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SUMMARY

Some cognitive functions undergo transitions in old age, which motivates the use of a change 

point model for the individual trajectory. The age when the change occurs varies between 

individuals and is treated as random. We illustrate the properties of a random change point model 

and use it for data from a Swedish study of change in cognitive function in old age. Variance 

estimates are obtained from Markov chain Monte Carlo simulation using Gibbs sampling. The 

random change point model is compared with models within the family of linear random effects 

models. The focus is on the ability to capture variability in measures of cognitive function. The 

models make different assumptions about the variance over the age span, and we demonstrate that 

the random change point model has the most reasonable structure.
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1. INTRODUCTION

The development of cognitive function in old age is often nonlinear. Several studies have 

shown that some cognitive functions remain stable into old age, with more marked decline 

an indication of impending death within a few years [1, 2]. This phenomenon is referred to 

as terminal drop [3] and can potentially be captured by a random change point model 

incorporating the individual-specific age when a change occurs. In this paper we investigate 

the properties of a random change point model with two linear phases for each individual. 

The model allows the two trends and the age at transition from the first to the second phase 

to be individual-specific.

*Correspondence to: Annica Dominicus, Biostatistics, AstraZeneca R&D Södertälje, SE-151 85 Södertälje, Sweden.
†Annica.Dominicus@astrazeneca.com

HHS Public Access
Author manuscript
Stat Med. Author manuscript; available in PMC 2016 February 21.

Published in final edited form as:
Stat Med. 2008 November 29; 27(27): 5786–5798. doi:10.1002/sim.3380.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Random change point models have previously been used in several medical applications. 

These include studies of progression of HIV infection using CD4 T-Cell numbers [4-6] and 

development of prostate-specific antigen levels as a marker for prostate cancer [7]. 

Cognitive function in old age has also been studied using random change point models [8, 

9]. In these studies, the focus has been on the mean trajectory of cognitive function in the 

pre-dementia phase.

In this paper we investigate an aspect of modeling cognitive function based on random 

change point models which has previously not been addressed, namely the ability to explain 

variability in cognitive function. We illustrate the approach using data from the Swedish 

Adoption/Twin Study of Aging (SATSA) [10], which is a longitudinal study based on a 

group of twins.

Although heritability estimates for cognitive functions are also high in the older ages, 

relatively little is known about the dynamics of cognitive decline in the old, and how genes 

and lifestyle factors affect the dynamics of the decline. This may be in part a result of the 

current longitudinal models for longitudinally measured cognition being too simplistic in the 

way they capture the variability over age. It is known that linear random effects models 

often used for longitudinal data [11] imply very specific assumptions about the marginal 

variance [12].

In this paper we present a random change point model that is flexible in its way of capturing 

both the average behavior of cognitive function over age and the variance over age. The 

model may further be used to predict the ages at which change points occur, as well as other 

parameters of the model. These individual-specific parameters may be used as outcomes in 

genetic association studies using measured genotypic data as predictors. The variances of 

these random parameters may also be further used in estimating heritability of 

characteristics of cognitive function in twin and family studies.

The random change point model is compared with the linear and the quadratic random 

effects models, which previously have been used for analyzing cognitive data from SATSA 

[13, 14]. Comparisons focus on the models’ ability to explain trait variability and their 

goodness of fit as measured by the deviance information criterion (DIC) [15].

We adopt a sampling-based Bayesian procedure, where numerical integration is avoided by 

taking repeated samples from the conditional posterior distributions for each parameter (or 

subset of parameters) in turn. We use a Markov chain Monte Carlo (MCMC) simulation 

through Gibbs sampling [16], which involves the construction of a Markov chain that has 

the posterior distribution of interest as the stationary distribution. In a small simulation 

study, we investigate the performance of the MCMC algorithm.

