
Big Data Transforms Discovery-Utilization Therapeutics 
Continuum

SA Waldman1 and A Terzic2

1Department of Pharmacology and Experimental Therapeutics, Division of Clinical Pharmacology, 
Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA

2Mayo Clinic Center for Regenerative Medicine, Divisions of Cardiovascular Diseases and 
Clinical Pharmacology, Departments of Medicine, Molecular Pharmacology and Experimental 
Therapeutics and Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA

Abstract

Enabling omic technologies adopt a holistic view to produce unprecedented insights into the 

molecular underpinnings of health and disease, in part, by generating massive high-dimensional 

biological data. Leveraging these systems-level insights as an engine driving the healthcare 

evolution is maximized through integration with medical, demographic, and environmental 

datasets from individuals to populations. Big data analytics has accordingly emerged to add value 

to the technical aspects of storage, transfer, and analysis required for merging vast arrays of omic-, 

clinical- and eco-datasets. In turn, this new field at the interface of biology, medicine, and 

information science is systematically transforming modern therapeutics across discovery, 

development, regulation, and utilization.

“…a man's discourse was like to a rich Persian carpet, the beautiful figures and patterns 

of which can be shown only by spreading and extending it out; when it is contracted and 

folded up, they are obscured and lost”

Themistocles quoted by Plutarch AD 46 – AD 120

Like the tapestry in Plutarch's quote, we can only comprehend the intricate patterns that 

constitute wellness and disease by spreading out and extending the multi-dimensional 

components that form the fabric of these processes. Implied in this self-evident concept is 

the ability to collect the relevant data, deconvolute that data into comprehensible elements, 

reassemble these elements into distinguishable patterns, and provide this new knowledge in 

a form that is readily accessible to end-users, including patients, practitioners and 

regulators.1 The emergence of enabling medical technologies has revolutionized our ability 

to precisely define the detailed characteristics of individuals in sickness and health. Omic 

technologies offer a view of organization and function at the level of integrated molecular 

systems while next generation imaging imparts structure to those systems at cell, tissue, 
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organ and organismal levels.2 Beyond these biological determinants, environmental 

elements that provide the context for molecular structure and function and, ultimately, shape 

pathobiology are memorialized in the longitudinal electronic health record (EHR).3 

Together, these biological and environmental data elements encode the information that 

predicts wellness, identifies disease risk, personalizes healthcare interventions, and prevents 

untoward adverse therapeutic events.

While these individual data elements form the matrix that defines the mechanisms 

underlying health and disease, a complete picture of these processes emerges only from their 

integration. Like a painting created in the style of the 19th century Pointillism technique, the 

entire picture only comes into view when one steps away from the canvas and coalesces the 

individual dots into a coherent image. In the context of biological and clinical data, the full 

picture of (patho)physiology emerges when these elements are integrated across individual 

patients and populations. The attendant challenges associated with this necessary data 

integration can be appreciated by considering the sheer magnitude of the task. In 2012, the 

worldwide digital healthcare data burden was estimated to be ∼500 petabytes and is 

expected to reach 25,000 petabytes (∼1019 kB) in 2020.4 For comparison, the human brain 

stores ∼2 petabytes of data while the largest single data storage facility is ∼100 petabytes. 

In that context, it has become easier and cheaper to generate data than to store, integrate and 

analyze it.5

This avalanche of high dimensional data at the interface of biology, medicine, and 

healthcare delivery holds the potential to transform the therapeutics continuum of discovery, 

development, regulation, and utilization (DDRU).6 As highlighted in the Commentary by 

Schneweiss, this informational nexus is poised to provide unprecedented insights into the 

pathobiology of disease, transform drug discovery and development, and revolutionize the 

ability of regulatory agencies to maintain the highest standards of drug safety, all focused on 

providing the best care precisely tailored to each individual patient.7 However, these large 

and complex data sets are difficult to process using common database management tools or 

traditional data processing applications, especially with respect to data capture, storage, 

searching, sharing, integration and analysis. While the goal is to extract insights from 

complex, noisy, and heterogeneous data sets, barriers have included the speed of data 

handling, curation and the veracity of the data, the sheer volume of data, and the 

heterogeneity of data to be integrated.7, 8 To address these challenges, big data analytics has 

emerged as a new discipline innovating the tools, processes and procedures that create, 

manipulate, manage and integrate very large heterogeneous data sets, to generate value from 

the whole that could not be appreciated form the sum of the individual parts.7

The potential for big data to transform paradigms of disease pathobiology is exemplified by 

the electronic health record (EHR), which in aggregate across the population represents an 

extremely large collection of information generated in routine clinical care.4-6, 9 These 

datasets are challenging to use because they are heterogeneous, representing digital data as 

well as unstructured information, for example clinical notes. To optimize their utility, a new 

generation of technologies and architectures has emerged to extract value from large 

volumes of complex heterogeneous datasets through high-velocity capture, discovery and 

analysis.5 Analytic tools to cull this information from these large collections of unstructured 
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data include artificial intelligence, natural-language processing, pattern recognition and 

machine learning.5 In that context, in their review, Roden and Denny describe how coupling 

