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Abstract Lipids stored in skeletal muscle cells are known as intramyocellular lipid (IMCL). Disorders involving
IMCL and its causative factor, circulatory free fatty acids (FFAs), induce a toxic state and ultimately
result in insulin resistance (IR) in muscle tissue. On the other hand, intramuscular triglyceride (IMTG),
the most abundant component of IMCL and an essential energy source for active skeletal muscle, is
different from other IMCLs, as it is stored in lipid droplets and plays a pivotal role in skeletal muscle
energy homeostasis. This review discusses the association of FFA-induced ectopic lipid accumulation
and IR, with specific emphasis on the relationship between IMCL/IMTG metabolism and IR.
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INTRODUCTION

Insulin resistance (IR) is defined as the inability of
target tissues to increase glucose uptake in response to
insulin, which eventually leads to type II diabetes mel-
litus (T2DM) (Eckel et al. 2005; Samuel and Shulman
2012). IR occurs in virtually all patients with T2DM,
most of whom are obese and have fat maldistribution. In
addition to the association between T2DM and gener-
alized obesity, many studies have also revealed associ-
ations between IR and body fat distribution, particularly
the fat distribution in skeletal muscle, as this tissue is
responsible for the majority of whole-body insulin-
stimulated glucose disposal. Skeletal muscle insulin
resistance is central to the pathogenesis of T2DM

(Björnholm and Zierath 2005). Human skeletal muscle
is a heterogeneous organ consisting of two phenotypi-
cally distinct kinds of muscle fibers. The histochemical
staining for pH-sensitive myosin ATPase activity reveals
two major classes of fiber types, namely type I and type
II fibers. Type I (slow twitch) muscle fibers tend to be
oxidative, whereas type II (fast twitch) fibers are gly-
colytic (Raben et al. 1998; Pette et al. 1999). Both type I
and type II muscle fibers are insulin sensitive (James
et al. 1985; Kern et al. 1990).

All types of lipids within myocytes are referred to as
intramyocellular lipids (IMCLs), which are composed
chiefly of triacylglycerol (TAG) but also include diacyl-
glycerol (DAG), sphingolipid, and phospholipid. The
accumulation of IMCL is essential for metabolism and
physical exercise. Recently, the excess accumulation of
IMCL has been linked to regional fat distribution, gain-
ing considerable attention because of its association
with IR. Paradoxically, both trained athletes and T2DM
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patients possess higher IMCL than normal healthy
individuals. However, only athletes possess a high
oxidative capacity in muscle and thus enhanced insulin
sensitivity. This phenomenon is called the ‘‘athlete’s
paradox’’. One type of IMCL that is stored mainly in lipid
droplets (LDs), namely intramuscular triglyceride
(IMTG), plays an important role in maintaining lipid
homeostasis, including lipid metabolism, membrane
trafficking, cell signaling, hormone production, and
other molecular events. The disorder of IMCL and its
derivatives leads to many metabolic diseases.

GLUCOSE-FATTY ACID CYCLE (RANDLE CYCLE)

In the early 20th century, it was recognized that both
fat and carbohydrate are used as fuel during physical
exercise (Krogh and Lindhard 1920). In 1926, Him-
wich and Rose examined muscular fuel utilization by
measuring arteriovenous differences in oxygen and
carbon dioxide across skeletal muscle in dogs during
rest and exercise, and in fed and fasted states. The
results showed that the respiratory quotient of the
exercising muscle was not unity, which indicated that
not only carbohydrates but also non-carbohydrates
were used in muscular exercise (Himwich and Rose
1926). Later, Fritz et al. observed that fatty acid was
oxidized in skeletal muscle during both rest and
activity. This provided evidence that muscle oxidizes
lipid to support muscle contraction (Fritz et al. 1958).
Of particular note is the 1963 Lancet publication by
Randle et al., which proposed a ‘‘glucose-fatty acid
cycle’’, also known as the Randle cycle (Randle et al.
1963). The Randle cycle described the fuel flux
between tissues as well as fuel selection by tissues.
The original biochemical mechanism proposed that
glucose oxidation was inhibited by fatty acids. Subse-
quently, lipid metabolism and glucose metabolism
were linked, and researches accumulated in this field.
Soon thereafter, researchers observed that IMTG could
be used as fuel during exercise, and IMTG accumula-
tion was found to be associated with IR in various
studies (Watt 2009).