In Section 2 we describe the data on cognitive function analyzed in the paper. In Section 3 

we describe the models considered and the procedures used for model fitting and model 

comparison. We present a simulation study in Section 4 and analyses of empirical data on 

cognitive function in Section 5. The methods and results are discussed in Section 6.
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2. SATSA

We analyze data on cognitive function, measured by the symbol digit test, which tests the 

ability to quickly and accurately compare numbers and symbols [10]. Scores range from 0 to 

100, with high scores corresponding to good cognitive function. The assessment of cognitive 

function is part of SATSA, a longitudinal study of aging that includes both questionnaire 

assessments and in-person testings of cognitive and functional capabilities, personality, and 

health. SATSA has been described in detail elsewhere [17]. The first in-person testing took 

place in 1986–1988 and follow-up data were obtained after 3, 6, 13, and 16 years.

Results from the symbol digit test from at least one of the five test occasions are available 

for 853 individuals (415 full twin pairs and 23 singletons). To avoid the issue of clustered 

sampling in this illustration, we include singletons and one twin from each twin pair (drawn 

at random). In this sample of 438 individuals, 60 per cent are women and 40 per cent are 

men. Individuals are measured at very different ages with mean age 62 years (range 37–88 

years) at the first test (in 1986–1988).

Because some participants have a late entry into the study, have intermittent missing 

observations, or are lost to followup, only 98 of the 438 individuals have scores from all five 

tests. Further, 58 have scores from four tests, 106 from three tests, 102 from two tests, while 

74 only from one single test. The mechanisms underlying the late entry into the study and 

intermittent missing data are reasonably assumed to be ‘ignorable’ in the sense of Little and 

Rubin [18]. It implies that data are missing at random, i.e. the fact that a measurement on 

cognitive function is missing is assumed to depend on age and observed measurements, but 

not on the missing observation itself. The mechanism behind dropout from the study is also 

assumed to be ignorable. Although this assumption may be relaxed, we do not expect non-

ignorable missingness to play a major role for this application.

Figure 1 shows score trajectories for 10 randomly selected individuals with five repeated 

scores from the symbol digit test. The figure indicates high within- and between-individual 

variability, but besides an overall decrease in test scores with age, no particular functional 

form is suggested for the population curve.

3. STATISTICAL METHODS

3.1. Random change point model

We consider a random change point model with two linear phases, involving four 

individual-specific random effects. In order to minimize the correlation between estimated 

model parameters, the model is formulated as

(1)

where yij denotes the jth measurement of cognitive function for the ith individual and sign(z) 

= − 1 if z <0, sign(z) = 0 if z = 0, and sign(z) = +1 if z>0. The residual errors are denoted by 

eij. Under this parametrization, the slope is equal to b1i − b2i before the change point (b3i) 

and equal to b1i + b2i after the change point. For individual i, b0i is the expected value at the 
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change point, b1i is the average of the two slopes, and b2i is half the difference between the 

two slopes.

In vector notation, bi = (b0i, b1i, b2i, b3i)T ~MVN (β, Σ), where β = (β0, β1, β2, β3)T is the 

vector of population mean parameters and Σ is the 4×4 covariance matrix. In principle Σ can 

be unstructured. In our application to cognitive decline (Section 5), however, we include a 

non-zero correlation between b0i and b2i but set all other correlations to zero leading to a 

block-diagonal structure of Σ.

The residual errors in (1) are assumed to be independent of each other and of the random 

effects, and normally distributed with mean zero and constant variance .

3.2. Linear and quadratic random effects models

Repeated measures of cognitive function from SATSA have previously been analyzed based 

on linear and quadratic random effects models [13, 14]. Here we compare the random 

change point model with the linear and the quadratic random effects models and investigate 

if the former improves our understanding of these data.

Using age as the time scale, the linear model is

(2)

with bi = (b0i, b1i)T ~MVN (β, Σ) the vector of individual random effects. We assume that 

the individuals are independent and that the residual errors eij are uncorrelated with each 

other and with bi and ageij.

The quadratic model takes the corresponding form

(3)

with b = (b0i, b1i, b2i)T ~MVN (β, Σ). In (2) and (3) the covariance matrix Σ is left 

unstructured.

