Abstract
Using a specific antiserum recently raised against [D-Ala2]deltorphin I (DADTI: Tyr-D-Ala-Phe-Asp-Val-Val-Gly-NH2), a highly selective ligand for delta-opioid receptors, we have previously demonstrated the occurrence of positive immunostaining in several structures of mouse brain. We describe here the neuroanatomical distribution patterns of DADTI-immunoreactive neuronal bodies, axons, and tanycytes in rat brain. Positive neuronal somata were localized mainly in the ventral mesencephalon, including the ventral tegmental area and the pars compacta of the substantia nigra. A minor population of positive somata was found in the pars reticulata and pars lateralis of the substantia nigra, raphe nuclei, supramammillary nucleus, and retrorubral reticular nucleus. All these regions, except for the supramammillary nucleus, contain dopamine cell bodies. Intensely stained positive nerve fibers could be traced along the medial forebrain bundle. Dense positive terminals were seen in the neostriatum, nucleus accumbens shell, olfactory tubercle, septal areas, cingulate, and medial prefrontal cortex. Double-immunostaining study revealed that, in the substantia nigra, almost all (97.8%) DADTI-positive neurons colocalized with tyrosine hydroxylase (TH), and the doubly stained cells occupied about one-third (29.1%) of the total population of TH-positive neurons. Only a few DADTI/TH-positive cells also stained for 28-kDa calbindin D, although many neurons double-stained for 28-kDa calbindin D and TH. In contrast, the supramammillary nucleus contained a number of DADTI-positive cells, which nearly always stained positively for 28-kDa calbindin D but did not stain for TH. The association of DADTI-like immunoreactivity with certain dopaminergic pathways seems of particular interest. A small population of DADTI-immunostained tanycytes was present in the ventral part of the third ventricle wall.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abe H., Tooyama I., Renda T., Ersparmer V., Kimura H. Production of antiserum to [D-Ala2]deltorphin I and its immunohistochemical application to the mouse brain. Neuroreport. 1992 Aug;3(8):669–672. doi: 10.1097/00001756-199208000-00003. [DOI] [PubMed] [Google Scholar]
- Akiyama H., Itagaki S., McGeer P. L. Major histocompatibility complex antigen expression on rat microglia following epidural kainic acid lesions. J Neurosci Res. 1988;20(2):147–157. doi: 10.1002/jnr.490200202. [DOI] [PubMed] [Google Scholar]
- Dupin S., Tafani J. A., Mazarguil H., Zajac J. M. [125I][D-Ala2]deltorphin-I: a high affinity, delta-selective opioid receptor ligand. Peptides. 1991 Jul-Aug;12(4):825–830. doi: 10.1016/0196-9781(91)90141-b. [DOI] [PubMed] [Google Scholar]
- Erspamer V., Melchiorri P., Falconieri-Erspamer G., Negri L., Corsi R., Severini C., Barra D., Simmaco M., Kreil G. Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for delta opioid binding sites. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5188–5192. doi: 10.1073/pnas.86.13.5188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fallon J. H., Moore R. Y. Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J Comp Neurol. 1978 Aug 1;180(3):545–580. doi: 10.1002/cne.901800310. [DOI] [PubMed] [Google Scholar]
