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Abstract

One of the most common smoking-related diseases, chronic obstructive pulmonary disease 

(COPD), results from a dysregulated, multi-tissue inflammatory response to cigarette smoke. We 

hypothesized that systemic inflammatory signals in genome-wide blood gene expression can 

identify clinically important COPD-related disease subtypes, and we leveraged pre-existing gene 

interaction networks to guide unsupervised clustering of blood microarray expression data. Using 

network-informed non-negative matrix factorization, we analyzed genome-wide blood gene 

expression from 229 former smokers in the ECLIPSE Study, and we identified novel, clinically 

relevant molecular subtypes of COPD. These network-informed clusters were more stable and 

more strongly associated with measures of lung structure and function than clusters derived from a 

network-naïve approach, and they were associated with subtype-specific enrichment for 

inflammatory and protein catabolic pathways. These clusters were successfully reproduced in an 

independent sample of 135 smokers from the COPDGene Study.
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1. Introduction

Genome-wide gene expression data have been used to develop expression signatures that 

reflect underlying biological processes associated with a particular disease state. Signatures 

for several diseases are in clinical use, but many gene expression signatures are poorly 

reproducible and suffer from sampling dependent instability [1,2]. While inappropriate 

analysis methods account for some of the poor reproducibility of published signatures [3,4], 

another potential cause is the presence of unrecognized biologic variability, such as occult 

molecular disease subtypes. Interestingly, one perspective on gene expression data is that it 

contains too much information, i.e. true biologic information that is nonetheless irrelevant to 

the disease-related processes that motivate the experimental question [5]. Recent approaches 

to merge or constrain genomic data with molecular interaction networks can address some of 

these challenges of analyzing genome-wide gene expression data.

Recently, Hofree et al. developed an approach called network-based stratification (NBS) 

[6], based on the graph-regularized approach of Cai et al. [7]. Hofree et al. demonstrated that 

integrating gene interaction network data with cancer somatic mutation data improves the 

identification of distinct molecular disease subtypes. The subtypes identified by this method 

were more predictive of clinically relevant disease outcomes than subtypes identified 

without network information. By simultaneously discovering molecular signatures and 

disease subtypes, this approach addresses the potential risk of occult disease variability as a 

cause of poor reproducibility of molecular disease signatures.

Chronic obstructive pulmonary disease (COPD) is a chronic lung disease that is the third 

leading cause of death in the United States [14]. It is characterized by irreversible lung 

damage caused by inhaled toxins, primarily cigarette smoke [8]. While COPD is defined by 

a ratio of <0.7 between the forced expiratory volume in 1 s/forced vital capacity (FEV1/FVC 

ratio), the smoke-induced lung damage characteristic of COPD occurs across the full 

spectrum of smokers, including those who do not meet the spirometric criteria for COPD 

[9,10]. Gene expression studies in COPD have been recently reviewed, and while there is 

notable heterogeneity between studies, most studies in lung tissue and peripheral blood have 

identified enrichment of differentially expressed genes in inflammatory pathways related to 

immune regulation, specifically B-cell and T-cell development and differentiation [11–13].

Like many common complex diseases, COPD is characterized by a high degree of 

heterogeneity. We hypothesized that applying NBS to gene expression data from peripheral 

blood of smokers with and without COPD would identify robust COPD-related molecular 

subtypes and subtype-specific expression signatures. We further hypothesized that the NBS-

derived subtypes would be more robust than subtypes derived from an equivalent clustering 

method, non-negative matrix factorization (NMF), which does not use gene network 

information. Using peripheral blood gene expression from smokers with and without COPD 
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in the ECLIPSE Study, we compared the performance of NBS and NMF in identifying 

clinically relevant and biologically meaningful groups of smokers and validated these results 

in an independent cohort of smokers from the COPDGene Study.