3.3. Baysian approach based on MCMC

We perform MCMC simulations to approximate the posterior distribution of the parameters 

in models (1)–(3). MCMC simulation involves constructing a Markov chain with the 

required posterior distribution as its stationary distribution. We use a Gibbs sampler [16, 19] 

to construct the Markov chains, as implemented in the WinBUGS software [20]. After a 

burn-in to reach convergence, samples from the required distribution can be assembled.

We express the models defined in Sections 3.1 and 3.2 in the general form
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where  is the residual error variance, Ii is the identity matrix, and Σ is the covariance 

matrix for the random effects. We use the following prior distributions:

(4)

where Σ~invWishart(Σ*, ρ) means that Σ−1 has the Wishart distribution and ~invGamma 

(λ1, λ2) means that  has the Gamma distribution with mean λ1/λ2 and variance . 

These priors are proper conjugate distributions, with the desired property of leading to 

posterior distributions of known form [21]. Specific values used for the hyperparameters β*, 

H, Σ*, ρ, λ1, and λ2 are given in Section 5.

The parametrization in (1) aims at minimizing the correlation between model parameters 

when drawing from the conditional posterior distributions. In our applications, we assume 

independence between all individual-specific effects except for the level at change point 

(b0i) and the difference in the two slopes (b2i). For effects that are assumed to be 

independent of other effects, we use an inverse-gamma distribution for the variance 

parameter as priors.

3.4. Model comparison

We compare the linear, the quadratic, and the change point models based on the DIC [15], as 

well as by studying their ability to predict the mean and the variance of cognitive function 

over time. DIC is a Bayesian equivalent to the AIC [22]and consists of two components, a 

term that measures goodness of fit D̄ and a penalty term for increasing model complexity 

pD: DIC = D̄ + pD. D̄ is defined as the posterior expectation of the deviance. Hence, the 

better the model fits the data, the smaller is the value of D̄. The second component pD 

measures the complexity of the model by the effective number of parameters and is defined 

as the difference between the posterior mean of the deviance and the deviance evaluated at 

the posterior mean of the parameters. It can be interpreted as the expected reduction in 

uncertainty due to estimation. The interpretation of DIC is similar to that of the AIC, as a 

summary of the relative fit between the model and the ‘true model’ generating the data. The 

smaller the DIC, the better the fit. DIC seeks to balance model complexity with the 

information available in the data, that is, a simpler model tends to be preferable for a smaller 

data set, whereas a larger data set may support a more complex model.

The primary goal of this study is to assess the variability in cognitive function, and in 

particular the variability as a function of age. We visually compare the models’ ability to 

predict variability in a plot of observed and predicted variance. Plots of the predicted mean 

are also included to contrast the different models. The predicted mean and the predicted 

variance are obtained by first predicting the random effects for each individual by the 

posterior mean. The predicted trajectories of repeated measurements are obtained from the 

predicted random effects and are then used to calculate the predicted mean and predicted 

variance using a moving window over age. In the calculation of the predicted variance, the 

residual error variance needs to be accounted for.
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4. SIMULATION STUDY

In a small simulation study, we investigate the performance of the MCMC approach for 

fitting the random change point model. The main aim is to understand the data requirements 

for this rather complex model specification. The parameters in the simulations 

approximately mimic the cognitive data in SATSA. For simplicity, we use a balanced data 

design and a diagonal covariance matrix Σ for the random effects. Four scenarios are 

considered, which differ in the number of repeated measurements and the variance of 

individual-specific change points ( , Table I).

Scenario 1 in Table I is ideal in the sense that all individual-specific change points are 

within the observed age range, and the 13 repeated measures are centered around the mean 

change point. Scenario 2 is similar, except that the data are reduced to five repeated 

measurements. In Scenario 3 the variance of the individual-specific change points is 

increased to 25 years. With age points centered around zero, and individuals observed once 

a year between years −6 and 6, a standard error of 5 means that on average only 31 per cent 

have their change point inside the observed age range. Scenario 4 is the worst case with a 

large variability in change points and only five repeated measures for each individual.

