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Integrative topological analysis of 
mass spectrometry data reveals 
molecular features with clinical 
relevance in esophageal squamous 
cell carcinoma
She-Gan Gao1,*, Rui-Min Liu2,*, Yun-Gang Zhao2, Pei Wang3, Douglas G. Ward4,  
Guang-Chao Wang2, Xiang-Qian Guo2, Juan Gu2, Wan-Bin Niu2, Tian Zhang2, Ashley Martin4, 
Zhi-Peng Guo2, Xiao-Shan Feng1, Yi-Jun Qi2 & Yuan-Fang Ma2

Combining MS-based proteomic data with network and topological features of such network would 
identify more clinically relevant molecules and meaningfully expand the repertoire of proteins derived 
from MS analysis. The integrative topological indexes representing 95.96% information of seven 
individual topological measures of node proteins were calculated within a protein-protein interaction 
(PPI) network, built using 244 differentially expressed proteins (DEPs) identified by iTRAQ 2D-LC-MS/
MS. Compared with DEPs, differentially expressed genes (DEGs) and comprehensive features (CFs), 
structurally dominant nodes (SDNs) based on integrative topological index distribution produced 
comparable classification performance in three different clinical settings using five independent 
gene expression data sets. The signature molecules of SDN-based classifier for distinction of early 
from late clinical TNM stages were enriched in biological traits of protein synthesis, intracellular 
localization and ribosome biogenesis, which suggests that ribosome biogenesis represents a promising 
therapeutic target for treating ESCC. In addition, ITGB1 expression selected exclusively by integrative 
topological measures correlated with clinical stages and prognosis, which was further validated 
with two independent cohorts of ESCC samples. Thus the integrative topological analysis of PPI 
networks proposed in this study provides an alternative approach to identify potential biomarkers and 
therapeutic targets from MS/MS data with functional insights in ESCC.

Rapid advances in proteomics allow hundreds to thousands of molecular changes being simultaneously identi-
fied during progression of disease, providing a comprehensive picture of malfunction relative to healthy state1,2. 
Although fold change analysis together with standard statistical measure if sufficient number of replicates avail-
able is the most commonly used approach for the identification of potential biomarkers, the inherent constraints 
of this approach generally generate differentially expressed molecules with possibly high rates of false positives for 
low-abundance and of false negatives for high-abundance molecules, respectively3–6. More importantly, differen-
tially expressed molecules extracted from various independent studies suffering low consistency pose difficulties 
in subsequent clinical application7–10. In addition, this approach can overlook biologically meaningful molecules 
without largest fold change such as transcription factors4. Furthermore, these aberrant changes lack the ability to 
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link the functional importance with pathogenesis11 and pose challenges in interpretation from a biological and 
systemic perspective.

On the other hand, mass spectrometry (MS)-based proteomics currently widely used for biomarker discovery 
has incomplete proteome coverage of individual samples (limited fraction of proteins identified) and poor con-
sistency across samples11,12. As genes known to be associated with the same phenotype tend to cluster together in 
protein-protein interaction (PPI) networks ascribing to sharing similar functions13–18, network-based methods 
can alleviate incomplete data coverage and inconsistency as well as complement cluster obtained via fold change 
analysis11,19. Moreover, network-based approaches have been extensively used for prioritization of drug target20 
and identification of multiple disease markers, including breast cancer7,21–23, colon cancer9,24,25, prostate cancer26, 
ovarian cancer16, gastric cancer27, inflammatory response28,29, etc. Analysis of topological features of network, 
e.g. degree30,31, betweenness32,33, k-shell34, motif centrality35,36, has been a topic of great interest and been uti-
lized to define critical points representing essentiality in biological networks and disease biomarkers as well27,37. 
Compared with differential expressions of individual proteins, network topology of proteins is more conserved 
across datasets and has the ability to provide otherwise information37. Therefore, combining MS-based proteomic 
data with network and hence topological features of such network could identify more clinically relevant mole-
cules and meaningfully expand the repertoire of proteins returned via MS analysis.

Esophageal squamous cell carcinoma (ESCC) remains the predominant histological subtype of esophageal 
carcinoma (EC)38 and ranks as the fourth in terms of both incidence and mortality in China39. Long-term survival 
of advanced ESCC after surgery is dismal with a 5-year survival rate <25%, mainly due to late diagnosis, aggres-
sive nature and limited treatment options40. Obviously, it is pressing to identify appropriate biomarkers for early 
diagnosis and therapeutic targets as well.

Here we used Isobaric Tags for Relative and Absolute Quantification (iTRAQ) combined with 2D-LC-MS/MS 
to globally identify differentially expressed proteins (DEPs) implicated in ESCC. To alleviate the weaknesses of 
MS-based proteomics, a PPI network was created by mapping 244 DEPs as seeds to a web-based PPI database. We 
identified structurally dominant nodes (SDNs) by integrative topological analysis of seven individual measures as 
potential molecular signatures for ESCC and determined the clinical relevance of these SDNs in comparison with 
DEPs and differentially expressed genes (DEGs) as well.

Results
Construction of protein-protein interaction network by DEPs in ESCC.  Protein pools of ESCC and 
corresponding non-tumor epithelial tissue (N) after iTRAQ-labeling were MS/MS quantified. Using a threshold 
of 1.5-fold mean difference and two unique peptides for each protein, a total of 244 DEPs including 119 up-regu-
lated and 125 down-regulated proteins, respectively, were identified (Supplementary Table S1).