The Randle cycle has been contested as ignorant,
because it postulates an exact correlation of metabolic
fuel with competition between glucose and fatty acid
during their oxidation by muscle and adipose tissue
(Randle et al. 1963). Because of the prevalence of obe-
sity and T2DM, researchers have paid increasing
attention to this field. Recently, the understanding of the
relationship between lipid metabolism (e.g., IMCL) and
glucose metabolism (e.g., especially its related disorder,
IR) has been intensely developed.

THE EFFECTS OF DIFFERENT TYPE OF LIPIDS ON
INSULIN RESISTANCE

Triacylglycerol

Intramuscular lipids are stored predominantly as IMTG
within LDs. The presence of IMTG was first described by
Denton and Randle in 1967 (Denton and Randle 1967)
and corroborated by Van Loon in 2004 (Van Loon
2004). The study by Van Loon used stable isotope
methodology, 1H-magnetic resonance spectroscopy, and
electron and/or immunofluorescence microscopy to
confirm that IMTG functions as an important substrate
source during exercise. This study also found that up to
60%–70% of IMTG can be depleted in type I muscle
fibers during prolonged moderate intensity exercise in
trained individuals; this oxidation accounts for up to
50% of total lipid oxidized as a fuel source in the
exercising muscle (Van Loon 2004). The application of
these analytical techniques has facilitated the examina-
tion of IMTG and made it possible to study the function
of IMTG as a metabolic fuel and its relationship with IR.
Using 1H-magnetic resonance spectroscopy, researchers
demonstrated that IMTG could be used as a fuel source
by exercising muscle (White et al. 2003) and depleted in
both acute and long-term forms of exercise. Again, with
the concept of the athlete’s paradox, the concentration
of IMTG is adaptively increased in endurance-trained
individuals and in response to exercise training inter-
ventions, which paradoxically does not adversely affect
insulin sensitivity and oxidative capacity (Goodpaster
et al. 2001; Russell et al. 2003). In contrast, higher IMTG
content is also observed in obese and T2DM individuals,
or others whose insulin-sensing capability is impaired.
Human studies have proposed the hypothesis that IMTG
accumulation is associated with IR (Pan et al. 1995).
This hypothesis has been refined over the last 15 years
with more experimental and statistical results sup-
porting the theory that accumulation of IMTG has
important contributions to the development of skeletal
muscle IR (Jacob et al. 1998; Bachmann et al. 2001;
Goodpaster et al. 2001; Jimenez-Caballero et al. 2008;
Anastasiou et al. 2009). For example, in a study of 19
non-diabetic obese and 11 diabetic obese individuals,
Anasious and colleagues observed higher levels of IMTG
in the diabetic obese group compared with the non-
diabetic obese group, and that DAG levels were not
significantly different between the study groups (Anas-
tasiou et al. 2009). Another study from Schenk and
colleagues observed that the prevention of fatty acid-
induced IR following acute exercise was accompanied
by enhanced skeletal muscle protein expression of key
lipogenic enzymes, and further increased the rate of
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muscle TAG synthesis in humans (Schenk and Horowitz
2007). Furthermore, TAG-induced IR may be muscle
type dependent. As previously mentioned, most IMTG is
contained and used within type I muscle fibers, as IMTG
content is threefold higher in type I oxidative fibers than
type II glycolytic fibers (Shaw et al. 2012). This suggests
that type I muscle fibers are more important in lipid
toxicity (Coen and Goodpaster 2012) and abnormal
lipid metabolism-induced IR. Moreover, human skeletal
muscle IR is related to excess IMTG content in type I but
not type II myocytes, greater ceramide content, and
alterations in gene expression associated with lipid
metabolism (Coen et al. 2010). Interestingly, the over-
expression of acyl-CoA:diacylglycerol acyltransferase 2
(DGAT2) in type II glycolytic muscle of mice increases
TAG, ceramide, and unsaturated long chain fatty acyl-
CoA (LCFA-CoA) in skeletal muscle content of young
adult mice, which is accompanied by impaired insulin
signaling and insulin-mediated glucose uptake in gly-
colytic muscle and further impaired whole-body glucose
and insulin tolerance (Levin et al. 2007). Moreover,
diacylglycerol acyltransferase 1 (DGAT1)-deficient mice
are resistant to diet-induced obesity through a mecha-
nism involving increased energy expenditure. Chen and
colleagues showed that these DGAT1-deficient mice
have decreased levels of skeletal muscle TAG after
induction of high-fat-diet-induced obesity, in addition to
increased sensitivity to insulin and leptin (Chen et al.
2002). Their findings also demonstrated that DGAT1
deficiency in mice enhances insulin signaling in the
skeletal muscle and white adipose tissue (WAT), in part
through altered expression of adipocyte-derived factors
that modulate insulin signaling in peripheral tissues
(Chen et al. 2004). The results of these animal studies
suggest that IMTG accumulation may be a causative
factor of IR, a fact that is now widely accepted (Saltiel
2000).