For each scenario, 20 data sets were generated with 500 subjects each. The parameter values 

used for generating the simulated data are given in Table II. The prior distributions for the 

model parameters were chosen to be vague:

The prior mean of β0 was set to a value fairly close to the true value to reduce the number of 

iterations needed to reach convergence and keep the running time at a reasonable level.

The simulation results given in Table II suggest that the Gibbs sampler performs well for all 

four scenarios. The means of the 20 medians of posterior parameter distributions are all 

close to the true parameter values. As expected, the variability in the 20 posterior medians 

for the mean β3 and variance ( ) of the change point increases as the variability in change 

points increases.

5. ANALYSIS OF COGNITIVE FUNCTION IN SATSA

We fit the change point, the linear, and the quadratic models to repeated measures of 

cognitive function as measured by the symbol digit test using the Bayesian approach 

described in Section 3.3. Age is centered at 65 years.

In initial analyses based on the change point model (1) with unrestricted covariance structure 

between all random effects convergence was not reached for some parameters. One possible 

explanation to this problem is overparameterization. The analyses also suggested a large 

correlation between the difference between the two slopes (b2i) and the level at the change 

point (b0i). We therefore restrict the model by explicitly including this correlation and 
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setting all other random effects to be independent of each other. This leads to a block-

diagonal structure for Σ, and the priors become

where H02 is the covariance matrix for β02 = (β0, β2), and H1 and H3 are the variances for β1 

and β3, respectively. We consider three different sets of hyperparameters (Table III) to 

investigate the sensitivity of the results to the specific choice of prior distribution. We run 

two independent parallel chains of the Gibbs sampler, with different starting values. After 

thinning the sequences with a factor of 5, and removing the first 2000 iterations (burn-in), 

we use the 20 000 following iterations to obtain posterior distributions for the model 

parameters (β and Σ) and individual-specific random effects (b) by mixing the two 

sequences. Although the method is computationally demanding (it took 47 min to run on a 

computer with a Pentium Mobile processor running at 1.6 GHz with 512 MB of RAM), it 

can easily be done using the WinBUGS software (the WinBUGS code is given in Appendix 

A).

A summary of the posterior distributions of the model parameters is given in Table IV. We 

found that the choice of hyperparameters had little influence on the marginal posterior 

distributions, with an exception for the change point mean and variance parameters. In the 

presentation below we use the results from priors 3, which show the lowest value of DIC. 

Trace plots of the MCMC samples were used for checks of convergence, and an 

investigation of the residual errors confirmed that they follow a normal distribution.

The estimates of the fixed effects (β0, β1, β2, and β3) reflect a general decline in cognitive 

function. The mean age for the change point is 73 years, and the mean slope is −0.65 points/

year before the change point and −0.99 points/year after the change point. The correlation 

between an individual’s level at the change point and the difference in slopes before and 

after the change point is equal to −0.83. The negative correlation suggests that individuals 

with a high level at the change point have a larger (negative) difference in slope for the two 

phases.

Because the variance of the change point ( ) appears to be difficult to estimate, we also 

consider a model where the age when a change occurs is the same for all individuals and 

treated as a fixed effect. A summary of the posterior distribution for the parameters in this 

model is also included in Table IV.

The results of the change point models were compared with the linear and the quadratic 

random effect models based on DIC (Table V). The results suggest that the random change 

point model is preferable compared with both the linear and the quadratic models. The 
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model where all individuals have the same change point also has a larger value of DIC, 

suggesting that it is not a useful description of the data.

As discussed earlier, in the analysis of cognitive function in SATSA, there is a special 

interest in the predicted mean and variance as a function of age. Figure 2 displays the 

observed mean score for the SATSA sample as a function of age (moving average over 50 

observations) together with the predicted mean based on the linear, the quadratic, and the 

change point models. The predicted means are based on the predicted outcomes from the 

posterior distribution of the individual-specific random effects. From Figure 2 it is clear that 

the observed overall trend is close to linear and the predicted mean curves are all close to the 

observed mean curve.

Figure 3 displays the observed variance curve together with model-induced variance curves. 

