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Abstract

Malignant cells routinely violate cellular checkpoints that should initiate cell death in normal cells 

by triggering pro-apoptotic members of the BCL-2 family of proteins. To escape such death 

inducing signals, cancer cells often select for up regulation of anti-apoptotic BCL-2 family 

members including BCL-2, BCL-XL, BFL-1, BCL-W, and MCL-1. These family members prevent 

death by sequestering pro-apoptotic molecules. To counter this resistance mechanism, small 

molecule inhibitors of anti-apoptotic BCL-2 family members have been under development. These 

molecules have shown promise in pre-clinical and clinical testing to overcome apoptotic 

resistance, prompting cancer cells to undergo apoptosis. Alternatively, other strategies have taken 

advantage of the normal regulatory machinery controlling anti-apoptotic molecules and have used 

inhibitors of signaling pathways to down-modulate the expression of anti-apoptotic molecules thus 

tilting the balance in cancer cells to cell death. This review explores recent developments and 

strategies aimed at antagonizing anti-apoptotic BCL-2 family member action to promote the 

induction of cell death in cancer therapy.
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 BCL-2 Family Basics

Apoptosis, or programmed cell death, is a genetic program regulating tissue homeostasis 

that was first identified in the nematode, C. elegans [1]. Members of the BCL-2 family, 

which regulate intrinsic cellular survival and death, share substantial evolutionary 

conservation with the primordial C. elegans molecules. The BCL-2 family is composed of 

both death inducing and pro-survival molecules (Figure 1). The anti-apoptotic molecules 

BCL-2, BCL-XL, BCL-W, BFL-1, and MCL-1 restrain the induction of cell death, thus 

promoting cellular survival. In opposition are pro-apoptotic BCL-2 family members, which 

actively participate in inducing cell death. Pro-apoptotic molecules can be sub-divided into 

the BH3-only family members (including BID, BAD, BIM, PUMA, NOXA, etc.) which 

respond to cellular signals that trigger cell death and the pro-apoptotic effectors (BAX and 

BAK) that integrate the cell death signals at the mitochondria [2]. The diverse collection of 
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BH3-only family members act as cellular sentinels that, when activated by transcriptional 

and post-translational modifications, trigger the oligomerization of the pro-apoptotic 

effectors BAX and BAK on the mitochondrial outer membrane. The oligomers permeablize 

the mitochondrial outer membrane to release cytochrome c and other proteins. Released 

cytochrome c interacts with the initiator caspase-9 and APAF1, thus triggering caspase 

activation and the subsequent orderly destruction of the cell [3]. This process is critical to 

the maintenance of homeostasis and is responsible for eliminating damaged or obsolete cells 

not only during development, but also for the lifespan of the animal.

 Specificity of Anti-Apoptotic BCL-2 Family Members

Anti-apoptotic BCL-2 family members antagonize cell death by directly binding BH3-only 

molecules as well as pro-apoptotic effectors; however, the ability of individual anti-apoptotic 

BCL-2 family members to antagonize pro-apoptotic molecules is not uniform [4]. The 

hydrophobic BH3-domain binding pockets of individual anti-apoptotic molecules dictate 

their ability to bind and antagonize the BH3-domains of the various pro-apoptotic 

molecules. Some BH3-only family members (e.g. BIM, BID, and PUMA) have the ability to 

bind all anti-apoptotic molecules with similar affinities (Figure 2). In contrast, other BH3-

only family members have restricted abilities to interact with different anti-apoptotic BCL-2 

family members. For example, anti-apoptotic BCL-2, BCL-XL, and BCL-W have similar 

capacities to bind the BH3-only family member BAD; however, neither MCL-1 nor BFL-1 

can bind BAD [5, 6]. In contrast, only MCL-1 and BFL-1 are capable of binding the NOXA 

BH3-only family member, but none of the other anti-apoptotic molecules can bind NOXA 

(Figure 2). Another BH3-only, HRK is capable of binding BCL-XL, but does not interact 

with the other anti-apoptotics. The specificity for NOXA, BAD, and HRK can be used 

diagnostically to define the dependency of cells to individual anti-apoptotic molecules in a 

technique known as BH3-profiling [7].

 BH3-Mimetic Small Molecules

The identification that pro-survival BCL-2 family members function by binding the BH3-

domain of pro-apoptotic proteins was critical to the design of small molecular inhibitors of 

anti-apoptotic proteins, which are collectively known as BH3-mimetics. Their design is 

based on how the BH3-domain of BH3-only molecules fits into the hydrophobic cleft of the 

anti-apoptotic molecule. BH3-mimetics are typically designed to competitively bind to the 

BH3-binding groove of anti-apoptotic molecules to displace pro-apoptotic molecules. This 

ultimately leads to the activation of the multi-domain effector molecules BAX or BAK. This 

conceptual framework has served as the basis for the evolution of a number of small 

molecular inhibitors of pro-survival molecules.