In the present study, the extended PPI network built by seeds of 244 DEPs resulted in 22 604 interactions 
between 6392 nodes (Fig. 1A). The statistical characteristics of the PPI networks are described in detail in 
Supplementary Table S2. The PPI network is sparse, with a connection density of 0.0011% and an average degree 
of 7.0726. Moreover, the degree distribution of the network is scale-free (Fig. 1B) and the power-law exponent 
is around −1.7770, which resembles another investigation on large-scale human PPI networks in reference41. 
Furthermore, the PPI network is small-world with very short average path length and high clustering coefficient, 
and the small-world SW index equals to 221.1198, which indicates the small-worldness of the network41.

Identification of important nodes by integrative topological measures.  A variety of topological 
measures have been proposed to assess the importance of nodes in complex networks from different perspectives. 
Resembling single molecular biomarkers, a single measure in PPI networks would not distinguish lethal proteins 
from the others. For in-depth identification of important nodes in PPI network implicated in ESCC, therefore, the 
present study integrated seven different topological measures, which comprised degree, betweenness, semi-local 
centrality, cluster coefficient, k-shell, PageRank and eigenvector centrality. After normalization, the seven top-
ological measures were coalesced as two variables, i.e. principle component factor 1 and 2 (F1 and F2), which 
maintains 95.96% information of original seven topological measure (Fig. 1C). According to the values of F1 
and F2, the top 50 nodes were selected as potential ESCC signature molecules named SDNs for further analysis.

Concordance of differential protein and gene expression in ESCC.  From five independent gene 
expression data sets, a total of 8 498 common genes present on all arrays were profiled on 186 ESCC patients 
partly including 87 pairs of ESCC and N, and exclusive 99 ESCCs of different clinical TNM stages (Table 1). 
To resemble a clinical practice, we used data set GSE 23400 to identify DEGs using two-sample T-test, a total 
of 1218 genes satisfying the P value <  0.0001 and q value (FDR) <  0.0001 were generated for further analysis 
(Supplementary Table S3).

Between 244 DEPs and 1218 DEGs, there were 67 common molecules detected by both proteomic and tran-
scriptomic platforms from independent studies. Among the common molecules, 59 showed the same change 
direction including 22 up-regulated and 37 down-regulated molecules, respectively, while the other 8 showed 
opposite direction of deregulation (Table S4). Fisher’s exact test revealed that there was significant consistency 
between increased and decreased expression of 67 overlapping molecules (P =  1 ×  10−12, Fisher’s exact test, Table 
S5).

Clinical performance of SDN-based classifier compared with DEP-, DEG- and CF-based classifi-
ers.  For comparison, the top 50 of SDNs, DEPs and DEGs in terms of statistical P value were selected as poten-
tial signature molecules for building ESCC-related classifiers and the overlap between these molecules is rather 
small, i.e. four present (PPP2R1A, RPS15A, RPLP2 and RPSA) in SDNs and DEPs, one (RUVBL1) present in 
SDNs and DEGs, non-overlap between DEPs and DEGs (Table 2). Nevertheless, 23 molecules of 50 selected DEPs 
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(46%) were virtually per se included in DEGs, 20 of 50 SDNs in DEPs (40%) and only 6 of SDNs in DEGs(12%) 
according to the cutoff value defined in our study.

Since the potential signature molecules for ESCC selected by various approaches might represent distinct 
aspects of tumor biology, comprehensive features (CFs) combining DEPs, DEGs and SDNs (a total of 150 poten-
tial molecules) would help us to build the most feasible classifier for clinical application. In the present study, the 
clinical relevance of SDN compared with DEP, DEG as well as CF was evaluated by classification performance 
in three different clinical settings, i.e. ESCC vs. N, early TNM stages (I–II) vs. late TNM stages (III–IV) and 
responder vs. non-responder to neoadjuvant chemoradiotherapy (neo-CRT).

Discrimination of ESCC and N By SVM analysis on the training set GSE 23400 including 53 pairs of ESCCs 
and adjacent Ns, LOO cross-validation was used to develop an optimal classifier. No significant differences in 
accuracies on training data set between the four different classifiers were observed (accuracies ranged from 91.5% 
to 94.3%). Furthermore, there were no significant differences as well with regards to accuracies, sensitivities, 

Figure 1.  A PPI network construction by mapping 244 DEPs to a web-based HAPPI database and its 
topological features. (A) The seeds of 244 DEPs were mapped onto HAPPI database and were expanded to 
their first-degree neighbors, resulting in an extended network with 22 604 interactions between 6392 nodes. 
Different colors denote nodes with different degree and k-shell. (B) The degree distribution of the PPI network. 
(C) The contributions of the two factors in terms of factor scores f 1versus f 2are 52.25% and 43.71%, 
respectively.