The variance is calculated in a similar way as the mean curve, here using both the predicted 

outcomes and the predicted residual variance. The plot indicates that the variability in 

observed test scores increases in the range 60–70 years. Apparently, all the models 

considered imply very different assumptions about the variability, although the mean curves 

in Figure 2 are similar. The variance curve predicted from the random change point model 

approximately follows the observed variance curve, although the variance is somewhat 

underestimated in the beginning and in the end of the age span considered (where the least 

data are available). This is the case also for the change point model where the change point 

is treated as a fixed effect. In contrast, both the linear and the quadratic variance curves are 

far from the empirical variance curve.

6. DISCUSSION

We have demonstrated the use of random change point models for modeling variability in 

longitudinal data. Although neglected in many applications of linear random effects models, 

it is well known that the form of the random effects model has implications for the variance 

structure [12]. This is especially problematic in applications where the primary interest is in 

the variance, which is the case in family studies. On the basis of an empirical study of 

cognitive function in old age, we showed that in contrast to the linear and the quadratic 

models, the random change point model is flexible in capturing variability as a function of 

age.

We used a Bayesian approach and MCMC simulation to fit all models. The linear and the 

quadratic random effects models belong to the family of linear random effects models, and 

thus they can easily be estimated using maximum likelihood methods. We used a Bayesian 

approach here to simplify comparisons based on DIC, which is a summary measure of 

goodness of fit. We also judge the models’ ability to predict the variance as a function of 

age.

The reason for the greater flexibility in predicting variance is not obvious but supposedly in 

part related to the fact that the change point model includes more parameters than the linear 

and the quadratic models. For the linear and the quadratic models, which both belong to the 

family of linear random effects models, it is possible to derive an analytic expression for the 

variance as a function of the model parameters and age. For example, the variance curve for 
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the linear model is a quadratic function of age. For the random change point model, 

however, it is not possible to derive such an expression for the variance and it is therefore 

difficult to identify exactly how the increased number of parameters improves the flexibility 

of the model.

MCMC simulation based on Gibbs sampling was shown to be a useful tool for estimating 

the random change point model. This approach is conceptually straightforward, albeit 

computationally demanding. In a small simulation study the approach performed well also in 

situations with as little as five repeated measures and a large variability in the change point. 

Both the simulation study and the analysis of empirical data suggest that the largest 

difficulty lies in the estimation of the change point itself.

Some issues regarding this Bayesian approach merit further attention. For example, it is not 

yet clear how prior distributions for the variance–covariance parameters should be chosen to 

be non-informative. It has been suggested that the inverse-gamma distribution, often used as 

non-informative for a variance parameter, may have problems [23]. Instead, a uniform prior 

on the hierarchical standard deviation is recommended. The generalization to priors for a 

multivariate nonlinear hierarchical model, such as the random change point model, merits 

further investigation.

In spite of the fairly complex structure of the random change point model, it may still not 

capture all features of cognitive evolution. For example, censored change points are not 

explicitly modelled. In studies of cognition in old age, loss to followup is also a reality. If 

the dropout is ‘non-ignorable’ it has to be accounted for explicitly to avoid selection bias. 

Jacqmin-Gadda et al. [9]adapted a random change point model for cognitive decline tied to a 

survival model for dementia to address this issue.

Other potential extensions of the model include the extension to several change points, 

which would be possible with data containing enough measurement time points. The model 

could also be extended by including covariates, and by relaxing the assumption of constant 

residual variance to allow for heterogeneity in residual errors [24].
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APPENDIX A: IMPLEMENTATION USING WinBUGS

The following code was used to fit the random change point model (with priors 3):

model {
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 for (i in 1:N) {

  y [i] ~ dnorm(mu[i],e.tau)

   mu [i] <- b[id[i],1] + b1 [id[i]] * (age[i]-b3 [id[i]]) +

    b[id[i],2] * (age[i] -b3 [id[i]]) * (2*step (age[i] - b3 [id[i]])-1)