This approach has not been without challenges as it depends upon the design of small 

molecules capable of inhibiting large protein-protein interactions; often regarded as more 

challenging than the design of inhibitors of enzymatic activity. Pioneering work from 

scientists at Abbott Laboratories employed structure-activity relationships by nuclear 

magnetic resonance (so called SAR by NMR). This technique is based on sub-dividing the 

large protein-protein interacting face and individually targeting specific sub-domains by 
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small molecules. In isolation, each small molecule may have a relatively poor affinity for the 

binding pocket, but after chemically linking the individual moieties the combined molecule 

can achieve a higher affinity than the individual small molecules (Figure 3). Using this 

technique and iterative optimization, scientists at Abbott Laboratories identified a small 

molecule inhibitor with sub-nanomolar binding affinity for BCL-XL, BCL-2, and BCL-W 

named ABT-737 [8]. This proof of principle development of a potent and effective inhibitor 

of members of the BCL-2 family was a landmark in apoptosis research and has been a 

harbinger of the design and development of a number of BH3-mimetic compounds with a 

broad scope of specificities.

 ABT-263 (navitoclax)

The initial success of ABT-737 in cell lines led to the development of an orally bioavailable 

derivative known as ABT-263 (navitoclax) [9]. Both molecules have sub-nanomolar affinity 

for BCL-2 and BCL-XL, exhibiting a similar pattern of specificity as the BH3-only molecule 

BAD, and induce apoptosis in a BAX and BAK-dependent manner (Figure 4). Like BAD, 

neither ABT-737 nor ABT-263 is capable of antagonizing the activity of anti-apoptotic 

MCL-1. Thus, the ability of these agents to show pro-apoptotic activity or anti-tumor 

activities depends on weak or absent MCL-1 expression [10]. Indeed, it was revealed that a 

common resistance mechanism in cancer cells to ABT-263 or ABT-737 is elevated MCL-1 

expression [11, 12].

Early clinical trials have demonstrated anti-tumor activity for ABT-263 in chronic 

lymphocytic leukemia (CLL) and small-cell lung cancer [13, 14]. Despite the promising 

results, phase I studies with ABT-263 revealed a dose-limiting, transient thrombocytopenia 

associated with treatment [13, 15]. Experimental examination of the basis for this toxicity 

revealed that mature platelets depend on BCL-XL expression to promote their survival; 

therefore, the death and clearance of aging platelets by ABT-263 is an “on-target” toxicity 

associated with its ability to target BCL-XL [16]. Despite the thrombocytopenia, additional 

clinical trials combining ABT-263 with other agents are still underway with the goal of 

fostering clinical responses while avoiding the toxicity.

 ABT-199 (venetoclax)

ABT-199 represents a next generation BH3-mimetic in which its specificity has been tuned 

to specifically target BCL-2 (Figure 4). By targeting BCL-2, but not BCL-XL, ABT-199 

does not induce the thrombocytopenia associated with BCL-XL inhibition [17]. Preclinical 

studies indicate potency for ABT-199 in killing cancer cells obtained from patients with 

acute myelogenous leukemia (AML), T-cell acute lymphoblastic leukemia (T-ALL), as well 

as CLL [18–20]. Clinical trials involving ABT-199 have reported efficacy in treating 

lymphoma and chronic lymphocytic leukemia (CLL). As evidence of its potency, in CLL 

patients single-agent ABT-199 treatment induced complete remissions in 25% of patients 

and some patients have experienced tumor lysis syndrome (TLS) due to rapid lymphoma 

killing [17, 21]. The potency of ABT-199 in CLL has led to its designation by the FDA as a 

“breakthrough therapy” for treating CLL and studies are underway to combine ABT-199 
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with other therapeutic agents. There is great anticipation that venetoclax will soon be 

approved by the FDA.