Despite the evidence pointing to the role of IMTG in
IR, it is difficult to propose that IMTG alone causes IR
within the skeletal muscle tissue for several reasons.
Elevation of IMTG content in T2DM is usually accom-
panied by higher concentrations of lipotoxic interme-
diates such as DAG and ceramide. Both of these
metabolites inhibit insulin signaling and interfere with
insulin-stimulated glucose metabolism (Samuel and
Shulman 2012), and thus it is difficult to propose that IR
is induced mainly by IMTG or other lipids. Furthermore,
the existence of the athlete’s paradox causes skepticism
and prevents total acceptance of the hypothesis that
IMTG causes IR within skeletal muscle. Finally, overex-
pression of DGAT1 in mouse skeletal muscle rescues
high-fat-diet-induced IR, accompanied by high TAG
levels in skeletal muscle (Liu et al. 2007) (Fig. 1).

Although many studies have shown the tight con-
nection between IMTG and IR, the mechanism linking
IMTG and IR needs to be further investigated. It seems
that the types of muscle fibers and lipid metabolites,
such as DAG and ceramide, play important roles in the
relationship between accumulation of IMTG and IR.

Diacylglycerol

It is widely accepted that sn-1,2-Diacylglycerol (DAG)
derived from phospholipids by phospholipase C is an
important lipotoxic mediator in IR development,
although the specific mechanism remains elusive. Sev-
eral clinical studies demonstrated that compared with
lean controls, the intramyocellular DAG content of the
vastus lateralis muscle is elevated in obese and T2DM
patients (Moro et al. 2009; Bergman et al. 2012) and is
also increased following acute IR induced by lipid
infusion (Itani et al. 2002). Increasing DAG accumula-
tion in skeletal muscle by altering expression of adipose
triglyceride lipase (ATGL) and hormone-sensitive lipase
(HSL) leads to the disruption of insulin signaling, and
contributes to IR in humans (Badin et al. 2012). The
relationship between DAG accumulation and IR is fur-
ther confirmed in a study showing that reduced activity
of diacylglycerol kinase-d leads to high intramuscular
DAG content in individuals with poorly controlled T2D
(Chibalin et al. 2008). Moreover, after several weeks of
endurance training and weight loss, skeletal muscle DAG
content is decreased, accompanied by a parallel
improvement in insulin sensitivity (Dube et al. 2011). In
conclusion, these results support the theory that DAG
accumulation is associated with IR.

Mechanistically, DAG is a second messenger that
activates members of the protein kinase C (PKC) family.

Fig. 1 Chemical structures of diacylglycerol, triacylglycerol, and
ceramide. R1 and R2 in diacylglycerol, and R, R0 , and R00 in
triacylglycerol represent an alkyl or an alkenyl hydrocarbon chain
of a fatty acid that is esterified on the glycerol, respectively
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The PKC family is divided into three isoforms: classical
PKC (a, bI, bII, c), novel PKC (d, e, g, h), and atypical PKC
(f, k). Once activated, PKCs phosphorylate serine resi-
dues on insulin receptor substrate 1 (IRS-1), inhibiting
the kinase activity and subsequently reducing activation
of PI3-kinase and PKB/Akt (Timmers et al. 2008). As a
result, insulin-stimulated GLUT4 translocation to the
plasma membrane is impaired, therefore IR occurs.
Furthermore, it is commonly accepted that in individu-
als with obesity and T2DM, the elevated DAG content
might also increase the activity of PKCs. Itani and col-
leagues observed that lipid-induced IR in human muscle
infused with lipids and insulin over a 6-h time period is
associated with changes in DAG, PKC, and in IkB, the
downstream signaling molecule of NF-jB (Itani et al.
2002). Furthermore, some researchers hypothesize that
DAG mediates IR mainly through novel PKCs (Erion and
Shulman 2010). PKCh is a crucial component in skeletal
muscle, and is also the most abundantly expressed PKC
in this tissue. Knockout of PKCh in skeletal muscle
prevents fat-induced defects in insulin signaling and
glucose transport (Kim et al. 2004). In addition, both
transgenic mice with muscle-specific expression of
dominant negative PKCh and PKCh-knockout mice
exhibit age-associated or diet-associated obesity and
whole-body IR (Serra et al. 2003; Gao et al. 2007). When
combined, these results support the hypothesis that the
accumulation of DAG in skeletal muscle leads to the
activation of novel PKCs and ultimately results in IR.

