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Abstract

Spatial interactions are known to promote stability and persistence in enemy-victim interactions if 

instability and extinction occur in well-mixed settings. We investigate the effect of spatial 

interactions in the opposite case, where populations can persist in well-mixed systems. A 

stochastic agent-based model of host-pathogen dynamics is considered that describes nearest-

neighbor interactions in an undivided habitat. Contrary to previous notions, we find that in this 

setting, spatial interactions in fact promote extinction. The reason is that, in contrast to the mass-

action system, the outcome of the nearest-neighbor model is governed by dynamics in small “local 

neighborhoods.” This is an abstraction that describes interactions in a minimal grid consisting of 

an individual plus its nearest neighbors. The small size of this characteristic scale accounts for the 

higher extinction probabilities. Hence, nearest-neighbor interactions in a continuous habitat lead to 

outcomes reminiscent of a fragmented habitat, which is underlined further with a metapopulation 

model that explicitly assumes habitat fragmentation. Beyond host-pathogen dynamics, axiomatic 

modeling shows that our results hold for generic enemy-victim interactions under specified 

assumptions. These results are used to interpret a set of published experiments that provide a first 

step toward model testing and are discussed in the context of the literature.
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Introduction

Limited movement and spatial interactions are thought to significantly affect the dynamics 

of ecological interaction, as, for example, nicely reviewed by Tilman and Kareiva (1997). 

This applies to the interactions between enemies and their victims, such as predator-prey, 

parasitoid-host, or host-pathogen dynamics (Crawley 1992; Hassell 2000; Briggs and 

Hoopes 2004). Spatial interactions and limited movement have received special attention for 

promoting stability and persistence of enemy-victim systems (e.g., Nicholson 1933; 
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Murdoch and Oaten 1975; May 1978; Hassell and May 1988; Sabelis and Diekmann 1988; 

de Roos et al. 1991; Hassell et al. 1991; Adler 1993; Durrett and Levin 1994; Tilman and 

Kareiva 1997; Hassell 2000; Jansen and de Roos 2000; Keeling et al. 2000; Bonsall et al. 

2002; Hagenaars et al. 2004). Under the simplest assumptions, such as in basic Lotka-

Volterra or Nicholson-Bailey models, the dynamics are unstable, which can be linked to 

population extinction (e.g., through diverging oscillations). In a spatially structured habitat, 

asynchrony among a collection of coupled unstable populations can lead to persistence of 

the populations on a global scale. Many of these studies have been performed in the context 

of metapopulation models, where a collection of locally unstable patches (with perfect 

mixing within each patch) are coupled to each other through migration. If predator and prey 

populations can interact only within their immediate vicinity, persistence of otherwise 

unstable dynamics is associated with the emergence of specific spatial patterns (Hassell et 

al. 1991; Comins et al. 1992; Rohani et al. 1994; Gurney et al. 1998; Donalson and Nisbet 

1999). A detailed review of the stabilizing effects of spatial predator-prey dynamics is given 

by Briggs and Hoopes (2004). In certain circumstances, spatial interactions can also have a 

destabilizing effect on predator-prey dynamics. This can be observed if the migration rate of 

one species is significantly higher than that of the other species (Crowley 1981; Reeve 1988; 

Rohani et al. 1996; Rohani and Ruxton 1999; Huang and Diekmann 2001) and can be based 

on Turing instability (Levin 1974).

Unstable enemy-victim dynamics can also be stabilized through mechanisms other than 

spatial interactions. Examples are the existence of a host carrying capacity, more realistic 

functional responses of the enemy, and nonrandom enemy attack (Murdoch and Oaten 1975; 

Hassell 1978, 2000). Such models are characterized by a stable equilibrium that describes 

the persistence of the enemy-victim system in mass-action settings where individuals mix 

perfectly.

Here, we concentrate on situations where persistence is observed in mass-action settings and 

investigate the effect of spatial, nearest-neighbor interactions on the outcome. This is done 

by comparing the dynamics in a mass-action habitat with those occurring in a corresponding 

spatially structured system of equivalent size. We first formulate the dynamics with a 

stochastic agent-based model that describes a continuous, undivided, two-dimensional 

habitat containing N × N individuals, where an agent can interact either only with its eight 

nearest neighbors or with any other agent in the system (mass action). Interestingly, we find 

that if persistence is observed with mass action, extinction may occur in the corresponding 

nearest-neighbor model. Rather than promoting persistence, spatially restricted interactions 

promote extinction over wide parameter regions. This effect is shown to be unrelated to the 

well-known Turing instability.