 }

 for(j in 1:M) {

  b[j,1:2] ~ dmnorm (b.mu [1:2] ,b.tau[1:2,1:2])

  b1 [j]  ~ dnorm(b1.mu, b1.tau)

  b3[j] ~ dnorm(b3.mu, b3.tau)

 }

 b.mu [1:2] ~ dmnorm(b.mean [1:2], b.prec [1:2,1:2])

 b1.mu ~ dnorm (1,0.001)

 b3.mu ~ dnorm (9,0.001)

 b1.tau ~ dgamma (0.001,0.001)

 b3.tau ~ dgamma(0.001,0.001)

 b.tau[1:2,1:2] ~ dwish (R[1:2, 1:2] ,2)

 e.tau ~ dgamma (0.001,0.001)

 }

list (b.mean = c(30, 1), b.prec = structure (.Data=c (0.01, 0, 0,

0.01), .Dim = c(2, 2)), R = structure (.Data=c (20, 0, 0, 0.1), .Dim =

c(2, 2)))
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Figure 1. 
Symbol digit scores for 10 randomly selected participants in SATSA with five repeated 

measures of cognitive function.
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Figure 2. 
Observed and predicted mean curves for cognitive function.
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Figure 3. 
Observed and predicted variance curves for cognitive function.
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Table I

Repeated measures time points and variance of individual-specific change points ( ) used in simulation 

study.

Scenario Time points

1 −6, −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6 4

2 −6, −3, 0, 3, 6 4

3 −6, −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6 25

4 −6, −3, 0, 3, 6 25
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Table III

Hyperparameters used for random change point model in analysis of cognitive function.

Hyperparameter Prior 1 Prior 2 Prior 3

(40, 0) (20, −1) (30,1)

0 −1 1

5 7 9

H02

H1 100 10 100

H3 10 10 100

ρ 2 2 2

λ11 0.1 0.01 0.001

λ12 0.1 0.01 0.001

λ31 0.1 0.01 0.001

λ32 0.1 0.01 0.001

λ1 0.1 0.01 0.001

λ2 0.1 0.01 0.001
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Table IV

Posterior means (and 95 per cent posterior intervals) for parameters in the change point model.

Parameter Prior 1 Prior 2 Prior 3 Change point fixed

β0 35.3 (32.5, 38.7) 32.3 (30.0, 34.7) 34.3 (31.3, 37.6) 34.0 (31.3, 36.2)

β1 −0.81 (−0.89, −0.74) −0.85 (−0.93, −0.77) −0.82 (−0.89, −0.75) −0.82 (−0.89, −0.75)

β2 −0.16 (−0.27, −0.06) −0.14 (−0.25, −0.03) −0.17 (−0.27, −0.07) −0.13 (−0.22, −0.05)

β3 6.4 (2.9, 9.4) 9.3 (6.9, 11.8) 7.8 (4.3, 11.0) 7.6 (5.2, 10.6)

105 (75, 132) 111 (86, 138) 96 (64, 128) 110 (90, 133)

0.037 (0.016, 0.069) 0.014 (0.003, 0.037) 0.012 (0.001, 0.043) 0.027 (0.001, 0.075)

0.151 (0.087, 0.232) 0.160 (0.098, 0.239) 0.106 (0.049, 0.181) 0.090 (0.038, 0.166)

14.2 (0.2, 49.1) 18.5 (2.6, 43.7) 42.6 (10.3, 79.7) —

−2.71 (−4.11, −1.45) −3.04 (−4.40, −1.85) −2.65 (−4.05, −1.42) −2.27 (−3.48, −1.23)

22.8 (20.5, 25.4) 23.0 (20.6, 25.6) 23.5 (21.1, 26.2) 24.1 (21.5, 26.9)
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Table V

Comparison of model goodness of fit using DIC.

Model DIC pD D̄

Linear 8400.53 478.05 7922.48

Quadratic 8409.95 428.14 7981.80

Change point 1 8326.95 467.55 7859.40

Change point 2 8325.05 456.15 7868.90

Change point 3 8303.04 401.86 7901.18

Change point fixed 8387.31 457.57 7929.73
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