 BCL-XL Inhibitors (WEHI-539, A-1155463, and A-1331852)

Despite the preclinical data from ABT-263 that demonstrated that BCL-XL is essential for 

the survival of mature platelets, there has remained interest in developing inhibitors with 

specificity for individual anti-apoptotic molecules to avoid toxicities associated with pan-

BCL-2 inhibitors. To this aim, a number of groups have screened for selective BCL-XL 

inhibitors; a challenge made complicated by the similarities between the binding 

specificities of BCL-2 and BCL-XL. These efforts have resulted in the development of 

several BCL-XL selective inhibitors. The first, WEHI-539 was identified by disrupting the 

interaction between BCL-XL and BIM and was further optimized to increase the affinity of 

binding to the sub-nanomolar range with more than a 400-fold selectivity for BCL-XL over 

that of BCL-2, MCL-1, BCL-W, or A1 [22]. As evidence of its specificity, WEHI-539 

induces apoptosis only in MCL-1-deficient cells and is ineffective in BCL-2 overexpressing 

cells. Furthermore, it rapidly induces the killing of isolated platelets in a caspase-dependent 

manner as anticipated. However, WEHI-539 is limited to use as an in vitro tool compound 

due to unfavorable chemical properties for in vivo use [23].

Scientist at AbbVie (formerly Abbott Laboratories) used fragment based NMR screening to 

identify two BCL-XL inhibitors suitable for in vivo use, A-1155463 and an orally-

bioavailable version A-1331852 [23, 24]. When mice were treated with A-1155463 in vivo, 

a transient thrombocytopenia was observed within 6 hours, but the platelet numbers 

rebounded to normal by 72 hours after treatment [23]. As evidence of efficacy, A-1155463 

administration produced a modest reduction in the tumor growth of a BCL-XL-dependent 

small cell lung cancer xenograft [23]. Furthermore, single-agent administration of 

A-1331852 delayed the progression of ALL xenografts and potentiated the effects of 

docetaxel in several xenograft models [24]. Therefore, A-1155463 and A-1331852 are 

capable of in vivo dosing for selective inhibition of BCL-XL.

 “MCL-1 Selective” BH3-Mimetics in Development

The observation that elevated expression of anti-apoptotic MCL-1 results in resistance to 

ABT-263/ABT-737 and ABT-199 has resulted in a flurry of activity by many parties to 

develop MCL-1 selective inhibitors [11, 12, 25, 26]. Despite these efforts, MCL-1 has been a 

challenging target. To date, most MCL-1 inhibitors have been quite impotent and in many 

cases the ability of these compounds to directly inhibit MCL-1 has been questionable. Here 

is a summary of the current efforts to inhibit MCL-1 function therapeutically. While there 

are certainly additional inhibitors in development, including an orally active version 

produced by Astra-Zeneca presented at a meeting and other compounds that have been 

reported in patent literature, this review is focused on peer-reviewed findings for inhibitors 

that have been tested in biological systems.

Obatoclax (GX15-070) was one of the first BH3-mimetic compounds reported to inhibit 

MCL-1, albeit with low affinity. In vitro and in cultured cells, obatoclax inhibited the 
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interaction between MCL-1 and pro-apoptotic BAK to induce cell death, even in ABT-737-

resistant cells [27]. Obatoclax targets MCL-1 along with other anti-apoptotic BCL-2 family 

members all with relatively low affinity, so it represents a so called “pan-BCL-2” inhibitor. 

Importantly, several studies have reported that obatoclax can induce killing in a BCL-2 

family protein independent manner, indicating that its action may not be purely as a BH3-

mimetic [28]. Obatoclax has completed a number of Phase I and II clinical trials for a 

number of malignancies including non-small cell lung cancer (NSCLC), CLL, and acute 

myelogenous leukemia (AML) with modest efficacy [29]. In NSCLC, combining obatoclax 

with topotecan or docetaxel in relapsed patients resulted in minimal responses [30, 31]. 

Common toxicities were neutropenia and dose-limiting induction of drowsiness, euphoria, 

and disorientation during intravenous infusion [31, 32]. At this time, no additional obatoclax 

clinical trials are ongoing according to the NIH clinical trials website.

The Gossypol Family of inhibitors are plant-derived “pan-BCL-2” inhibitors capable of 

inhibiting BCL-2, BCL-XL, and MCL-1 [33]. The affinities for early Gossypol-derivatives 

for anti-apoptotic molecules were relatively modest and there have been reports that variants 

can induce death even in cells deficient in intrinsic apoptosis, indicative of off-target effects 

beyond BCL-2 family member inhibition [34, 35]. Despite the short-comings of the initial 

derivatives, a number of variants of this family are still being developed including AT-101 

and BI97C1 (sabutoclax) [36]. These agents appear to have improved potency, but still 

exhibit off-target effects [37, 38]. Phase I clinical trials for AT-101 indicate that it is well 

tolerated with treatable neutropenia as a common toxicity [39]. At this time, clinical trials 

have not revealed efficacy in metastatic prostate cancer or recurrent lung cancer either as 

single-agent or when combined with standard therapies [40–42]. However, additional 

clinical trials are ongoing for AT-101, often in combination with other agents, in relapsed 

CLL, subsets of NSCLC, and advanced laryngeal cancer.