Dataset ID
No. of cases  

(N vs. ESCC) Platform Array type

GSE23400 53 vs. 53 GPL96 [HG-U133A] Affymetrix Human Genome U133A Array

GSE20347 17 vs. 17 GPL571 [HG-U133A_2] Affymetrix Human Genome U133A 2.0 Array

GSE70409 17 vs. 17 GPL13287 Phalanx Human OneArray [Annotation HOA5 release 1.0]

GSE47404 0 vs. 71 GPL6480 Agilent-014850 Whole Human Genome Microarray 4 ×  44 K G4112F (Probe Name version)

GSE45670 10 vs. 28 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array

Table 1.   Characteristics of gene expression datasets.
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specificities and AUCs (P >  0.05, T-test) when the corresponding classifiers were performed on the four inde-
pendent test cohorts and in meta-analysis (Fig. 2). It appears that SDN-based classifier tended to produce lower 
scores in most instances compared with the other three classifiers and the performance of CF-based classifier out-
performed the others. The contributing molecules to optimal SDN signature (Table 3) were largest (9 molecules) 
followed by those of DEP-based classifier (7 molecules), while those of DEG- and CF-based classifiers were the 
same (3 molecules). Permutation test of 1000 random molecule sets indicated that all four classifiers generated in 
our study produced significantly better performance in meta analysis (P =  0.041 for SDN-, P <  0.001 for DEP-, 
DEG- and CF-based classifier, respectively). Figure 2A–D show the mean accuracies, sensitivities, specificities 
and AUCs of each test cohort and meta data sets from permutation tests. Except for four values for data set GSE 
70409 marked by star in Fig. 2, the other values are superior to results of permutation test. However, all values of 
four classifiers generated in our study are higher than corresponding values of permutation test in meta analysis, 
suggesting that small sample size is the main contributing factor of inferior scores for certain individual test 
cohort.

Discrimination of early vs. late TNM stages The data set GSE 23400 including 68 informative ESCCs was used 
as a training cohort and 28 ESCCs derived from data set GSE 45670 as a test cohort. In the training cohort, the 
performance of CF-based optimal classifier (75.0% accuracy) outstripped other classifiers with the minimal con-
tributing molecules (8 molecules, Table 3)). In the test cohort of data set GSE 45670, the accuracy of SDN-based 
classifier increased from 64.7% to 71.4% while the performances of the other three classifiers decreased with 
the largest decrease (from 75.0% to 67.9%), moderate decrease (from 72.1% to 67.9%) and slight decrease (from 
73.5% to 71.4%) in CF-, DEG- and DEP-based classifier, respectively (Fig. 3). The details of sensitivities, specif-
icities and AUCs are shown in Fig. 3. The optimal DEG-based classifier consisting of 15 signature genes was the 
largest followed by those of SDN- and DEP-based classifiers (Table 3). Likewise, permutation test demonstrated 
better performance of our four SVM-based classifiers in terms of accuracy and sensitivity in independent test 

Approaches Top 50 molecules

SDNs

  GRB2 FN1 MAPK1 CTNNB1 YWHAG

  YWHAZ ACTB EEF1A1 UBC STAT3

  YWHAE ALB YWHAB PPP2R1A RPS3

  ITGB SYK CAV1 STAT1 DDB1

  EEF1G RUVBL2 YBX1 YWHAH RBM8A

  RUVBL1 KPNB1 RPS6 FLNA RPL3

  HNRNPA1 RPS8 PSMD2 ACTN1 RPS15A

  HNRNPU SF3B3 KHDRBS1 HNRNPM RPL12

  RPL18 RPLP2 RPS17 RPS2 RPL7

  RPS18 RPS28 EIF2S1 RPSA RPL10

DEPs

  DDOST HTATSF1 TFRC RPS15A KRT17

  PPP2R1A SH3BGRL MCM4 RPLP2 VCAN

  PKP3 AKR1A1 CYB5R3 PSMA5 LAMP2

  S100A11 CCT5 RPSA PSMC1 SERPINH1

  ARL8B CTSB EFHD2 TAGLN2 NNMT

  CRNN CSTB FLG TGM3 SPINK5

  RALY SELENBP1 ZNF185 SPRR3 A2ML1

  TGM1 CRABP2 IL1RN AQP1 SPRR1A

  MUC5B MYLK TPM2 GRHPR AKAP12

  CSTA YAP1 TXN SLC9A3R1 IVL

DEGs

  RFC4 CBX3 ECT2 COL1A1 MMP1

  MFAP2 KIF4A CKS1B SPP1 MCM6

  MCM2 PLAU AGRN BUB1B KIF14

  GINS1 BID CDK1 NUP155 ATP2C1

  CEP55 PDIA6 SNAI2 ACLY ITPR3

  PLXNA1 ACTL6A FSCN1 RPN1 UBE2C

  KIF2C DLGAP5 SOX4 CENPF PTK7

  RANBP1 DNMT1 NUDT1 COL7A1 DTL

  CDH11 FANCI KIF20A RUVBL1 ATR

  MEST FZD6 CENPA EFNA1 CRYL1

Table 2.   The top 50 molecules in order of statistical power for building ESCC-related classifiers. Note: 
Underlined and bold molecules denotes overlaps between SDNs and DEPs, SDNs and DEGs, respectively.
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cohort but not for specificity and AUC (Fig. 3A). The P values of permutation test were 0.1, 0.038, 0.007, and 0.364 
for SDN-, DEP-, DEG- and CF-based classifiers, respectively.