2. Results

The characteristics of the analyzed subjects from the ECLIPSE and COPDGene studies are 

shown in Supplemental Table 1. The ECLIPSE subjects included 229 former smokers, of 

whom 141 met the spirometric criteria for COPD and 88 were smoker controls. The 

COPDGene subjects consisted of 135 former and current smokers, and 76 subjects met the 

criteria for COPD.

2.1. Subtype identification with NMF and NBS

Probesets associated with the two major diagnostic criteria for COPD – FEV1 and 

FEV1/FVC in the ECLIPSE Study were considered in the clustering analysis. Of these 2719 

probesets mapping to 2158 unique genes in ECLIPSE, only 328 probesets were associated 

with FEV1 and/or FEV1/FVC in the COPDGene expression data. The 2719 probesets were 

mapped to the STRING network, resulting in 1812 successfully matched probesets that were 

used as the input for both the NBS and NMF analyses. For both clustering approaches, the 

optimal number of latent factors was obtained by quantifying the stability index for each 

approach over a range of factors from 2–10. The stability index declined rapidly for NMF, 

with maximal stability for two latent factors. In contrast, the NBS approach demonstrated 

good stability over a wider range of factors, with maximal stability at four latent factors 

(Fig. 1). The subject similarity matrices for the NBS and NMF solutions with four latent 

factors show better clustering for the NBS solution (Fig. 2). Thus, the NBS solution for four 

latent factors in ECLIPSE was further analyzed.

2.2. Clinical characteristics of NBS clusters

The four NBS clusters are well-differentiated by FEV1/FVC and FEV1, two measures of 

lung function that are used to diagnose and gauge the severity of COPD, respectively. In 

addition, these clusters show significant differences in the amount of emphysema and 

breathlessness symptoms (Table 1). Cluster 1, the “severely affected” group, is characterized 

by the most severe lung function impairment, respiratory symptoms, and emphysema. 

Cluster 2, the “moderately affected” group has intermediate levels of lung function 

impairment, emphysema, and respiratory symptoms. Clusters 3 and 4 are characterized by 

relatively preserved lung function. Cluster 3, the “less preserved lung function” group, has 

more emphysema, more respiratory symptoms, and a higher percentage of women than 

Cluster 4, the “more preserved lung function” group. Notably, there is no significant 

difference in smoking exposure between the groups, suggesting that biologic variability is 

more likely to determine these phenotypic differences than the amount of cumulative smoke 

exposure.

We sought to reproduce the NBS clusters in an independent dataset, using the cluster model 

learned from ECLIPSE to regenerate these clusters from COPDGene peripheral blood 

expression samples, and the clinical characteristics of the NBS clusters were preserved 
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(Tables 1 and 2), whereas the NMF clusters showed limited reproducibility (Supplemental 

Table 2). In addition, we examined additional chest CT measures of airway wall thickness 

available in COPDGene, and airway wall thickness was significantly different between 

groups, indicating additional structural lung differences in these blood expression-derived 

subtypes (Table 2).

2.3. Subtype-specific biologic pathway enrichment and protein biomarker associations

The subtype-specific gene expression signatures of the four NBS clusters were examined for 

Gene Ontology (GO) enrichment of known biological processes; strong enrichment of 

functional pathways was observed (Supplemental Table 3). The severely affected group 

demonstrated enrichment for wound healing and inflammatory processes. The moderately 

affected group showed strong enrichment for cytoskeletal and actin filament organization. 

The two preserved lung function groups showed differing patterns of enrichment for protein 

catabolism and ubiquitination (less preserved lung function group) and lymphocyte 

activation and protein synthesis (more preserved lung function group). While each cluster 

differed in the most strongly enriched biological processes, there was overlap in biological 

process enrichment across clusters (Supplemental Tables 4–7).