TW-37 is another gossypol-derivative “pan-BCL-2” BH3-mimetic compound capable of 

inhibiting MCL-1, BCL-2, and BCL-XL [43]. Like obatoclax, TW-37 shows some toxicity 

even to cells in which the intrinsic apoptotic machinery has been compromised indicating 

that it is capable “off-target” cell death [35]. Despite this, in pre-clinical data TW-37 showed 

potency as a single agent against diffuse large cell lymphoma (DLCL) cell lines and 

synergized with other chemotherapeutics in xenografted mice [43]. TW-37 has also been 

reported to induce the induction of the BH3-only family member NOXA [35]; potentially 

representing an indirect repression MCL-1 expression as NOXA induction has been reported 

to lead to the degradation of MCL-1 [44].

S1 is another “pan-BCL-2 inhibitor” BH3-mimetic small molecule that was characterized by 

its ability to displace a BID BH3-peptide from BCL-2 [45]. At higher concentrations, S1 can 

also disrupt the interaction between MCL-1 and the pro-apoptotic effector BAK in cell lines. 

However, S1’s ability to directly inhibit MCL-1 has been questioned, as treatment of cells 

with S1 also induces the expression of NOXA that could be responsible for antagonizing 

MCL-1 function [34, 38]. In either case, S1 induced killing is BAX and/or BAK dependent 

[45]. Preclinical evidence indicates that S1 treatment can kill human primary ALL samples 

in culture and appears to delay tumor growth in hepatocarcinoma xenograft models [45].

Opferman Page 5

FEBS J. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Maritoclax is a BH3-mimetic identified due to its ability to displace the BIM BH3-peptide 

from MCL-1, but it is unable to displace the BIM BH3-peptide from BCL-XL indicating 

selectivity for MCL-1 [46]. Maritoclax rapidly induces the proteasome-dependent 

degradation of MCL-1 [46]. Therefore, maritoclax may have dual function in not only 

displacing MCL-1 from pro-apoptotic molecules, but also causing the elimination of MCL-1 

via proteolysis. In either case, maritoclax has demonstrated efficacy in killing acute myeloid 

leukemia (AML) cell lines both in vitro and in vivo [47]. Lastly, maritoclax treated cells are 

more sensitive to other BH3-mimetic compounds such as ABT-737 raising the possibility 

that it would be a good combinatorial candidate [46].

EU-5346 (compound 9) is a small molecule inhibitor identified by Eutropics 

Pharmaceuticals by screening a small molecule library for displacement of a BIM BH3-

peptide from recombinant MCL-1 [48]. To attenuate the toxic effects of BCL-XL inhibition, 

a counter screen for molecules that exhibited a preference for MCL-1 above recombinant 

BCL-XL was also implemented. Modified derivatives of the initial screening hit were 

designed to generate EU-5346, a small molecule that possesses an IC50=310 nM for MCL-1 

and 40 µM for BCL-XL [48]. In cultured human cancer cell lines, EU-5346 kills cell lines 

defined as MCL-1-dependent by inducing mitochondrial permeabilization [48]. EU-5346 is 

still in preclinical developmental and is considered a tool compound.

MIM1 is a small molecule inhibitor identified by a small molecule screen to displace a 

stapled alpha-helical BH3-peptide from MCL-1 itself from recombinant MCL-1 [49]. MIM1 

is a prototype inhibitor with selectivity for MCL-1, but not anti-apoptotic BCL-XL in model 

leukemic cell lines [49]. However, MIM1 appears to lack the potency necessary to move 

forward with clinical evaluation. This may reflect the small size of MIM1 and the fact that it 

only targets a portion of MCL-1’s BH3-binding pocket [49]. Importantly, MIM1 does appear 

to be on-pathway as cells lacking intrinsic apoptotic machinery are resistant [35]. It is 

anticipated that additional medicinal chemistry of MIM1 will improve the potency.