Predication of neoadjuvant chemoradiotherapy response Only one data set GSE 45670 including 28 
ESCC patients profiled the global gene expression before and after neoadjuvant chemoradiotherapy response 
(neo-CRT). Due to the limited sample size, we used five-fold cross validation to measure the performance of 
four types of classifiers. The CF-based classifier with the largest contributing molecules (12 molecules) reached 
the highest prediction accuracy (92.9%) followed by SDN-based classifier (82.1%) with the least components  
(5 molecules). The prediction accuracy of pathological response for DEP- and DEC-based classifier was the same 
(78.6%) with similar contributing molecules (Table 3). Permutation test demonstrated significantly better per-
formance of four investigated classifiers in our study after SVM-based classifier built using 1000 corresponding 
random molecule sets (P <  0.001).

Enrichment analysis of GO biological processes and KEGG pathways.  To understand the biolog-
ical implications of molecular classifiers derived from different approaches, the constituent molecules of each 
classifier were analyzed for enrichment of Gene Ontology (GO) biological processes and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways. Only the signature molecules of SDN-based classifier for discrimination 
of TNM stages (15 molecules) were enriched for ribosome KEGG pathway and 10 biological processes mainly 
responsible for mRNA processing, protein translation and protein localization to organelles (Supplementary 
Table S6). Figure 3 shows the contributing molecules of 10 enriched biological processes, which include six high 
prevalent molecules of RPL12, RPL3, RPL7, RPLP2, RPS18 and RPS6. Although the protein biogenesis occurring 
in ribosome is not cancer-specific, these biological functions are indirectly linked to apoptosis, DNA repair and 
oncogenesis. However, no functional convergence was observed for signature molecules of the other classifiers in 
other distinct clinical settings.

Experimental validation of ITGB1 in ESCC with different clinical stages and prognosis.  The 
precise clinical staging assessment is essential for current management of EC and survival prediction although 
the current TNM staging system has critical limitations. Our results demonstrated that ITGB1 ranked 17th by 
integrative topological analysis and 3rd in the constituent molecules of SDN-based classifier for discrimination 
of early from late TNM stages. In addition, ITGB1 was not among the top 50 molecules of DEPs and DEGs for 
building the optimal SVM-based classifiers. Therefore, the clinical relevance of ITGB1 was evaluated by Western 
blot and immunohistochemistry (IHC) analyses in two independent cohorts of ESCC samples. With the progres-
sion of clinical stages, ITGB1 protein expression increased in a stepwise manner evidenced by Western blot and 
IHC (Fig. 4A–C). Furthermore, high expression of ITGB1 was correlated with late clinical stages in both cohorts 
(P =  0.019, P =  0.016, respectively) and with lymph node metastasis but with borderline significance (P =  0.057, 

Figure 2.  Clinical performances for discrimination of ESCC and N of SDN-, DEP-, DEG- and CF-based 
classifiers compared with 1000 random classifiers of each data set. (A–D) show the accuracies, sensitivities, 
specificities and AUCs of SDN-, DEP-, DEG- and CF-based classifiers compared with 1000 random classifiers 
of each data set for discrimination of ESCC and N, respectively. Note: * indicates higher values of permutated 
classifiers than SVM based classifiers in data set GSE 70409; SDN-, DEP-, DEG- and CF-Per indicate mean 
values of permutation tests.
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P =  0.062, respectively). No significant correlations were observed between ITGB1 expression and other clinico-
pathological characteristics (Table 4). For cohort 1 with survival data after curative surgery, Kaplan-Meier sur-
vival analysis revealed that ESCC with high expression of ITGB1 had a significantly worse prognosis than ESCC 
with low expression (P <  0.001, Fig. 4D). The median survival time for ESCC patients with low expression of 

Classifier Signature molecules

ESCC vs. N

  SDN-based
EIF2S1 YWHAH RPLP2 RBM8A PSMD2

RPL3 YBX1 ACTN1 KHDRBS1

  DEP-based
RALY CRNN DDOST CCT5 CRABP2

RPLP2 CTSB

  DEG-based CKS1B COL1A1 CEP55

  CF-based CKS1B COL1A1 CEP55

Early vs. late TNM stages

  SDN-based

RPL7 CAV1 ITGB1 RPS18 RPL3

KHDRBS1 RPS6 STAT3 RPLP2 YBX1

RPL12 RUVBL1 STAT1 PPP2R1A SF3B3

  DEP-based

HTATSF1 TGM3 AKAP12 IVL CCT5

RALY CTSB MUC5B

MCM2 FZD6 CBX3 AGRN MCM6

  DEG-based

COL1A1 FSCN1 BID RANBP1 PDIA6

MFAP2 ACLY SNAI2 CDH11 EFNA1

ATR

  CF-based
HTATSF1 TGM3 AKAP12 CBX3 PDIA6

MCM6 MCM2 AGRN

Responders vs. non-responders

  SDN-based YBX1 EIF2S1 SF3B3 YWHAE YWHAZ

  DEP-based

DDOST TXN SPRR3 TPM2 SLC9A3R1

CRNN KRT17 CCT5 RPSA PKP3

TFRC

  DEG-based

MMP1 FANCI PLAU FSCN1 PTK7

BID KIF2C CRYL1 GINS1 UBE2C

YBX1 DDOST FANCI TPM2 PLAU

  CF-based
TXN SPRR3 PTK7 MMP1 TFRC

EIF2S1 KIF2C

Table 3.   Signature molecules of SDN-, DEP-, DEG- and CF-based classifiers in three clinical settings.