EHRs to genomic datasets specifically enable discovery of genotype-phenotype associations 

which, in turn, can then be implemented through EHRs to individualize patient care.9 They 

highlight the global character of this effort, which includes their Electronic Medical Records 

and Genomics (eMERGE) Network, as well as the Veterans Administration's Million 

Veterans Program, the Kaiser-Permanente GERA program, the UK Biobank, and the 

Icelandic deCODE resource.9, 10 Beyond their value in discovering common genetic loci 

associated with human disease through genome-wide association studies (GWAS), these 

resources also can be exploited to identify rare genetic variants with large effect sizes, 

pleiotropic effects of common and rare genetic variants, and potential drug targets.11 One 

obstacle to the utility of EHRs for discovery research has been the ability of these databases 

to accurately identify clinical phenotypes that could be used to assemble true case and 

control cohorts to support meaningful genotype-phenotype correlations.12 Indeed, for 

common diseases, where datasets could include hundreds of thousands of subjects, 

electronic algorithms have been developed to overcome this obstacle and extract true cases 

and control subjects, including the eMERGE's Phenotype Knowledgebase (PheKB.org) and 

i2b2 (informatics for integrating biology and the bedside).9-11 Employing these approaches, 

drug response and adverse drug reaction phenotypes can be readily identified. Importantly, 

beyond these genotype-phenotype associations, which typically start with a defined disease 

(phenotype) to explore genomic associations, the constellation of phenotypes represented 

within the collective EHR – the EHR phenome – can be interrogated for genomic 

associations in phenome-wide association studies (Phe-WAS).9

The foregoing discussion underscores the potential for big data analytics as a resource for 

discovery of new molecular associations, disease pathways, and pathophysiological 

mechanisms. This is especially true in the context of integrating medical databases like the 

EHR and clinically-annotated omic databases that associate disease phenotypes with 

molecular features like genomics, epigenomics, transcriptomics, proteomics and 

metabolomics. As highlighted in the review by Chen and Butte, such databases have been 

constructed and are publically available to support an emerging in silico approach to drug 

discovery and development.13 For example, transcriptomic analysis using data mining 

revealed that expression of the protein MTBP was significantly elevated in breast cancer 

samples compared to normal breast tissues and associated with poor survival.13 Indeed, this 

gene product could be used to stratify breast cancer patients into clinically relevant 

subgroups and might represent a new therapeutic target in these populations.13 Similarly, 

analysis of databases containing genomic characteristics of thousands of tumors revealed 

>400 new defects that serve as driver mutations that were previously unrecognized.13 

Further, mapping these driver genes to drug databases, including ChEMBL and 

ClinicalTrials.gov, revealed that >70% of patients could benefit from novel agents in clinical 

development.13 Beyond discovery, these in silico approaches also can be used to assess 

target druggability, through an integrative analysis of protein function, homology to targets 

of approved drugs, three-dimensional structure, and the existence of published active small 

molecules.13 Moreover, these analytic approaches can be employed to compare similarities 

across different diseases, and the different drugs used to treat them, to develop new 
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indications for existing agents through the emerging approach of computation drug 

repositioning.13 Together, these considerations highlight the potential of big data analytic 

approaches to transform the science of drug discovery and development.6, 13

Beyond discovery and development, big data analytics is revolutionizing the safety of 

therapeutics at the level of regulation and utilization. As outlined in the Commentary by 

Harpaz, DuMochel and Shah, pharmacovigilance currently depends on spontaneous adverse 

event reporting from drug manufactures, health care professionals, and patients.14 While this 

type of reporting is essential to post-marketing surveillance, and effective at detecting 

ADRs, it is a passive system fraught with delays in detecting and reporting, and a substantial 

number of ADRs remain unreported.14 Big data analytics offers an unprecedented solution 

to improving pharmacovigilance, providing unique mechanisms for adverse event detection 

and evaluation. Some of the data sources to support this emerging field have been described 

earlier, for example the very large collections of information in the EHR.7, 9 In that context, 

the EHR is the backbone for the FDA's Sentinel Initiative, described in the Commentary by 

Ball, Rob, Anderson, and Dal Pan, which is creating a national network of databases to 

prospectively monitor the safety of drugs and rapidly respond to emerging risks.14-16 This 

Sentinel System currently comprises 18 partners, contains data on >170 million patients, and 

is earmarked to expand.14, 16 Surprisingly, another evolving source of vast amounts of 

relevant information is social media.5, 14 This real-time source of information includes 

health forums, social networks, and online patient communities, with posts typically 

occurring proximal to the time an event occurs.5, 14, 15, 17, 18 One example is the algorithm 

used by Google to track diseases, Google Trends, which uses geospatial mapping to sift 

through enormous amounts of real-time data vast quantities of information to identify 

clinically-relevant population-level events.5 For example, Google Trends can identify peaks 

in search requests for terms like ‘flu symptoms’ and ‘flu treatments’ to identify an imminent 

disease outbreak in a geographic region even before patients begin to task the regional 

health system.5 This example highlights the opportunities offered by social media for 

adverse event surveillance that is global and real-time, to achieve the earliest detection.

While big data analytics will transform every facet of the DDRU continuum, it is not 

without significant challenges. There are the technical challenges of storage and transfer 

speeds of an ever-growing body of heterogeneous information; developing algorithms that 

can parse heterogeneous data with veracity so that downstream analyses are revealing; and 

designing analytical tools that can integrate molecular, clinical, demographic, and 

environmental elements that coalesce individual data points when the viewer steps away 

from the canvas. However, an over-arching challenge in this emerging field remains the 

development of tools to ensure the security of personal health information and scientific 

(e.g., genomic) data to maintain the privacy of patients. This challenge can be appreciated 

by considering the analogous problem of electronic fraud through identity theft, which is 

rampant in the developed, electronically-dependent world. These challenges 

notwithstanding, the ability to bring the power of vast amounts of electronic information to 

bear on the underpinnings of health and disease, the development of new pharmacological 

interventions, and the safety of the global formulary places biology and medicine on the 

verge of an exciting revolution.
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