UMI-77 is an analog of UMI-59, a small molecule that was identified as an MCL-1 inhibitor 

by a high-throughput screening approach in which molecules were tested to disrupt the 

interaction between MCL-1 and a BID BH3-peptide [50, 51]. The improved UMI-77 

selectively binds MCL-1 (Ki=0.49 µM) and to a lesser extent A1/BFL-1 (Ki=5.33 µM) and 

BCL-W (Ki=8.19 µM)[50]. In contrast UMI-77 poorly binds to BCL-2 and BCL-XL making 

it an MCL-1 “selective inhibitor”. Mechanistically, UMI-77 induces killing of pancreatic 

cancer cells that correlates with the expression levels of MCL-1 and BAK and induces 

caspase-dependent intrinsic apoptosis [50]. As further evidence of the on-pathway efficacy, 

UMI-77 only poorly induces the death of BAX and BAK doubly-deficient MEF lines and 

requires the expression of MCL-1 for activity in cell lines [50]. Lastly, UMI-77 can slow the 

growth of pancreatic cancer cell line xenografts when treated in vivo highlighting its 

potential in pre-clinical models [50].

MCL-1 inhibitor A-1210477 is the culmination of efforts by AbbVie to design an MCL-1 

selective inhibitor by high-throughput screening. Using extensive iterative chemical 

modification and structural evaluation, scientists at AbbVie were able to generate 

A-1210477 with picomolar binding to MCL-1 (Ki=0.43 nM) while exhibiting much poorer 
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binding to BCL-2, BCL-XL, BCL-W, and BFL-1 (Ki>0.66 µM) [52, 53]. In cell based 

assays, A-1210477 is able to disrupt the interaction between MCL-1 and pro-apoptotic BIM 

and can induce death of multiple myeloma and non-small cell lung cancer cell lines in vitro 
even as a single agent [53]. Strikingly, A-1210477 appears to function similar to BIM as 

treatment with the agent induces the stabilization of MCL-1 in cell lines serving as a bio-

marker for activity [53]. Importantly, by combining A-1210477 with navitoclax a potent 

synergy of interaction was observed in cell lines. Unfortunately, A-1210477 does not have 

favorable pharmacokinetics for in vivo use and is therefore limited to utility as a tool 

compound for in vitro and cell based studies. However, the anticipation is that additional 

development based on the efficacy of A-1210477 will lead to the development of a suitable 

in vivo inhibitor.

 “Direct Activators” Bax Agonists

While the majority of anti-cancer therapies involving the BCL-2 family have been focused 

on releasing the inhibitory effects of anti-apoptotic molecules, others have approached the 

problem by investigating mechanisms to directly activate the multi-domain pro-apoptotic 

effectors. The benefit of this approach is that it can bypass the selectivity of the anti-

apoptotic molecules, thus making a “one-size-fits-all” strategy to induce apoptosis in tumor 

cells. To date the majority of these approaches have targeted the BAX molecule and 

screened for small molecules that can drive its activation and subsequent oligomerization. 

Several strategies for identifying BAX agonists have been utilized including directly 

targeting BAX’s hydrophobic binding pocket, activating the so called “BH3-trigger site” 

formed by alpha-helices 1 and 6, and targeting the phosphorylation of serine 184 of BAX 

[54–56]. These approaches have all identified small molecules that could trigger BAX-

dependent, but BAK-independent killing of model cell lines and tumor cell lines. The 

biggest concern about this direct-activation strategy is the possibility of triggering toxicity to 

normal tissues. Preliminary reports indicate that at least in a xenograft model of lung cancer, 

small-molecule BAX agonists triggered tumor killing without inducing appreciable toxicity 

highlighting the potential for this strategy [54]. Further research will be necessary to identify 

whether there is a therapeutic window for use of direct multi-domain effector agonists 

without triggering toxic effects in humans. It is anticipated that similar strategies will also 

lead to BAK agonist small molecules, thus adding another weapon to the arsenal of cancer 

therapy.

 Roles for Anti-Apoptotic BCL-2 Family in Normal Biology

Evidence from mouse genetic ablation experiments has revealed selective roles for most 

anti-apoptotic members of the BCL-2 family in promoting survival during the development 

and homeostasis of many normal animal tissues (Figure 5). For example, genetic ablation of 

anti-apoptotic BCL-2 results in viable mice, but a majority of animals die at young ages due 

to polycystic kidney disease and fulminant apoptosis of mature lymphocytes [57–59]. Mice 

lacking BCL-XL die at embryonic day 13 exhibiting massive apoptosis throughout the 

developing brain and death of erythrocyte precursors [60, 61]. Mice lacking BCL-W have 

few developmental abnormalities, but male mice are sterile due to failed spermatogenesis 

[62, 63]. Silencing of isoforms of A1, the mouse homologs of human BFL-1, resulted in 
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impaired thymocyte development, B lymphocyte homeostasis and proliferation as well as 

sensitizing granulocytes to spontaneous cell death [64].