Figure 3.  Clinical performance for discrimination of early from late TNM stages of SDN-, DEP-, DEG- 
and CF-based classifiers compared with 1000 random classifiers and enrichment of biological processes. 
(A) shows the accuracy, sensitivity, specificity and AUC of SDN-, DEP-, DEG- and CF-based classifiers and 
permutated classifiers for discrimination of early from late TNM stages. (B) shows the enriched biological 
processes for signature molecules of SDN-based classifier. Note: SDN-, DEP-, DEG- and CF-Per indicate mean 
values of permutation tests.
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ITGB1 was 43.26 months whereas high expression of ITGB1 resulted in a remarkable shortened median survival 
time of about 13.86 months.

Discussion
Apart from inherent limitations of fold-change and statistical measures to screen potential cancer biomarkers, 
long lists of differentially regulated molecules generated by high-throughput technologies fail to provide infor-
mation at a biologically functional level11. Combining the MS/MS profiled data with biological networks had the 
ability to improve proteome coverage while unveil relationships between functionally related proteins11,19. In line 
with this viewpoint, the extended PPI network from 244 DEPs including 6392 nodes/molecules were far more 
than original 1567 proteins reported by iTRAQ MS/MS analysis. Topological features of biological networks are 
more conserved than differentially expressed molecules and provided more appropriate interesting molecules 

Figure 4.  ITGB1 protein expression in ESCC and Kaplan-Meier survival curves of overall survival with 
regards to ITGB1 expression in ESCC. (A) Representative Western blots of ITGB1 protein expression level in 
ESCC and matched N with different TNM stages. (B) Quantification of ITGB1 protein expression in TNM I–IV 
ESCC and corresponding N. (C) Representative negative and positive immunoreactivity of ITGB1 in poorly-
differentiated ESCC, respectively. (D) The 5-year overall survival curves of ESCC patients with low (n =  65) and 
high ITGB1 (n =  35) protein expression (P <  0.001).

Variables

Cohort 1 (n = 100) Cohort 2 (n = 91)

Low 
expression

High 
expression P

Low 
expression

High 
expression P

Age (n(%))
< 60 22(73.3) 8(26.7)

0.360
23(76.7) 7(23.3)

0.243
≥ 60 43(61.4) 27(38.6) 39(63.9) 22(36.1)

Gender (n(%))
Male 49(66.2) 25(33.8)

0.811
43(65.2) 23(34.8)

1.000
Female 16(61.5) 10(38.5) 16(64.0) 9(36.0)

Differentiation grade (n(%))

Well 4(66.7) 2(33.3)

0.993

13(68.4) 6(31.6)

0.897Moderately 43(65.2) 23(34.8) 35(64.8.) 19(35.2)

Poorly 18(64.3) 10(35.7) 11(61.1) 7(38.9)

T stage (n(%))
T1 +  T2 13(86.7) 2(13.3)

0.077
51(81.0) 12(19.0)

0.107
T3 +  T4 49(59.8) 33(40.2) 17(63.0) 10(37.0)

Lymph node metastasis (n(%))
No 34(75.6) 11(24.4)

0.057
39(68.4) 18(31.6)

0.075
Yes 30(55.6) 24(44.4) 16(48.5) 17(51.5)

TNM stage (n(%))
I-II 35(76.1) 11(23.9)

0.019
39(62.9) 23(37.1)

0.0113
III–IV 26(52.0) 24(48.0) 9(32.1) 19(67.9)

Table 4.   Association between ITGB1 expression and clinicopathological parameters of ESCC.
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with discriminative potential37, suggesting that topological measures could identify distinct molecules of interest 
with clinical relevance.

Our results demonstrated that the integrative topological indexes comprising seven topological measures gen-
erated adequate clinical performance in three different clinical settings although there were few overlaps among 
the three sets of interesting molecules derived from different measures. In comparison with DEP- and DEG-based 
SVM classifier, the SDN-based classifier displayed more variation for discrimination ESCC from N on various 
transcriptomic profiling data sets with regards to accuracies, sensitivities, specificities and AUCs. For classifi-
cation of clinical TNM stages, the performance of SDN-based classifier showed the largest change between the 
training cohort and the test cohort. The possible cause may lie in poor reproducibility of gene expression profiling 
and small sample size since SVM classifier used interesting molecules derived from DEGs between early and late 
TNM stages performed best in training cohort (88.2% accuracy) but worst in test cohort (25.0% accuracy, data 
now shown). For prediction of pathological response to neo-CRT, SDN-based SVM classifier produced the best 
accuracy compared with DEP- and DEG-based classifiers. Although the contributing molecules for each classifier 
did not overlap with the three molecules (MMP1, LIMCH1 and c1orf226) for constructing the predictive model 
of neo-CRT response42, our three models generated using interesting molecules from three different methods 
produced accuracies ranged from 78.5% to 82.1% and the CF-based SVM classifier produced higher accuracy 
(92.9%) than their original model (86% in training cohort and 81% in test cohort). Our results indicate that 
SDN- and CF-based classifier comprising biologically functional molecules performs better than other potential 
signature molecules selected only by statistical methods without functional relevance in more complex clinical 
settings like clinical TNM staging, treatment response and prognosis.