On the other hand, others have shown dissociation
between DAG accumulation and IR. Some studies have
reported that DAG content in skeletal muscle is not
elevated during obesity (Anastasiou et al. 2009), with IR
(Hees et al. 2001), or in obese IR (Coen et al. 2010)
compared with insulin-sensitive obese subjects. In
addition, in highly trained athletes, total myocellular
DAG is markedly higher, corresponding with higher
insulin sensitivity (Amati et al. 2010). For animal
models, overexpression of the DGAT1 enzyme in muscle
results in DAG accumulation and release of IR that was
induced by a high-fat diet (Timmers et al. 2010).

Researchers are still struggling to elucidate the rela-
tionship between DAG and IR in human muscle and
answer the question of why DAG accumulation leads to
IR. There are several possible explanations, stemming
from different viewpoints, as to why DAG accumulation
leads to IR. One possible explanation is the degree of FA
saturation in DAG. It has been demonstrated that ath-
letes have a lower degree of DAG saturation compared
with sedentary controls (Bergman et al. 2012). More-
over, it has been observed that a higher degree of DAG
saturation is associated with IR in men with metabolic
syndrome (Hees et al. 2001). Conversely, others have

not shown such associations (Coen et al. 2010) or even
an inverse relationship (Amati et al. 2010). The sub-
cellular location of DAG accumulation might be another
possible factor that could affect the relationship of DAG
and IR. DAG is present in the sarcolemma membrane,
sarcoplasmic reticulum, LDs, and mitochondrial mem-
brane. The majority of human studies only examine
whole-muscle DAG concentration, which could certainly
obscure the relationship between subcellular DAG con-
centration and IR. Moreover, it has been recently shown
that membrane DAG is associated with PKC activation
and insulin sensitivity in obese T2D subjects and lean
athletes (Bergman et al. 2012). Finally, and perhaps
most importantly, there are two distinct DAG
stereoisomers, 1,3-DAG and 1,2-DAG, which may influ-
ence muscle IR to different degrees. Only 1,2-DAG has
been associated with insulin signaling (Turinsky et al.
1990), and only the 1,2-DAG stereoisomer can activate
PKC; 1,3-DAG lacks this ability (Boni and Rando 1985).
It has been suggested that neither ATGL nor HSL has the
ability to generate the 1,2-DAG stereoisomer (Zechner
et al. 2012); however, this hypothesis presently lacks
supporting evidence.

Ceramide

Ceramide, which belongs to the sphingolipid family,
plays a role as an inert structural component of bio-
logical membranes. It also acts as an intracellular mes-
senger in various biological mechanisms and as a lipid
intermediate widely believed to be the true lipotoxic
culprit behind the reported associations between IMTG
and IR. In skeletal muscle, ceramide accumulation is
associated with a number of cellular stresses, such as
reactive oxygen species (ROS) accumulation, inflamma-
tion, hypoxia, and as part of a highly conserved stress
response. All of these stresses have been identified as
key mediators of IR via inhibition of the serine/
threonine-specific protein kinase Akt/protein kinase B
(PKB) (Chavez et al. 2003; Holland et al. 2012), and as
important pathways linking insulin signaling to the
translocation of GLUT4 to the sarcolemma, potentially
via protein phosphatase 2 (PP2)- and protein kinase C
zeta (PKCz)-dependent pathways (Stratford et al. 2004).
Ceramide is also linked to mitochondrial dysfunction
(Smith et al. 2013), which in turn is implicated in IMCL
accumulation and IR (Coen and Goodpaster 2012).