Furthermore, we find that the outcome of the nearest-neighbor model can be predicted by 

the dynamics in what we call “local neighborhoods” that can maximally contain 3 × 3 

individuals. In other words, if the dynamics in such small local neighborhoods are 

considered in isolation, the equilibrium properties of this system predict the outcome in the 

full spatial habitat. Thus, although the nearest-neighbor interactions occur across an 

undivided habitat, they lead to properties that are reminiscent of fragmented habitats 

(Kareiva 1987; Bascompte and Sole 1998; Fahrig 2003; Ryall and Fahrig 2006). This is 
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further underlined by a stochastic metapopulation model, where a large habitat is explicitly 

fragmented into a collection of relatively small patches, within which individuals mix 

perfectly and where individuals can migrate to the nearest neighboring patches. Compared to 

an unfragmented habitat of equivalent overall size where all individuals can interact with 

each other (mass action), the spatial setting again promotes extinction, and the outcome is 

again predicted by local dynamics, which in this case are clearly defined by the patches of 

the metapopulation.

Finally, the results obtained for these specific host-pathogen models are generalized to 

generic enemy-victim dynamics through axiomatic modeling. A set of previously published 

experiments is discussed that support our modeling results and that provide a first step 

toward testing and validating the theoretical predictions. Implications for the evolution of 

sessile growth in bacteria are discussed in the context of bacteriophage infections.

Results

Modeling Approaches

This section briefly maps out in general terms the modeling strategies that are used in this 

article before describing the models in detail. The basic idea is to compare host-pathogen 

dynamics in spatial, nearest-neighbor interactions to a corresponding mass-action scenario 

where individuals mix perfectly within a habitat of equivalent size. This is done in the 

context of two different spatial models (fig. 1a, 1b). (1) The first model is an agent-based 

model. In this model, we explicitly keep track of individual infected and uninfected hosts. 

Each spot in the grid can be occupied by an infected host or an uninfected host, or it can be 

empty. Specific stochastic rules determine how the system is updated at each time step. (2) 

The second model is the metapopulation model. Here we assume that a habitat is made up of 

a collection of different local patches that contain local populations. Within these patches, 

local dynamics occur independently of each other, with the exception that a certain degree of 

migration can occur between neighboring patches. The dynamics are described by Gillespie 

simulations of ordinary differential equations (ODEs).

In both cases, we compare the spatial models to the corresponding mass-action models of 

equivalent size. The mass-action dynamics are formulated differently for the agent-based 

and the metapopulation models for ease of comparison with the respective spatial settings 

(fig. 1). Thus, the mass-action version of the agent-based model follows the same structure 

and rules as the spatial version, except that an individual in a given spot can potentially 

interact with one in any other spot in the system (rather than with nearest neighbors only), 

irrespective of spatial location. The mass-action version of the metapopulation model 

consists of one giant patch in which dynamics are described by the Gillespie simulation of 

the same ODEs but with a carrying capacity that is n times the carrying capacity of local 

patches, where n is the number of patches in the metapopulation.

The two mass-action models are slightly different, as the Gillespie simulation of an ODE 

approximating the mean dynamics is different from the underlying stochastic process. In this 

article we use an agent-based model and a metapopulation model as alternative approaches 
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to study spatial interactions in pathogen-host dynamics, and we formulate corresponding 

mass-action systems for each type of model.

Agent-Based Model

We consider a stochastic agent-based model where each individual is tracked in time and 

space, occupying a certain position on a grid and interacting with other individuals 

according to some probabilistic rules. Both nearest-neighbor interactions and perfect mixing 

of individuals can be described in this framework. The rules for the nearest-neighbor 

interactions are as follows (see also fig. 1c). The model, based on previous work (Sato et al. 