To determine the relative up and down-regulation of these processes within each subtype, 

we performed differential expression analysis for the 137 constituent genes from enriched 

GO categories for each of six possible contrasts between the four subtypes in both ECLIPSE 

and COPDGene, and the number of differentially expressed genes that reached significance 

(multiple comparison adjusted p-value ≤ 0.05) in both cohorts ranged from 12 to 99. These 

analyses confirmed the GO enrichment results and demonstrated that 1) the severely 

affected cluster was characterized by up-regulation of wound-healing pathways and down-

regulation of lymphocyte differentiation genes (Supplemental Tables 8–10); 2) the 

moderately affected cluster showed up-regulation of cytoskeletal organization genes 

(Supplemental Tables 8, 11, and 12); and 3) the two healthier groups (less and more 

preserved lung function) showed up-regulation of both protein degradation and lymphocyte 

activation pathways (Supplemental Tables 9, 10–13).

To determine whether the constituent genes of these GO biological processes are enriched 

for responses to smoking exposure in blood and lung tissues, we downloaded GEO data 

from four datasets representing smoke-exposure experiments in PBMCs, trachea, and 

bronchial epithelium, and Supplemental Tables 14 through 16 demonstrate clear enrichment 

of smoke-responsive genes in this gene set in blood (n = 17) and tracheal epithelium (n = 

71), with fewer significant smoking associations in small airway (n = 2) and bronchial 

epithelium (n = 0).

Gene set enrichment analysis (GSEA) was performed to provide a complementary 

functional assessment to the GO functional enrichment analysis. The gene expression 

profiles for ECLIPSE NBS subtypes were compared for each set of subtype pairs, and gene 

sets from the MSigDB Hallmark gene set collection were evaluated for enrichment. 

Supplemental Table 17 lists the nine gene sets enriched in these subtype-specific 

comparisons at the GSEA website suggested permutation q-value threshold of 0.25, 

including inflammatory (IL6–JAK–STAT signaling, q-value = 0.09) and protein catabolic 
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pathways (unfolded protein response, q-value = 0.24). Enrichment of the IL6–JAK–STAT 

pathway is corroborated by significantly higher levels of serum IL-6 in subtypes with more 

severe disease compared to less severely affected subtypes (Fig. 3, Table 3).

To assess for network rewiring across subtypes, we selected one enriched biological process 

from each subtype and examined the correlation pattern of the genes comprising these four 

processes within each subtype. As shown in Fig. 4, the correlation pattern for these genes 

was markedly different across subtypes, and there is a high level of crosstalk between 

processes, particularly in the “severely affected” and “more preserved lung function” 

subgroups, suggesting that these subtypes result from the interplay of multiple biological 

processes. To determine how preserved the correlation patterns were in the replication 

dataset, we examined the consistency of direction in COPDGene for correlations observed 

with an absolute value greater than or equal to 0.75 in ECLIPSE. Three subtypes (severely 

affected, moderately affected, and the less preserved lung function group) showed consistent 

correlation direction in both datasets (binomial p-values 1.9 × 10−6, 0.01, and 0.01, 

respectively), whereas the more preserved subtype, which only had 5 assigned subjects in 

the COPDGene data, did not show a consistent direction of effects (p-value 0.52).

We also examined the relationships between subtypes, peripheral blood differential cell 

count composition, and serum levels of a panel of inflammatory protein biomarkers. Table 3 

demonstrates that the proportion of distinct blood cell populations differed by NBS subtype. 

To determine the extent to which subtype-specific expression signatures were driven by the 

cell population differences, we used subject-level cell population percentages to predict 

subtype membership, and the estimated classification error rate was 48.9%, indicating that 

cell type composition alone could not be used to accurately reproduce subtype membership. 

Table 3 also demonstrates significant differences by subtype in blood levels for C-reactive 

protein (CRP), fibrinogen, interleukin-6 (IL-6), and Club cell protein (CC16).

3. Discussion

We applied a recently developed network-based stratification approach to identify cluster-

specific peripheral blood gene expression signatures from former smokers that are 

associated with measures of lung structure and function. Replication of these clusters in 

independent data demonstrates that the clinical characteristics of these blood-expression 

defined subtypes are robust. They are enriched for multiple biological processes, and the 

genes comprising these processes are enriched for smoking-related transcriptional responses 

in independent blood and lung gene expression datasets. By comparing NBS to NMF, we 

demonstrate that clustering informed by a gene interaction network (NBS) can produce more 

reproducible and clinically meaningful clusters than a comparable non-network informed 

method (NMF).