The overlap among the top 50 of DEGs and DEPs was only one, which poses severe concern with regards 
to clinical importance and application of these differentially expressed molecules. In addition, the distinct 
molecular profile unveiled by different approaches may depict parts of a panorama of tumor and integrative 
indexes derived from both platforms would improve our understanding of tumor biology and the clinical per-
formance of these individual molecules. Therefore, biomarkers comprising multiple genes identified by different 
algorithms, which represent a complexity of multiple functional dysregulation, would provide more insightful 
understanding of malignant disease biology and consistently outperform individual genes across different pop-
ulations5,7–10,16,22–25,28,29,43,44. Since SDN defined in the present study was an integrated index of seven topological 
measures of a human PPI network, the nodes with large absolute SDN values can well reflect their overall impor-
tance in the PPI network. Moreover, our previous investigations on the topological features of some functional 
genes in human PPI networks demonstrated that the functional genes were actually hallmark topological fea-
tures45. Our study indicated that topological measures and differentially regulated molecules reflect distinct and 
complementary features of ESCC biology, and more importantly, integrative indexes of distinct features from 
various platforms or measures would produce the best performance, if not all, in certain clinical settings, by SVM 
analysis of total individual molecules.

Functional enrichment analysis provided biological explanations for the clinical performance of SDN-based 
TNM classifier. The contributing molecules of SDN-based TNM classifier were enriched in the pathway of ribo-
some and the biological processes in protein synthesis and intracellular localization. Ribosomes present in all 
living cells are cellular organelles for protein synthesis and comprise equal amounts of ribosomal proteins and 
rRNA in eukaryotic ribosomes. Ribosomal proteins maintain the balance of protein and RNA of itself and aberra-
tion in ribosome synthesis could lead to cell cycle arrest or to apoptosis. Cai et al. reported that reduced ribosomal 
biogenesis caused by RUNX1 resulted in a low metabolic profile and slow cell cycling, which provided a com-
petitive advantage to pre-leukemic stem cells through increased stress resistance46. Dysregulation of ribosomal 
protein expression was responsible for cisplatin resistance in malignant cells of Hela47, EC10948 and EC970649. 
Therefore, ribosomal proteins represent potential therapeutic targets evidenced by anti-tumor activities exerting 
by ribosome-inactivating proteins across various cancers50. In sharp contrast, the signature molecules of the other 
classifiers did not show any enriched biological features. Unlike SDN-based TNM signature molecules identified 
by network topological analysis, the constituent molecules of other clinical classifiers represent a combination of 
individual molecules without inherent functional linkage, which possess a variety of distinct molecular functions 
and preclude from identification of common biological themes. However, functional and pathway enrichment 
analysis of total DEPs and DEGs revealed biological traits more closely linked to cancer, such as p53 signaling 
pathway, cell cycle, keratinocyte differentiation, focal adhesion, adherens junction, pancreatic cancer, endome-
trial cancer, acute myeloid leukemia, etc. Nevertheless, the top 50 SDN molecules displayed the maximal enriched 
terms in terms of GO biological processes and KEGG pathways followed by DEGs, and DEPs were only enriched 
in biological processes of peptide cross-linking and epidermal cell differentiation (Supplementary Table S6).

As TNM staging provides useful information that helps predict the prognosis of cancer patients as well as 
tailor therapeutic interventions, we selected ITGB1, one contributing molecules to SDN-based TNM classifier, 
otherwise missed by differential measures for potential biomarkers, to validate its clinical stage and prognostic 
relevance. Both Western blot and IHC results demonstrated upregulation of ITGB1 protein expression correlated 
significantly with late TNM stages, which supports that topological analysis of network is a useful approach to 
identify potential biomarkers. Integrins mediated interactions and signaling of cell-cell and cell-extracellular 
matrix (ECM) are crucial for maintenance of tissue homeostasis, cell proliferation and survival51. Consistent with 
their multiple biological functions, altered expression or expression pattern of integrin correlates with tumor 
progression and prognosis. Increased expression of ITGB1 was observed in upper aerodigestive tract52, cervical 
SCC53 and vulval SCC54. Deletion of ITGB1 expression in VSCC cell line A431 or antagonizing ITBG1 antibody 
can inhibit the invasive ability both in vitro and in vivo54. A novel macrolide analog F806 suppressed more effec-
tively ESCC cell growth in vitro and in vivo via initiation of anoikis and subsequent apoptosis by blocking ITGB1 
activation compared with siRNA-mediated ITGB1 knockdown55. In contrast, other studies reported decreased 
expression in oral SCC56. Enhanced expression of ITGB1 at the tumor invasion front correlated with the absence 
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of regional lymph node metastasis and the persistence of physiologically polarized expression of ITGB1 was 
significantly associated with favorable prognosis57. However, survival analysis of our ESCC patients revealed that 
increased ITGB1 expression was significantly associated with late TNM staging, worse prognosis and lymph 
node metastasis but with borderline significance. The discrepancy on biological function and clinical relevance 
of ITGB1 in different types of tumor may ascribe to variations of antibodies, ethnic origin, stage difference, tissue 
specificity, etc. which warrants further investigations to clarify.