1994; Boots and Sasaki 2002), describes host-pathogen dynamics on a two-dimensional grid 

that contains N × N spots. Each spot is either occupied by a host (infected or uninfected) or 

empty. We model the development of the populations in discrete time. Given the state of the 

system at time t, a set of rules is applied to each spot, and this gives rise to the state of the 

system at time t + 1. At each time step, the grid is randomly sampled N2 times. If the chosen 

spot is occupied by an uninfected host, it can die with a probability D, leaving the spot 

empty. Alternatively, the uninfected host can reproduce with a probability R, and a 

destination spot is randomly chosen for the offspring from the set of eight nearest 

neighboring spots. If the destination spot is empty, the offspring is placed there; otherwise, 

no reproduction occurs. If the chosen spot contains an infected host, it can die with a 

probability A or attempt to transmit the pathogen with a probability B. A destination spot is 

chosen randomly from the eight nearest neighbors, and infection proceeds only when a 

susceptible host is present. Infected hosts are assumed not to reproduce. We thus consider 

relatively virulent pathogens that induce significant morbidity in the host.

Similar rules apply to the description of the perfect mixing scenario. The difference is that 

instead of being placed into a spot that is randomly chosen from the set of nearest neighbors, 

the offspring is placed into a spot that is randomly chosen from all available spots in the 

system. Similarly, the target for infection is not chosen from the eight nearest neighbors but 

from all individuals in the system. The size of the area remains identical at K = N × N spots. 

In the following, we first explore the perfect-mixing scenario and subsequently the nearest-

neighbor interactions.

Perfect Mixing—Using extensive computer simulations, we examine how the outcome of 

the system depends on the parameters of the model. In particular, we are interested in the 

conditions under which the host-pathogen system persists and when pathogen-mediated host 

extinction is observed. This is shown in figure 2ai, which is the result of at least 104 

instances of the simulation, where the log10 of all the parameters was varied between −4 

and 4. Each point represents the outcome of a single run, indicated by the color code.

All simulations were started with a relatively small number of infected hosts placed in a 

compact vicinity into a larger space filled with uninfected hosts, which was in turn 

embedded into an even larger “empty” space (for the exact initial conditions for particular 

cases, see the appropriate figure legends). The grid size for these simulations was 30 × 30. 

Note that while simulations were started with a relatively small number of individuals, this 
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number was sufficiently large to avoid initial stochastic extinction and failure to establish 

population growth.

Because we are considering a stochastic model where for infinite times all simulations will 

necessarily result in extinction, it is important to establish how extinction and persistence 

outcomes were defined. When populations “persist,” they approach a statistical steady state, 

around which they fluctuate stochastically in the long term. While the populations fluctuate 

around this steady state, extinction can occur with a certain probability, determined by the 

level of the population and the extent of the stochastic variance. Figure 2ai can be viewed as 

a contour plot indicating whether extinction has occurred by a specific cutoff time, indicated 

in the legend. As the cutoff time changes, the picture will change slightly (resulting in a 

somewhat different “contour”), and for long enough times, all simulations will result in 

extinction. Here, however, we concentrate on intermediate timescales, long compared to 

initial colony growth and adjustment and short compared to the time it takes for an 

established population to become extinct by chance, because of the finiteness of this 

simulation. In most of the parameter space, the latter regime occurs at timescales 

significantly longer than that considered here, which in fact could not be observed even in 

the longest simulation runs performed in the course of our work. Hence, the points indicated 

by blue in figure 2ai are in a long-term, quasi-steady state of nonextinction. The points 

indicated by red in figure 2ai show simulations that have become extinct before the time 

cutoff, which typically tends to occur early, before the populations have reached their 

statistical steady state. Individual trajectories that depict typical “persistence” and 

“extinction” runs are discussed below. In large portions of the parameter space in figure 2ai, 

only one color is seen, which translates into a probability for this outcome occurring that is 

close to 1. In the parameter regions that are at the border between different outcomes, the 

relative number of dots of different colors gives an idea about the probability of the different 

outcomes occurring. Repeated numerical experiments produce nearly identical images, 

indicating that this is an informative visual tool to convey the message on the longevity of 

coexistence across the parameter space.

With this in mind, let us now explain the picture obtained in figure 2ai. Because perfect 

mixing is assumed, the average dynamics observed in this model can be approximated by 

ordinary differential equations that can be derived for our agent-based model (see 

Supplementary Information [SI], sec. 2.1; all SI is available online). This is given by

(1)

where the number of uninfected hosts is denoted by S and the number of infected hosts by I. 