In contrast to the relatively restricted roles for other anti-apoptotic BCL-2 family members, 

anti-apoptotic MCL-1 appears to have more generalizable roles being responsible for 

promoting cellular survival both during development and in differentiated lineages. During 

hematopoiesis, MCL-1 is essential to promote the survival of all the progenitor populations 

including the hematopoietic stem cells [65]. It is required to promote survival during all 

stages of both T and B lymphoid development as well as for naïve, effector, regulatory, and 

memory lymphocyte populations [5, 66–69]. During myelopoiesis, lacking MCL-1 prevents 

the survival of mature granulocytes, but surprisingly deletion of MCL-1 in monocytes and 

macrophages is tolerated, but renders the cells more sensitive to stress induced cell death 

[70, 71]. In unpublished work, MCL-1 is also important for early red blood cell progenitor 

survival. Genetic ablation of MCL-1 in developing neurons induces widespread apoptosis in 

neuronal progenitors and deletion of MCL-1 in mature neurons renders them highly 

sensitive to cell death stimuli [72, 73]. In mature cardiomyocytes, deletion of MCL-1 results 

in a fatal, dilated cardiomyopathy accompanied by loss of contractility, death of myofibrils 

and appearance of resultant fibrosis [74, 75]. Therefore, MCL-1 is a critical modulator of 

cellular survival to a variety of cellular lineages.

These observations, all made using permanent genetic ablation, indicate a general 

dependence for MCL-1 expression in many critical cell types. Therefore, it is possible that 

efficient inhibition of MCL-1 function by BH3-mimetics could be associated with toxicities 

to a myriad of normal cell types. Alternatively, it is possible that pharmacological inhibition 

of MCL-1 might be transient and incomplete, thus providing a therapeutic window in which 

malignant cells can be triggered to die without compromising normal cells. Only in vivo 
testing of MCL-1 inhibitors will be able to arbitrate this outcome.

In addition to MCL-1’s well-recognized function on the outer mitochondrial membrane 

where it antagonizes cell death, a truncated species of MCL-1 is imported into the 

mitochondrial matrix where it promotes normal mitochondrial energy production [76]. As 

genetic deletion abrogates both MCL-1’s ability to inhibit pro-apoptotic molecules as well 

as its function in maintaining mitochondrial energy production, it has been thus far 

challenging to assess the relative contributions of these functions on cell lineage survival 

[77]. Furthermore, it is unclear whether both of these diverse functions require MCL-1’s 

BH3-binding pocket and would be similarly affected by MCL-1-selective inhibitors. Further 

exploration of the contribution of MCL-1 functions will be essential to our understanding 

the potential for toxicity resulting from MCL-1 inhibition.

 Potential for Indirect Inhibition of MCL-1 to Promote Sensitivity to BH3-

mimetics

Due to the current lack of a potent and selective MCL-1 inhibitor and the possibility that 

efficient MCL-1 inhibition may have undesired toxicities, a number of groups have taken an 

alternative approach to utilize combination therapies that can attenuate MCL-1 expression to 

sensitize otherwise ABT-263-resistant tumors. MCL-1 is well-documented to be a labile 
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anti-apoptotic molecule, but its turnover is regulated by many cellular signaling pathways 

[78, 79]. It is the target of phosphorylation events that foster its ubiquitinylation by a number 

of E3 ligases including MULE, β-TrCP, and FBW7 [80–83]. Furthermore, deubiquitinating 

enzymes such as USP9x can remove poly-ubiquitin chains, thus stabilizing MCL-1 

expression [84]. MCL-1 elimination by the proteasome can also occur in an ubiquitin-

independent manner highlighting the complex control on this anti-apoptotic BCL-2 family 

member [85]. Since MCL-1 has such a rapid turnover, a number of strategies to block new 

protein synthesis result in the elimination of MCL-1 expression (Figure 6). For example, 

general transcriptional inhibitors can rapidly induce the loss of MCL-1 expression in cancer 

cell lines including actinomycin D and triptolide [86]. Similarly, the CDK9 kinase inhibitor 

flavopiridol causes the transcriptional repression of MCL-1 leading to its elimination [87]. 

At the translational level, drugs like rapamycin and other inhibitors of the mammalian target 

of rapamycin (mTOR) like AZD8055 that have been shown to repress MCL-1 expression in 

a number of tumor types rendering the cells sensitive to ABT-737 [88–91].