Gene interaction networks have been used previously to identify molecular disease subtypes. 

Hofree et al. used gene interaction network constraints to identify molecular subtypes in 

cancer, though their approach used somatic mutation data from paired tumor and “normal” 

tissues [6]. While we adopt the concept of using gene interaction network constraints, our 

focus on gene expression leads to important differences in methodology. First, we do not use 
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the concept of network diffusion to propagate gene effects through the interaction network, 

as gene expression data is not sparse. Second, whereas paired tumor and normal samples 

naturally separate disease-causing mutations from background mutations, gene expression 

data requires a similar filtering step to select genes associated with disease processes, and 

we achieve this selection through standard differential expression analysis prior to clustering 

in the training data. Thus, our data extends the observations of Hofree et al. by 

demonstrating: 1) the utility of network-based constraints for gene expression data; and 2) 

the successful application of this approach to COPD, a non-cancerous, multi-tissue disease 

in which blood expression likely reflects systemic, rather than local tissue, effects.

This study demonstrates independent replication of subtypes and subtype-specific 

expression signatures. While NBS yielded clinically relevant COPD subtypes that could be 

robustly re-produced in an independent sample, NMF did not yield similarly robust 

solutions.

While the agreement in gene-level association with FEV1 and FEV1/FVC was modest across 

cohorts, the clinical characteristics of the expression-derived subtypes were very similar. We 

propose two reasons for this discrepancy. First, subject-level classifications may be more 

stable than ranked gene lists, because subtype assignments may be more robust to 

redundancy in gene functional pathways. Second, simultaneous discovery of subtypes and 

molecular signatures may capture underlying disease heterogeneity that would otherwise 

confound differential expression analysis. At the level of clinical translation, these data 

indicate that stable clinical classifications for smoking-related lung disease based on blood 

expression data are feasible. To our knowledge this is the first demonstration of 

independently replicated expression signatures in blood for smoking-related lung disease. Of 

note, a lung COPD expression signature has been previously reported to be replicated in an 

independent sample with 97% prediction accuracy [15]. However, in that study, class 

discovery was repeated in the replication sample as opposed to the approach used in this 

analysis where all key model parameters were learned in the training data and directly 

transferred to the replication set. The latter approach provides a more stringent assessment 

of generalizability [4,16].

The biological relevance of these subtype-specific expression signatures is supported by 

strong enrichment in known functional pathways observed in our data. Particularly enriched 

processes included lymphocyte differentiation, wound healing, actin and cytoskeletal 

organization, and protein catabolism and ubiquitination. While certain processes were most 

enriched in specific disease subtypes, there was also notable overlap in processes across 

subtypes. Compared to previous blood expression studies in smokers with and without 

COPD, the role of inflammatory responses is consistent with previous findings [11]. Prior 

histologic studies of lung tissue from smokers with COPD demonstrate increased presence 

of multiple inflammatory cell sub-populations in emphysematous lungs [17,18] and various 

aspects of the role of innate and adaptive immunity in response to cigarette smoke have been 

demonstrated by multiple groups [19]. The enrichment of protein catabolic pathways is 

consistent with smoke-exposure studies in alveolar cells that have demonstrated increased 

endoplasmic reticulum stress and protein degradation [20]. The role of actin and cytoskeletal 

processes in response to smoking is less well understood, but cytoskeletal-associated 
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pathways containing genes such as ACTN1 and DBN1 have been associated with roles in 

immune cell activation [21] and columnar epithelial cell function [22]. These data point to 

further avenues for investigation of the specific nature of inflammatory, catabolic, and 

cytoskeletal responses in circulating immune cells in smokers.