In these equations, K = N × N has the meaning of carrying capacity. This modified Lotka-

Volterra system (Anderson and May 1991; Nowak and May 2000) is characterized by two 

equilibria. (1) The uninfected population persists at carrying capacity, while the infected 

population is extinct; that is, S(0) = K, I(0) = 0. (2) Alternatively, the pathogen establishes a 

successful infection, such that S(1) = AK/B and I(1) = RK(B − A)/B(R + B). The latter 

equilibrium is stable if the basic reproductive ratio of the pathogen, R0, is greater than 1, 
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which is equivalent to the inequality A < B. The approach to the coexistence equilibrium can 

either be monotonic or involve damped oscillations.

In figure 2ai, information about equilibria of uninfected and infected hosts, based on 

equations (1), is superimposed on the graph that characterizes outcomes of the agent-based 

simulations across parameter ranges. The white line depicts S(1) = 1, while the black line 

depicts I(1) = 1. Thus, above the white line, the total equilibrium number of uninfected hosts 

is greater than 1, and below the black line, the equilibrium number of infected hosts is 

greater than 1. In the agent-based model, a necessary but not sufficient condition for host-

pathogen persistence is that the equilibria predicted by model (1) are greater than 1 (shown 

above the white and below the black line in fig. 2ai). Because of the oscillatory nature of the 

dynamics, however, extinction also occurs (indicated by red in fig. 2ai) for parameters 

within this region. The exact areas of extinction and coexistence can depend on the initial 

conditions, as they influence the exact trajectory of the dynamics. If the equilibrium levels 

of uninfected or infected hosts are relatively low, coexistence can become impossible 

because of the effect of stochastic extinction. The yellow line in figure 2ai indicates R0 = 1. 

Above this line, R0 < 1 and the infection can never become established.

Nearest-Neighbor Interactions—Next we consider a system of equal size where 

individuals can interact only with their eight nearest neighbors. The outcomes are shown in 

figure 2aii, which is again the result of at least 104 instances of the simulation, where the 

log10 of all the parameters was varied between −4 and 4. Again, each point represents the 

outcome of a single run, indicated by the color code. Initial conditions, as well as grid size, 

are the same as those given above and are detailed in the figure legend. The extinction/ 

persistence events recorded in the figure correspond to the same cutoff time as was set for 

the mass-action system, indicated in the legend.

Despite the spatial structure in this habitat, the outcomes can also be explained with the help 

of the ODE model (1) if we give it a correct interpretation. ODEs describe situations in 

which a given individual can interact with all other individuals in the system. In the nearest-

neighbor model, this is true in small, local subareas of the habitat, characterized by an area 

of 3 × 3 spots: one individual can directly interact with all of its eight nearest neighbors. 

Now, let us consider such an area of 3 × 3 spots in isolation and examine the equilibrium 

properties of this system in the context of ODE model (1). We refer to this system as the 

“local neighborhood,” noting that it is an abstracted entity because the spatial model is not 

physically subdivided into different neighborhoods but describes a spatially continuous 

habitat. Because in the local neighborhood, the maximum number of individuals is 9, this is 

referred to as the “local carrying capacity”, Kloc. We find that the population sizes at 

equilibrium in these local neighborhoods, as predicted by ODE model (1) with the small 

carrying capacity Kloc, predict the outcome of the host-pathogen system in the whole spatial 

model of size N × N.

This is shown in figure 2aii. The white line depicts where the equilibrium number of 

uninfected hosts in the local neighborhood equals 1 (S(1) = 1). Similarly, the black line 

depicts where the equilibrium number of infected hosts in local neighborhoods equals 1 (I(1) 

= 1). We can see that the coexistence region in figure 2aii corresponds to the parameters for 
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which both local equilibrium values are greater than 1; it is enclosed by the lines S(1) = 1 and 

I(1) = 1, obtained directly from the host-pathogen equations (1) applied to local 

neighborhoods. The white line S(1) = 1 outlines the lower boundary of the coexistence 

region, while the black line I(1) = 1 defines the upper boundary.