- Gerfen C. R., Baimbridge K. G., Thibault J. The neostriatal mosaic: III. Biochemical and developmental dissociation of patch-matrix mesostriatal systems. J Neurosci. 1987 Dec;7(12):3935–3944. doi: 10.1523/JNEUROSCI.07-12-03935.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerfen C. R., Herkenham M., Thibault J. The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J Neurosci. 1987 Dec;7(12):3915–3934. doi: 10.1523/JNEUROSCI.07-12-03915.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hökfelt T., Everitt B. J., Theodorsson-Norheim E., Goldstein M. Occurrence of neurotensinlike immunoreactivity in subpopulations of hypothalamic, mesencephalic, and medullary catecholamine neurons. J Comp Neurol. 1984 Feb 1;222(4):543–559. doi: 10.1002/cne.902220407. [DOI] [PubMed] [Google Scholar]
- Hökfelt T., Skirboll L., Rehfeld J. F., Goldstein M., Markey K., Dann O. A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokinin-like peptide: evidence from immunohistochemistry combined with retrograde tracing. Neuroscience. 1980;5(12):2093–2124. doi: 10.1016/0306-4522(80)90127-x. [DOI] [PubMed] [Google Scholar]
- Kaiya H., Namba M. Two types of dopaminergic nerve terminals in the rat neostriatum. An ultrastructural study. Neurosci Lett. 1981 Sep 25;25(3):251–256. doi: 10.1016/0304-3940(81)90400-6. [DOI] [PubMed] [Google Scholar]
- Lazarus L. H., Salvadori S., Balboni G., Tomatis R., Wilson W. E. Stereospecificity of amino acid side chains in deltorphin defines binding to opioid receptors. J Med Chem. 1992 Apr 3;35(7):1222–1227. doi: 10.1021/jm00085a009. [DOI] [PubMed] [Google Scholar]
- Lazarus L. H., Salvadori S., Santagada V., Tomatis R., Wilson W. E. Function of negative charge in the "address domain" of deltorphins. J Med Chem. 1991 Apr;34(4):1350–1355. doi: 10.1021/jm00108a017. [DOI] [PubMed] [Google Scholar]
- Lazarus L. H., Salvadori S., Tomatis R., Wilson W. E. Opioid receptor selectivity reversal in deltorphin tetrapeptide analogues. Biochem Biophys Res Commun. 1991 Jul 15;178(1):110–115. doi: 10.1016/0006-291x(91)91786-c. [DOI] [PubMed] [Google Scholar]
- Melchiorri P., Negri L., Falconieri-Erspamer G., Severini C., Corsi R., Soaje M., Erspamer V., Barra D. Structure-activity relationships of the delta-opioid-selective agonists, deltorphins. Eur J Pharmacol. 1991 Mar 26;195(2):201–207. doi: 10.1016/0014-2999(91)90536-y. [DOI] [PubMed] [Google Scholar]
- Negri L., Noviello V., Angelucci F. Behavioural effects of deltorphins in rats. Eur J Pharmacol. 1991 Dec 17;209(3):163–168. doi: 10.1016/0014-2999(91)90165-m. [DOI] [PubMed] [Google Scholar]
- Pavone F., Populin R., Castellano C., Kreil G., Melchiorri P. Deltorphin, a naturally occurring peptide with high selectivity for delta opioid receptors, improves memory consolidation in two inbred strains of mice. Peptides. 1990 May-Jun;11(3):591–594. doi: 10.1016/0196-9781(90)90063-b. [DOI] [PubMed] [Google Scholar]
- Richter K., Egger R., Negri L., Corsi R., Severini C., Kreil G. cDNAs encoding [D-Ala2]deltorphin precursors from skin of Phyllomedusa bicolor also contain genetic information for three dermorphin-related opioid peptides. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4836–4839. doi: 10.1073/pnas.87.12.4836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tooyama I., Walker D., Yamada T., Hanai K., Kimura H., McGeer E. G., McGeer P. L. High molecular weight basic fibroblast growth factor-like protein is localized to a subpopulation of mesencephalic dopaminergic neurons in the rat brain. Brain Res. 1992 Oct 16;593(2):274–280. doi: 10.1016/0006-8993(92)91318-9. [DOI] [PubMed] [Google Scholar]
- Yamada T., McGeer P. L., Baimbridge K. G., McGeer E. G. Relative sparing in Parkinson's disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res. 1990 Sep 3;526(2):303–307. doi: 10.1016/0006-8993(90)91236-a. [DOI] [PubMed] [Google Scholar]