The limitations of this study are that the sample size, while larger than many previous 

smoking-related gene expression studies, may still preclude the discovery of low prevalence 

smoking-related subtypes. The cellular composition of the blood samples from ECLIPSE 

and COPDGene are not identical, as ECLIPSE samples were from whole blood whereas the 

COPDGene samples consisted of peripheral blood mononuclear cells. Despite this 

difference, good replication of the clinical subtype associations was observed. We 

considered the possibility that the heterogeneous cellular composition of the samples used 

for this study drove the differential expression and subtyping results. However, prediction of 

subtype membership using cell count differentials was poor, suggesting that in our data, 

while the composition of sub-populations of circulating immune cells contributes to the 

overall expression profile, subtype assignments are largely determined by information 

independent of cell-type composition. However, it is possible that finer-grained differences 

in cell subpopulations play an important role in determining global blood expression 

patterns. In evaluating the NBS and NMF results, we selected the NBS result for further 

investigation because of its superior stability characteristics; however, in other contexts it is 

possible that NMF may have superior performance.

It is highly likely that disease-relevant gene expression data is contained in many non-blood 

related tissues, particular lung and airway tissue samples. Other groups have previously 

reported the identification of distinct groups of subjects based on airway and lung tissue 

gene expression [23]. While lung expression data is clearly of interest for COPD, our data 

indicate that meaningful information is also present in blood and that there is partial overlap 

in the biological signal present in these tissues.

In conclusion, we have demonstrated the utility of a modified application of NBS for 

simultaneous disease subtype and gene signature identification in blood gene expression 

data from two independent cohorts enriched for a chronic, non-cancerous lung disease, 

COPD. Identification of a robust, blood-based expression signature for COPD subtypes 

provides useful insight into the disease-associated biological pathways active in circulating 

blood cells, confirms the relevance and reliability of this source of biological information for 

COPD-related disease subtyping, and identifies subtype-specific candidate therapeutic 

targets. Future work is needed to address the question of whether blood expression 

combined with phenotypic data may be relevant for subtype-specific clinical treatment and 

precision medicine.

4. Methods

4.1. Study subjects

The ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate 

Endpoints) Study is a longitudinal study with three-year follow-up data available for 2501 

smoking subjects (2164 subjects with COPD and 337 smoking controls). The detailed study 
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protocol and inclusion criteria have been previously published [24]. ECLIPSE included 

subjects with COPD (defined by FEV1 < 80% of predicted and FEV1/FVC ≤ 0.7, and also 

included smokers without COPD (FEV1 > 85% and FEV1/FVC > 0.7). For this analysis, we 

analyzed all available subjects (both COPD cases and smoking controls) from a subset of the 

ECLIPSE Study with genome-wide blood gene expression data generated on the Affymetrix 

Human U133 Plus2 chip passing quality control (n = 229) [25].

COPDGene is a multicenter, longitudinal study designed to investigate the genetic and 

epidemiologic characteristics of COPD and other smoking-related lung diseases. The design 

of the study has been reported previously [26]. Briefly, 10,192 smokers with a wide range of 

lung function were recruited into the COPDGene Study from 2007 to 2011. Non-Hispanic 

white (NHW) and African-American (AA) subjects between the ages of 45 and 80 with at 

least a 10 pack–year smoking history were enrolled. For this analysis, all subjects with 

genome-wide gene expression data obtained with the Affymetrix Human U133 Plus2 chip 

passing quality control (n = 135) were analyzed [13]. For both COPDGene and ECLIPSE, 

the institutional review boards of all participating centers approved these studies, and written 

informed consent was obtained from all subjects.

4.2. Gene expression and plasma biomarker measurements

Sample preparation and quality control procedures for genome-wide gene expression data 

have been previously described for the ECLIPSE [25] and COPDGene subjects [13]. 