Conclusions
The present study demonstrates that integrative topological indexes derived from seven individual topological 
features carrying inherent functional linkage produce comparable classification performance in three different 
clinical settings. The signature molecules of SDN-based classifier for distinction of early from late clinical TNM 
stages were enriched in biological traits of protein synthesis, intracellular localization and ribosome biogenesis, 
which suggests that ribosome biogenesis represents a promising therapeutic target for treating ESCC. In addition, 
one of signature molecules of ITGB1 selected by topological measures correlated with clinical TNM stages and 
ESCC prognosis. Thus the integrative topological analysis of PPI networks proposed in this study provides an 
alternative approach to identify potential biomarkers and therapeutic targets from MS/MS data with functional 
insights in ESCC. By taking advantage of freely available human PPI networks, SDNs depending exclusively on 
the topological features would, to some extent, save costly and time-consuming laboratory experiments compared 
with other approaches for biomarker discovery.

Methods
Tissue samples.  ESCC tissue samples for proteomic quantification were obtained from Linzhou Cancer 
Hospital, Henan, China, between 2010 and 2011. All patients gave informed consent before sample collection. 
None of ESCC patients received radio- or chemotherapy before surgery. This study was approved by the Ethnics 
Committee of the Medical School, Henan University, China and all methods in this study were carried out in 
accordance with the approved guidelines.

Tissue sample preparation.  Tissue samples were minced and homogenized on ice in lysis buffer contain-
ing 8 M urea, 4% CHAPS, 40 mM DTT and complete proteinase inhibitor cocktail (Roche). The tissue homoge-
nates were centrifuged at 13.2 ×  1000 rpm at 4 °C for 15 min to remove any insoluble debris and the supernatant 
was stored at − 80 °C until use.

iTRAQ labeling after protein trypsinization.  Protein pools of ESCC and matched N were made by 
mixing of equal quantities of individual proteins from 10 ESCC and N, respectively, and then were precipitated by 
− 20 °C acetone followed by resuspension. The dissolved protein was reduced, alkylated and subjected to trypsin-
ization. The tryptic peptides of ESCC and N were pooled after iTRAQ labeling, and desalted by C18 SepPak 
column and dried in SpeedVac until complete dryness.

MALDI-TOF/TOF Analysis.  The labeled peptides were separated into 12 fractions by mixed-mode anion 
exchange/reverse-phase chromatography using a 2.1 ×  150 mm Acclaim Mixed-mode WAX-1 HPLC column 
(Dionex, Camberley, UK) and a gradient of 0–40% B over 40 minutes (A: 20 mM ammonium formate pH 6.5, 3% 
acetonitrile, B: 2 mM ammonium formate pH 3.0, 80% acetonitrile) at a flow rate of 250 μ L/min. Each fraction 
was dried, dissolved in 0.1% TFA and the peptides fractionated onto a 384 spot x 800 μ m anchorchip using a 
75 μ m x 25 cm Acclaim PepMap 100 C18 HPLC column (Dionex, Camberley, UK), a 0–40% acetonitrile gradient 
in 0.1% TFA at 300 nl/min with in-line addition of matrix (5 mg/ml α -Cyano-4-hydroxycinnamic acid in 90% 
acetonitrile, 0.1% TFA, 1 mM NH4H2PO4) using a Proteineer fc II spoting robot (BrukerDaltonics, Bremen, 
Germany). Spectra were nearest-neighbour calibrated using Peptide Calibration Standard II (BrukerDaltonics, 
Bremen, Germany). Automated data acquisition was performed using a BrukerUltraflextreme MALDI-TOF/
TOF instrument controlled via Warp-LC software (BrukerDaltonics, Bremen, Germany). Data were searched 
using MASCOT via Proteinscape (BrukerDaltonics, Bremen, Germany) against the SwissProt human sequence 
database (and a randomised version thereof) using tolerances of 20 ppm on precursor ions, 0.7 Da on fragment 
ions and a minimum peptide Mowse score of 30. Only proteins identified by two or more unique peptides were 
accepted. These criteria generated zero hits in the decoy database.

Differentially expressed proteins and protein-protein interaction network construction.  For 
identification of DEPs, a minimum of 2 unique peptides and 1.5 fold-difference was used. The DEPs were utilized 
as seed proteins to build a PPI network. The seed proteins were mapped onto a web-based Human Annotated 
and Predicted Protein Interaction (HAPPI) database (http://bio.informatics.iupui.edu/HAPPI/)58. The seeds were 
expanded to their first-degree neighbors on a high confidence grade 5 to build an extended and high-quality PPI 
network. The PPI network was visualized using the Pajek software.

Identification of important nodes by integrative analysis of seven topological features.  We 
defined SDN based on seven topological indexes. The seven topological indexes included degree, semi-local cen-
trality, betweenness, k-shell, PageRank, cluster coefficient and eigenvector centrality34,45,59,60. For convenience, we 
denote the seven index vectors for a network as , ( = , , ..., )x i 1 2 7i .

To obtain the SDN, we used factorial analysis theory, which is a classical dimension reduction technology. 
This model describes variability among observed, correlated variables in terms of a potentially lower number 
of unobserved variables called factors. The observed variables can be modeled as linear combinations of the 
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common factors and error terms. Generally speaking, the few common factors can reveal most of the information 
contained in the observed variables. Thus, the few common factors can be used later to reduce variables.