The time to extinction becomes drastically different as the thresholds S(1) = 1 and I(1) = 1 are 

crossed. If the equilibrium values in “local neighborhoods” are greater than 1, then the 

populations persist for very long time spans, so long, in fact, that extinction could not be 

observed even during the longest simulation runs that were computationally possible in our 

study. This applies even if the equilibrium values are only slightly greater than 1. Spatial 

interactions greatly decrease stochastic fluctuations around the equilibrium, thus resulting in 

a low extinction probability. In contrast, if the equilibrium numbers in “local 

neighborhoods” is less than 1, extinction occurs with a much higher probability and thus 

much faster.

The values S(1) = 1 and I(1) = 1 have a special meaning in this system, for reasons somewhat 

different from those in the mass-action model. Although it is easy to envisage a distribution 

with an average number of hosts per local neighborhood less than 1, such systems can be 

shown to be unable to maintain an equilibrium state, despite being connected with each 

other. A detailed proof of this fact in one specific system is given in SI, section 4. 

Intuitively, for equilibrium values greater than 1, fluctuations lead to deviations from the 

equilibrium numbers, but those are on average compensated for by a shift in probabilities 

that favors a return to near-equilibrium values. For example, if the number of infected hosts 

is locally larger than the equilibrium, an increase in infection events will bring it down. If it 

is too small, then an increase in host reproduction will bring it back up. On the other hand, if 

the equilibrium value is less than 1, then inevitably some neighborhoods will contain no 

uninfected hosts, and such a fluctuation cannot be compensated for by an increased 

production of hosts (because reproduction cannot occur if the number of hosts is zero), but 

only by redistribution. On average, the total population of uninfected hosts will decay until 

extinction.

Comparison—Here, we compare the conditions for persistence of the host-pathogen 

system in the perfect-mixing and nearest-neighbor scenarios. For reference, the coexistence 

regime in the mass-action setting is indicated by the dashed line in figure 2aii. This plot 

shows that there are large parameter regions in which extinction is observed in the nearest-

neighbor scenario although persistence occurs in a mass-action setting. More precisely, in 

these parameter regions, the time to extinction is much shorter in the nearest-neighbor 

scenario than in the mass-action scenario. Because this cannot be shown in figure 2aii, 

which shows the outcome after a defined time threshold, we present histograms 

documenting the distribution of extinction times for the spatial and mass-action settings for 

one particular choice of parameters (fig. 3). These data clearly show that in this system, 

spatial nearest-neighbor interactions promote population extinction rather than persistence, 

as commonly thought.

The reason for this effect is as follows. With mass action, long-term coexistence can occur 

in a significant portion of the parameter space where the equilibrium number of uninfected 
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and infected hosts is greater than 1, as predicted by model (1). On the other hand, 

coexistence in the nearest-neighbor system occurs if the equilibrium numbers given by 

model (1) in “local neighborhoods” is greater than 1. Model (1) has the property that the 

equilibrium number of uninfected hosts is proportional to the carrying capacity. The 

carrying capacity, in turn, is much smaller for “local neighborhoods” (Kloc = 9) than for the 

full loc mass-action system (K = 900). Therefore, the parameter region in which coexistence 

occurs is smaller for the nearest-neighbor setting, compared to that in a perfectly mixed 

habitat.

Stated differently, nearest-neighbor interactions in our model promote extinction, because 

the overall outcome in the spatial setting is determined by equilibrium values characteristic 

of the “local 3 × 3 neighborhoods” (although these neighborhoods are not physically 

separated from each other in the context of this model). Even though an undivided habitat is 

considered, the nearest-neighbor interactions lead to outcomes that are typical of habitats 

that are physically fragmented into a collection of small patches, thus leading to a higher 

extinction probability than in a perfectly mixed system. This relationship between nearest-

neighbor interactions and habitat fragmentation is further explored below.

Note that the coexistence regime in the mass-action setting depends on the initial conditions 

because the extent of population oscillations, which can lead to extinction, is influenced by 

the initial conditions. Therefore, it is possible that when the simulation is started from 

different initial conditions, the coexistence area in the mass-action system is smaller or 

larger than that indicated in figure 2. However, the result that nearest-neighbor interactions 

can promote extinction holds true. For a large set of initial conditions, there are significant 

regions in the parameter space where the host-pathogen system remains at a quasi-steady 

state much longer than an equivalent system with nearest-neighbor interactions.