Plasma ceramide targets skeletal muscle in T2DM
(Kirwan 2013), and ceramide content is increased in
skeletal muscle in obese and insulin-resistant humans.
By using euglycemic-hyperinsulinemic clamps with
muscle biopsies, it has been observed that muscle cer-
amide content is significantly correlated with the
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plasma FFA concentration in lean insulin-sensitive and
obese insulin-resistant subjects (Adams et al. 2004).
Furthermore, as previously mentioned, human skeletal
muscle IR is related to greater IMTG content in type I
but not type II myocytes, and it is also related to greater
ceramide content, especially in type I myocytes. How-
ever, the concentration of DAG is similar in both type I
and type II myocytes (Coen et al. 2010).

Similar results have been observed using the in vitro
cultivation of human primary myoblast cells. By treating
human vastus lateralis muscle with different kinds of
FFA, Laura and colleagues observed that the application
of palmitate produces more DAG and ceramide in
myoblasts in addition to the induction of IR. Further-
more, oleate treatment resulted in an increase in TAG in
normal insulin-sensitive muscles. These myoblasts
developed IR when treated with cell-permeable analogs
of ceramide, and showed normal insulin sensitivity with
co-treatment of palmitate and inhibitors of de novo
ceramide synthesis (Pickersgill et al. 2007). Coinciden-
tally, inhibition of de novo ceramide synthesis reversed
diet-induced IR and enhanced whole-body oxygen con-
sumption (Ussher et al. 2010).

Several hypotheses have been proposed to explain
the mechanism by which an increase in ceramide leads
to IR. Increased mitochondrial oxidative stress and
mitochondrial dysfunction are accepted as important
causative factors for IR and T2DM (Kelley et al. 2002;
Schrauwen and Hesselink 2004; Lowell and Shulman
2005; Fridlyand and Philipson 2006; Schenk and
Horowitz 2007; Fleischman et al. 2009; Hernandez-
Alvarez et al. 2010; Meex et al. 2010; Schrauwen et al.
2010; Chow et al. 2012;). The results of a study by
Larysa et al. support this idea, as they demonstrated
that de novo synthesis of ceramide is involved in
palmitate-induced mtROS generation, mitochondrial
dysfunction, and insulin signaling (Yuzefovych et al.
2010).

The effects of exercise and training on ceramide
metabolism in human skeletal muscle have been pre-
viously studied (Helge et al. 2004). Thrush et al.
observed an interesting phenomenon; although the
inhibition of ceramide accumulation can prevent the
detrimental effects of palmitate incubation, a single
prior bout of exercise appears to protect the muscle
against palmitate-induced IR, which may be indepen-
dent of the variable ceramide concentration (Thrush
et al. 2010). Further research has been performed by
Skovbro et al. showing that human skeletal muscle
ceramide content is not a major factor in muscle insulin
sensitivity (Skovbro et al. 2008). In conclusion, the exact
mechanism by which ceramide induces IR is still

unclear, but it appears that this relationship might be
influenced by skeletal muscle lipid composition.

EFFECTS OF LIPID COMPOSITION

As mentioned previously, DAG stereoisomers have dif-
ferent effects on skeletal muscle IR. The stereo struc-
tures, degree of fatty acid saturation, and the length of
the fatty acid chains are all contributing factors to these
effects. Oleate (18:1) and palmitate (16:0) are widely
used in studies of DAGs and IR, since they are both
prevalent plasma FFAs. Many studies suggest that sat-
urated palmitate, but not monounsaturated oleate,
induces inter-myocellular IR. In C2C12 myotubes,
palmitate, but not oleate, inhibits insulin-stimulated
glycogen synthesis, as well as the activation of Akt/PKB,
an obligate intermediate in the regulation of anabolic
metabolism. Palmitate also induces the accrual of cer-
amide and DAG, which have been confirmed to inhibit
insulin signaling in cultured cells and to accumulate in
IR tissues (Chavez and Summers 2003). Moreover, ole-
ate protects rat skeletal muscle cell lines against
palmitate-induced IR (Coll et al. 2008; Gao et al. 2009)
and blocks palmitate-induced abnormal lipid distribu-
tion, endoplasmic reticulum expansion, and stress (Di-
mopoulos et al. 2006; Peng et al. 2012). These results
have also been observed in other cell models (Listen-
berger et al. 2003). Furthermore, excluding monoun-
saturated fatty acid, the treatment of these cells with
linoleate (C18:2) or n-6 polyunsaturated fatty acid does
not alter DAG levels, ceramide levels, or glucose uptake,
but increases myotube TAG levels compared with con-
trols that lack the addition of fatty acids (Lee et al.
2006). These studies suggest that saturated fatty acid-
induced IR occurs by a mechanism distinct from that of
unsaturated fatty acids, and thus is related to the degree
of saturation. Furthermore, this mechanism involves
elevation of ceramide, which leads to PKB inhibition
without affecting IRS-1 function (Schmitz-Peiffer et al.
1999). Unsaturated fatty acid serves as a protective
functional factor through the promotion of TAG accu-
mulation, and thereby decreases DAG and ceramide
content (Listenberger et al. 2003). There are also other
proposed mechanisms, including one involving mito-
chondria. It has been proposed that mtROS generation is
the initial event in the induction of mitochondrial dys-
function and consequently apoptosis, and the inhibition
of insulin signaling. The palmitate-induced mitochon-
drial dysfunction is ameliorated by oleate, which con-
tributes to the prevention of palmitate-induced IR
(Yuzefovych et al. 2010). Thus, it appears that the fatty
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acid concentration is not the only determinant in the
induction of IR.