Suppose the n topological indexes for networks corresponding to a stochastic vector = ( , , ..., )X X X Xn
T

1 2 , 
there are ( )m m n  common factors ( = , , ..., )F j m1 2j  and n specific factors ε ( = , , ..., )i n1 2i . The index 
vectors ( = , , ..., )x i n1 2i  are realizations of ( = , , ..., )X i n1 2i . The orthogonal factor model can be established 
as:

µ ε= + × + ( )X A F 1
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Based on the observation data ( = , , ..., )x i n1 2i , a key step of factorial analysis is to find the common factors 
( = , , ..., )F j m1 2j  and then replace the original n variables by ( < < )m m n  common factors ( = , , ..., )F j m1 2j .
The factorial model can be rotated to facilitate easier explanations of the common factors. The common fac-

tors ( = , , ..., )F j m1 2j  are actually linear combinations of the original variables.
For the network considered in this study, we find two common factors, which can reveal more than 95% 

information of the original seven topological indexes. The two common factors for the seven topological indexes 
of the PPI network are as follows:
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Based on the two common factors and the seven topological vectors of the PPI network, we derive the obser-
vation of ,F F1 2 as factor scores ,f f1 2. The values of the factor scores reflect the relative importance of each node. 
Factor scores f 1 versus f 2 is shown in Fig. 1C. The contributions of the two factors are 52.25% and 43.71%, 
respectively. The overall contribution of the two factors can achieve as high as 95.96%, which indicate the two 
factors can reveal most of the information contained in the seven indexes. Further based on factor scores, we 
selected top 50 ranked nodes as shown in Table 2.

Gene expression data sets.  For clinical relevance evaluation, the present study adopted five publically 
available and independent gene expression data sets downloading from Gene Expression Omnibus (GEO) web-
site (http://www.ncbi.nlm.nih.gov/gov, Table 1).

Each data set was acquired as CEL file and analyses were performed using BRB-ArrayTools. Probe sets missing 
greater than 20% in all readings in any single data set were removed from subsequent analyses. After normaliza-
tion by reference array and combining multiple probe set into one per gene symbol, a total of 8 498 unique genes 
across five gene expression data sets were subsequently selected for further assessment of clinical relevance. DEGs 
were selected using a T-test with a q value threshold of 0.0001.

Clinical relevance evaluation.  In addition to DEPs-, DEGs- and SDN-derived potential signature mole-
cules of ESCC, we surmised that combination of all above molecules of interest named comprehensive features 
(CFs) would help us to build the most feasible classifier for clinical application. To evaluate the clinical relevance 
of four different types of interesting molecules, we selected three different clinical settings. In clinical setting 1, 
classifiers were used to distinguish ESCC from adjacent N; in clinical setting 2, classification of early and late 
TNM stages was performed; in clinical setting 3, we used four different sets of molecules to predict the response 
to neo-CRT for ESCC.

To compare the clinical relevance of different types of interesting molecules, a radial basis functional support 
vector machine (SVM), which adopted a recursive feature elimination algorithm to select useful features, was 
used for building SDN-, DEP-, DEG- and CF-based classifier. The performance of SVM was estimated using 
five-fold cross validation error. Leave-one-out (LOO) cross validation was used to determine the optimal values 
of the kernel parameters and regularization parameter C, and the test error was obtained using the tuned param-
eters. The top 50 molecules according to statistical score were used as the feature vector for building the optimal 
classifier. Receiver operating characteristic (ROC) curves were plotted using sensitivity versus 1-specificity, and 
the areas under the curves (AUCs) were computed to evaluate the classification accuracies of three different clas-
sifiers with regards to ESCC and N, early and advanced TNM stages. Permutation test was used to compare the 
performances of optimal SVM-based classifiers with 1000 classifiers comprising molecule sets of the same size 
randomly selected from 8498 common genes present on all arrays.

Functional enrichment analysis.  A Cytoscape plug-in ClueGo that visualizes the selected terms in a func-
tionally grouped network was used to estimate the biological relevance of each optimal classifier. The enrichment 
analyses of GO biological processes and KEGG pathways were performed using GO annotations for the complete 
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human proteome as a reference set and the constituent molecules of each optimal classifier as a test dataset. The 
hyper-geometric test was used for enrichment analysis and the terms with a significance level of P <  0.0001 were 
regarded as over-represented after multiple testing correction method Benjamini and Hochberg for false discov-
ery calculation.

Western blot and immunohistochemistry.  Western blot and IHC analyses of ITGB1 protein expression 
in ESCC were performed as previously described. The ESCC tissue microarray of cohort 1 (HEso-Squ180Sur-04) 
purchased from Shanghai Outdo Biotech Co., Ltd. comprised 100 ESCC patients undergoing surgery between 
2006 and 2008. Cohort 2 included 91 ESCC patients undergoing esophagectomy surgery from 2010 to 2014 at 
the First Affiliated Hospital of Henan University of Science and Technology and Anyang people’s hospital. The 
composite immunostaining scores were calculated by multiplying the staining intensity and positivity.

Statistics.  All statistical analyses were performed using SPSS 16.0 software (SPSS, Chicago, IL, USA). 
Wilcoxon signed-rank test was used to evaluate the significance of the differences in ITGB1 expression normal-
ized to β -actin. ROC curve analysis was used to determine the cutoff score of immunostaining. The chi-square 
test or Fisher’s exact test were used to evaluate the correlations between DEPs and DEGs, ITGB1 expression and 
clinicopathological features.
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