MCL-1 stability is modulated by a number of signaling pathways, therefore by using 

inhibitors of these signaling pathways MCL-1 expression can be reduced in tumor cell lines 

[79]. One of the first examples of this was the identification of sorafenib, a kinase inhibitor 

developed to inhibit C-Ras and B-Raf that also inhibits a number of other kinases including 

VEGFRs, PDGFRs, Flt3, and c-Kit. Sorafenib has been shown to repress MCL-1 protein 

expression in a number of different malignancies including leukemia, lymphoma, breast 

cancer, multiple myeloma, hepatocellular carcinoma without affecting mRNA expression 

[92–94]. In another study, the PI3K inhibitor (GDC-0941) was shown to synergize with 

ABT-263 to abolish the ability of glioma-stem cells to form neurospheres in culture by 

reducing MCL-1 expression [95]. MCL-1 protein stability is regulated by the action of 

PI3K-Akt, which acts in part by inactivating GSK3β, a kinase that marks MCL-1 for 

ubiquitin-mediated degradation [83]. Not surprisingly, many Akt inhibitors act to down 

regulate MCL-1 expression and can render cells more sensitive to BH3-mimetics.

In ABT-263-resistant mouse B-ALL cell lines, the BCR-ABL oncofusion, which activates 

many cellular signaling pathways, acts in part to maintain expression of MCL-1 [96]. 

Therefore, BCR-ABL-inhibiting tyrosine kinase inhibitors (TKIs) dasatinib or imatinib 

repressed MCL-1 expression and potently synergized with ABT-263 to induce leukemia 

killing [96]. These studies demonstrate that while MCL-1 expression is a common resistance 

mechanism against BH3-mimetics like navitoclax and venetoclax, it is possible to use 

combinatorial drug treatment to repress MCL-1 expression and re-sensitize cells.

 Concluding Remarks

It has been almost 30 years since it was appreciated that anti-apoptotic members of the 

BCL-2 family contribute a survival advantage to cancer cells. Now, we stand on the verge of 

having effective therapeutic agents to antagonize some of these survival pathways and 

improve the cancer therapy. This is truly the beginning to a new chapter on the BCL-2 

family in cancer biology.
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Figure 1. The BCL-2 Family of Apoptotic Regulators
BCL-2 family members share a number of domains known as BCL-2 homology (BH) 

domains (indicated in colored segments). (A) Anti-apoptotic molecules, which antagonize 

the cell death process, contain multiple BH domains and often possess transmembrane (TM) 

domains that anchor these family members on cellular membranes including the 

mitochondrial outer membrane, nuclear membrane, and endoplasmic reticulum. (B) Pro-

apoptotic molecules can be further sub-divided into two groups, the multi-domain effector 

molecules of BAX, BAK, and BOK that possess multiple BH-domains and TM domains that 
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permit localization to the outer mitochondrial membrane and the BH3-only family members, 

which share only a minimal BH3-domain and are otherwise structurally quite dissimilar. The 

BH3-only family contains additional members not represented here. The BH and TM 

domains represented in this figure are those recognized by UniProt and the relative sizes of 

the family members are represented for comparison.
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Figure 2. Specificity of the Anti-Apoptotic BCL-2 Family Members for BH3-Only Members
Some BH3-only proteins (BIM, BID, and PUMA) can interact with any of the five anti-

apoptotic molecules (indicated in colored boxes). In contrast, other BH3-only molecules 

exhibit selectivity, only interacting with individual or sub-sets of anti-apoptotic molecules. 

The basis for this specificity is the binding interface of the anti-apoptotic molecule for the 

BH3-domains from the pro-apoptotic molecule. Two main groups have been defined largely 

on the ability to interact with BAD or NOXA. BCL-2, BCL-XL, and BCL-W (depicted in 

shades of green) all exhibit binding specificity to the BAD BH3-only molecule, but not to 

NOXA. In contrast, MCL-1 and BFL-1 (depicted in shades of orange) cannot interact with 

BAD, but possess specificity to interact with NOXA. The HRK BH3-only family member 

has remarkable specificity for BCL-XL.
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Figure 3. Structure-Activity Relationships by Nuclear Magnetic Resonance (so called SAR by 
NMR)
Scientists at Abbott Laboratories pioneered targeting of anti-apoptotic BCL-2 family 

members based on structural studies of how BH3-only proteins interact with the BH3-

binding pocket of the anti-apoptotic molecule. This protein-protein interaction face 

(indicated by green shape) is quite large when compared to the active site of an enzyme. 