Briefly, gene expression was derived from whole blood samples in ECLIPSE subjects and 

peripheral blood mononuclear cells (PBMCs) for the COPDGene subjects. Gene expression 

profiling was performed using the Affymetrix Human U133 Plus2 array. Gene expression 

data were log-transformed, and background correction and normalization were performed 

for the merged ECLIPSE and COPDGene samples using robust multi-array averaging and 

quantile normalization as implemented in the affy Bioconductor package [27]. Of the 136 

COPDGene subjects reported in a previous publication [13], one self-reported African-

American subject was removed from the analysis, which was conducted on the remaining 

135 non-Hispanic white subjects. Gene expression data are available in GEO (GSE76705).

Sample preparation and quality control measurement for a panel of biomarkers in the 

ECLIPSE Study have been previously reported [28]. Seven biomarkers were analyzed 

without transformation and tested for between subtype differences using the Kruskal–Wallis 

non-parametric test.

4.3. Subtype identification

To identify a set of genes associated with COPD, we performed differential expression 

analysis for 38,519 probesets in ECLIPSE that passed quality control measures. Normalized 

probeset intensities were related to measures indicative of two primary dimensions of 

pulmonary impairment in COPD – airway obstruction as indicated by two measures of 

spirometric lung function (FEV1 (% of predicted) and FEV1/FVC) and lung parenchymal 

destruction, i.e., emphysema (as quantified by the percentage of low attenuation area less 

than −950 Hounsfield units on lung computed tomography, %LAA-950). The analysis was 

conducted using the limma Bioconductor package, and the false discovery rate was 
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controlled at 5%. The following covariates were included in the differential expression 

analysis – age, pack-years of cigarette smoke exposure, and gender.

After standardizing gene expression data from 229 ECLIPSE subjects by the variance of 

each probeset, we applied NMF [29] and NBS [6] to identify meta-patients (i.e. subtypes or 

subject clusters) and meta-genes (i.e. representative subtype expression profiles). We 

consider a gene expression data matrix X∈ℝd×n, where d is the number of probes and n is 

the number of patients. Our goal is to find a small set of metagenes W∈ℝd q, where each 

column of W is expected to represent the expression profile of one disease subtype, such that 

each patient’s gene expression profile can be decomposed into a non-negative linear 

combination of meta-genes. To achieve that goal, non-negative matrix factorization (NMF) 

can be applied to factorize the gene expression data matrix X into the product of the meta-

gene matrix W and the coefficient matrix H∈ℝq×n. Each patient is assigned to the meta-gene 

associated with the largest coefficient. It has been shown that NMF outperforms hierarchical 

clustering and self-organizing maps in discovering meaningful biological information from 

cancer-related microarray data [29]. Based on NMF, network-based stratification (NBS) 

adds the constraint that two genes should have similar values in meta-gene matrix W if they 

have strong interaction in the gene interaction network. Since matrix factorization can only 

achieve local optima, consensus clustering was applied to overcome the randomness of a 

single run. The stability index, which ranges from 0 (low stability) to 1 (high stability) was 

used to select an appropriate number of meta-genes [30]. The STRING gene interaction 

network was filtered to select only those interactions in the highest decile of predicted 

interaction confidence.

4.4. Phenotypic assessment

Methods for performing spirometric and CT measurements of emphysema and airway wall 

thickness have been previously described for ECLIPSE [31] and COPDGene [26]. In both 

studies, post-bronchodilator spirometric measures were used. The relationship of clinical 

characteristics to subtypes was assessed by the Kruskal–Wallis test. To determine the extent 

to which subtype-specific expression patterns were driven by differences in cell populations, 

we used cell count differentials (neutrophil, lymphocyte, monocyte, eosinophil, and basophil 

counts) to predict subtype membership with supervised random forests and assessed the 

prediction accuracy by cross-validation in the ECLIPSE dataset.