An in vivo study also suggested that dietary fat
composition, rather than fatty acid over-supply, is the
major determinant of fat-induced IR (Storlien et al.
1991, 2002). Human dietary fat consists of a range of
fats including saturated, monounsaturated, polyunsatu-
rated, and trans-unsaturated fatty acids. Previous stud-
ies found that high dietary intake of the
monounsaturated fatty acid oleic acid, which is abun-
dant in olive oil, is associated with improved insulin
sensitivity in the general population, whereas saturated
fatty acids (i.e., palmitate) show the opposite effect
(Marshall et al. 1997; Soriguer et al. 2004). Further-
more, most animal and cell studies indicate that satu-
rated fatty acids significantly increase IR, whereas n-3
polyunsaturated fatty acids prevent it (Storlien et al.
2002). Animals fed a diet high in n-6 polyunsaturated
fat retained insulin sensitivity despite small increases in
muscle DAG, which appears to be in a range somewhere
between the effects of saturated and n-3 fatty acids
(Storlien et al. 1991).

The most popular hypothesis of the complicated
phenomenon of IR is that unsaturated FFA helps with
the incorporation of saturated FFA into IMTG, accom-
panied by much less harmful lipid derivatives (e.g., DAG
and ceramide) and therefore, muscle cells are protected
from IR. Animal feeding or perfusion studies, as well as
cell culture studies, have linked saturated fatty acid
intake with elevated concentrations of specific lipid
messengers in muscle (Lee et al. 2006; Coll et al. 2008;
Peng et al. 2012; Sawada et al. 2012; Salvado et al.
2013). Another hypothesis is that the cell membrane
fatty acid composition in turn affects cell membrane
fluidity and rigidity. In humans and other species, the
body is particularly efficient at regulating the compo-
nents of cell membranes, such as the sarcolemma, which
can be influenced by plasma FFA (Storlien et al. 1998).
Since the efficiency of signal transduction is highly
dependent on the orientation and position of various
proteins within the membrane, the fatty acid composi-
tion of cellular membranes may play a pivotal role in
adequate insulin sensitivity (Corcoran et al. 2007).
Furthermore, there are also studies in humans sug-
gesting that the fatty acid composition of phospholipids
in the sarcolemma modulates insulin sensitivity (Stor-
lien et al. 1991; Borkman et al. 1993). Animal studies
seem to directly demonstrate that saturated FFA-
containing membranes promote IR, whereas a high
degree of unsaturation in the FFAs in the membranes
protects against IR; this has also been noted in humans
(Storlien et al. 1996).

CONCLUSION

Lipid and glucose metabolism are both important for
human health, and skeletal muscle is the major organ
responsible for balancing the use of lipid and glucose as
fuel during complete rest and low-intensity activity.
Research has considerably advanced our understanding
of intramuscular lipid metabolism and its significance in
human health. Although we have been aware of and
gained considerable insight into the role of IMCL in
metabolism and the development of IR, there are still
complex questions to be answered. For now, it seems
that maintaining the dynamic lipid balance may be one
of the most important functions for human health. In the
future, a better understanding of IMCL and IR will serve
as a means to cure metabolic diseases and promote
human health. Advanced lipidomics, combined with
more specific and efficacious small molecule inhibitors,
will accelerate research progress toward understanding
how specific lipid metabolites influence metabolic
homeostasis and finding applicable therapies for IR.
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