first three sets of weights with α ≤ 1, 

the weight is decreasing with variant MAF, hence we are assigning more weights to rarer 

variants. For the last set of weights with α = 1.5, the weight is increasing with variant MAF, 

hence we are down-weighting rarer variants. Figure 1(b) compares the empirical power 

(computed using the Davies method) using previous G6PC2 rare variant set under different 

sample size and variant weights. Overall we can see that up-weighting rarer variants (α ≤ 1) 

does improve the SKAT power compared to down-weighting rarer variants (α = 1.5). And 

there are appreciable power difference between the first three sets of weights: α = 0.75 has 

the overall best power, and α = (0.5, 1) have similar performance. We expect that correct 

rare variant weighting can boost power, but generally the correct weights depend on the data 

and are unknown. It is worthwhile to study methods that can adaptively assign variant 

weight based on the data.

Discussion

In this paper, we studied sample size and power calculations for designing sequencing 

studies for variant set association tests. Methods to perform these calculations are widely 

available for single SNP tests, but have been less well developed for variant set association 

tests, which are likely to increase in importance with the advent of whole exome or whole 

genome sequencing projects. Our numerical studies have suggested that care should be taken 

when computing and reporting power at a small significance level especially for rare variant 

sets due to their inherent large variations. The non-central χ2 distribution based analytical 

approximation method of Lee et al. (2012) in general over-estimated the power. We 

developed alternative approaches based on a new non-central χ2 approximation and Davies’ 

method to efficiently and accurately estimate sample size and power. We recommend 

computing/verifying sample size and power at those small significance level by using 
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alternative methods, e.g., computationally intensive Monte Carlo simulation or the proposed 

methods.

We have implemented the proposed methods in R programs posted at http://www.umn.edu/

~baolin/research/katsp_Rcode.html. They can be readily adapted to help investigators 

optimally design sequencing studies. Our proposed methods and results will offer important 

insights into the design of appropriately powered sequencing studies to maintain study 

power and reduce costs.
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Figure 1. 
Effects of rare variant weight and sample size on the variant set association test power.
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