4.5. Gene ontology enrichment analysis

The DAVID gene ontology enrichment tool was used to quantify pathway enrichment of the 

gene lists comprising the subtype-specific signatures [32], using all probesets on the 

Affymetrix Human U133 Plus2 chip as background. Enrichment analysis was performed 

using medium stringency clustering of annotated pathways [33] using the following 

reference data sources: GO biological process and molecular function categories [34], 

Cluster of Orthologous Groups Ontology [35], Protein Information Resource keywords [36], 

Uniprot Sequence Features [37], BBID (Biological Biochemical Image Database) [38], 

Biocarta [39], and KEGG pathways [40]. Clustered pathway enrichment was quantified via 

the EASE score [41].
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4.6. Assessing smoke response in GO enriched genes

Four datasets from three studies were downloaded from GEO (GSE13933 with trachea and 

small airway samples, GSE994, and GSE12587); phenotypic data were reviewed in detail, 

and contrasts were performed using limma, comparing non-smoking to smoking samples 

and adjusting for race and paired samples when appropriate. FDR q-values were calculated 

using the approach of Storey et al. [42].

4.7. Gene set enrichment analysis

Gene set enrichment analysis was performed for all pairwise contrasts between the four NBS 

subtypes in ECLIPSE [43,44]. The 50 Hallmark gene sets from the MSigDB database 

formed our query gene sets, and significance was determined by a q-value of 0.25 or less 

based on 1000 phenotype permutations, as recommended on the GSEA website (http://

www.broadinstitute.org/gsea/index.jsp).

4.8. Visualization of subtype-specific gene correlation networks

For four gene sets from the DAVID analysis, the Pearson correlation matrix for the 

corresponding probeset expression values was calculated within each subtype, and the 

subtype-specific correlation patterns for each gene set were visualized using Circos software 

[45], with a Pearson correlation absolute value threshold of 0.75.

4.9. Reproducing clusters in COPDGene

To assess the generalizability of the meta-gene matrix W learned from ECLIPSE data, we 

transferred these meta-genes to the COPDGene cohort for clustering. The gene expression 

data of each COPDGene patient was factorized into a non-negative linear combination of the 

meta-genes learned in ECLIPSE. Each patient is assigned to the meta-gene associated with 

the largest coefficient in the same manner as the ECLIPSE clustering.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Stability of clustering results for NMF and NBS methods. The stability of clustering 

solutions in ECLIPSE was evaluated by the stability index over a range of latent factors 

from 2 to 10.
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Fig. 2. 
Similarity matrix of ECLIPSE NBS and NMF subtypes. The similarity matrix for ECLIPSE 

subjects from the NBS solution with number of latent factors equal to four demonstrates 

consistent cluster assignments across many random subsamples of the data (Panel A) and is 

more stable than the NMF solution (Panel B). Rows and columns are labeled by subject 

index, and the color bar indicates normalized mutual information (NMI) values per cell.
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Fig. 3. 
Serum IL6 levels by NBS subtype. Gene set enrichment analysis demonstrates enrichment 

of IL6–JAK–STAT3 signaling genes (Panel A). Boxplots of the log of IL6 levels are shown 

by subtype, with elevated IL6 levels present in the two most severely affected subgroups 

(Panel B). The Kruskal–Wallis non-parametric p-value for difference across subgroups is 

1.3 × 10−3, and Mann–Whitney pairwise comparisons are significant for Cluster 1 versus 

Clusters 3 and 4 (p = 1 × 10−4 and 2 × 10−5, respectively) and for Cluster 2 versus Clusters 3 

and 4 (p = 0.004 and 0.001, respectively).
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Fig. 4. 
Network re-wiring by subtype. The NBS procedure identifies representative expression 

signatures for each molecular subtype, and signature genes for four biological processes 

enriched in this signatures are shown above (red = inflammation/wound healing, actin 

binding = green, protein catabolism = blue, lymphocyte activation = yellow) for NBS 

clusters. Genes with Pearson correlation ≥0.75 are connected by magenta lines, negative 

correlations ≤−0.75 are shown in black. The most severely impaired and the healthiest 

cluster show the strongest patterns of correlation within and across functional gene modules. 

Extensive between module correlation is present, suggesting crosstalk between functional 
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modules. (For interpretation of the references to colors in this figure legend, the reader is 

referred to the web version of this article.)
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