Therefore, to target this interface, the sub-divided the interaction domain into separate 

“pockets” and used small molecule fragment screening (indicated by red and blue shapes) to 

interact with specific “pockets” separately. By using NMR to assess the binding of the small 
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molecule to the pocket, a series of iterations were used to increase the affinity of the 

fragments to each pocket individually. Then, to increase affinity for interaction the small 

molecule fragments were chemically linked together (indicated by black line). Thus, the 

combined small molecule was able to bind both pockets and resulted in a dramatic increase 

in the affinity of interaction when compared to the separate fragments.
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Figure 4. Specificity of the Anti-Apoptotic BCL-2 Family Members for BH3-Mimetic Molecules
Like BH3-only molecules, the small molecule BH3-mimetics exhibit specificity for 

interacting with anti-apoptotic molecules (shown in colored boxes). The first in class 

molecule, ABT-737, and its orally-bioavailable derivative, ABT-263 (navitoclax), can 

interact with BCL-2, BCL-XL, and BCL-W much like the BAD BH3-only molecule. In 

contrast, the next generation inhibitor, ABT-199 (venetoclax), possesses specificity only for 

BCL-2 and does not inhibit the activity of BCL-XL or BCL-W and therefore does not induce 

the thrombocytopenia associated with ABT-263 administration. New BCL-XL inhibitors, 

WEHI-539, A-1155463, and A-1331852 were engineered to avoid interaction with BCL-2 

and BCL-W, but have selectivity for BCL-XL. None of these compounds has appreciable 

affinity for MCL-1 or BFL-1. Thus, a common resistance mechanism to navitoclax and 

venetoclax has been elevated MCL-1 expression. The indicated BH3-mimetic small 

molecules are the furthest along in drug development and have well validated mechanisms of 

action.
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Figure 5. Anti-Apoptotic BCL-2 Family Members Possess Selective Functions in Promoting the 
Survival of Normal Cellular Lineages
Genetic ablation studies have revealed that while anti-apoptotic molecules share the ability 

to interact with some BH3-only molecules, they exhibit remarkable selectivity in promoting 

the survival of normal cellular lineages. Mice deficient in BCL-2, BCL-W, and A1 (mouse 

homolog of BFL-1) anti-apoptotic molecules often have quite specific deficiencies in normal 

cell survival. In contrast, mice lacking BCL-XL and MCL-1 are embryonic lethal. 

Conditional knockout approaches have revealed that BCL-XL is required for a number of 

cellular lineages. In contrast, MCL-1 appears to be important for a wide-array of normal 

tissues. The “X” represents a role in the survival of the indicated lineage; however, the 

relative contribution of individual anti-apoptotic molecules is varied. Please consult the text 

for a more complete explanation of the contribution of individual pro-survival molecules in 

specific cellular lineages.
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Figure 6. Strategies to Attenuate MCL-1 Expression in Malignancy to Render Cells Susceptible 
to BH3-Mimetics
Currently, MCL-1 expression renders cancer cells resistant to the best developed BH3-

mimetic small molecules such as venetoclax and navitoclax. To restore susceptibility of 

cancer cells to these agents, strategies to decrease MCL-1 expression have been explored in 

pre-clinical models. A variety of cellular signaling pathways promote MCL-1 expression. 

Since MCL-1 is an extremely labile anti-apoptotic molecule, a number of agents that block 

MCL-1 mRNA synthesis or protein translation (e.g. rapamycin, actinomycin D, triptolide, 

CDK inhibitors, tyrosine kinase inhibitors etc.) have shown efficacy in repressing MCL-1 
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expression in cancer cells. Furthermore, MCL-1 turnover by the proteasome also is regulated 

at a number of levels. First, MCL-1 ubiquitinylation by E3 ligases (e.g. MULE, βTrCP, and 

FBW7) can be facilitated by phosphorylation of MCL-1 by a number of signaling pathways 

including GSK3β, JNK, and ERK. Thus, activation of these signaling pathways or inhibition 

of repressive signaling (e.g. AKT, etc.) can foster the elimination of MCL-1 by the 

proteasome. In contrast, removal of these phosphorylation events by phosphatases like PP2A 

or removal of polyubiquitin chains by deubiquitinases like USP9x can promote MCL-1 

stability by blocking degradation. Lastly, a number of cellular stresses can lead to the 

induction of NOXA, an MCL-1-selective BH3-only molecule, which has been shown to 

promote MCL-1 degradation. In summary, there are a number of methods by which MCL-1 

protein can be actively degraded in cells, thus representing potential mechanisms by which 

non-MCL-1 targeting BH3-mimetic agents (e.g. venetoclax and navitoclax) can be 

combined to drive cancer cell apoptosis.
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