Effect of Grid Size—Figure 2b shows the outcomes for mass-action and nearest-neighbor 

interactions for a larger grid, 300 × 300 spots. The results derived from the smaller grid hold 

true. However, for nearest-neighbor interactions (figure 2bii), an additional area of 

coexistence is observed where the equilibrium number of uninfected hosts in “local 

neighborhoods” is somewhat less than 1. Computer simulations indicate that the area of 

coexistence does not grow any further for larger grid sizes. The coexistence occurring in this 

regime, however, is of a different nature. In the coexistence cases described above, where 

the local equilibrium numbers are greater than 1, the agents are evenly mixed and no 

macroscopic patterns exist (fig. 4a). In the additional coexistence area found in the larger 

grid, where the local equilibrium number of uninfected hosts is less than 1, populations 

become extinct in local areas but persist across the space at low levels because of temporary 

spatial escape of hosts from the pathogen, thus forming macroscopic structures (fig. 4b). 

This is a well-documented mechanism, where movement though space allows the host to 

temporarily escape local extinction, leading to global persistence of populations across the 

whole space (Hassell et al. 1991; Briggs and Hoopes 2004). In some of this parameter 

regime, we also observe extinction in a corresponding mass-action system because of 

pronounced oscillations, again confirming the established notion that spatial structure can 

promote persistence.
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Therefore, in the context of the larger grid, we not only observe our new results but also find 

parameter regions in which established notions are confirmed. Hence, we can broadly state 

that nearest-neighbor interactions can play a dual role in determining the outcome of host-

pathogen dynamics. In accordance with the literature, if extinction occurs in a mass-action 

setting, nearest-neighbor interactions can lead to persistence. Conversely, we have shown 

here that if persistence is observed in a mass-action setting, nearest-neighbor interactions 

can lead to extinction. These two effects are also shown in the form of individual trajectories 

in figure 5.

Effect of Migration—The spatial model analyzed so far did not explicitly include 

migration. Individuals were assumed to move through the habitat via reproduction, placing 

the offspring in the nearest neighboring spots. Here, we show that if explicit migration is 

included in the spatial model, our results hold true for relatively low migration rates and that 

the system approaches mass-action properties for higher migration rates. A parameter 

regime was chosen in which extinction occurred consistently with nearest-neighbor 

interactions in the absence of migration and persistence was observed consistently in the 

mass-action system. We ran the spatial simulation with migration, using a range of 

migration probabilities. The distribution of the time to extinction is shown in the form of 

histograms in figure 6. For relatively low migration probabilities, the results were very 

similar to those of the simulation without migration. When the migration probability 

approached and exceeded the infection probability, then the time to extinction increased 

exponentially. For relatively large migration probabilities, the time to extinction became too 

long to be observed, making the behavior of the system similar to that exhibited by the 

mass-action system.

Metapopulation Dynamics

In the previous section, we assumed one continuous habitat and compared nearest-neighbor 

interaction with perfect mixing within this habitat. Here, we assume a different model 

structure to examine spatial dynamics. We explicitly assume that a habitat is subdivided or 

fragmented into a number of local patches. Within each patch, the dynamics are 

characterized by perfect mixing, with a carrying capacity Kpatch. Migration of individuals to 

the nearest neighboring patches is assumed to occur. In contrast to the agent-based model, 

movement through space in the current patch model requires an explicit migration term, and 

to keep model comparison simple, it is assumed that infected and uninfected hosts have 

equal migration rates. This situation is described by a one-dimensional stochastic 

metapopulation model, which contains a collection of n local patches. Its deterministic 

counterpart is given by the following system of ODEs:

(2)

where 1 < x < n and a subscript x indicates the spatial location of the patch. With μS = μI, the 

migration term is equivalent to the central difference description of diffusion. The parameter 

r denotes the growth rate of the uninfected hosts, β the infection rate, and a the death rate of 

infected hosts. The boundary conditions assume no migration through the boundary patches. 
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The stochastic dynamics in our simulations are governed by a Gillespie algorithm of model 

(2); see SI, section 3.1. Simulations indicate that the average behavior of the Gillespie 

algorithm is predicted by the ODEs.

Comparing one- and two-dimensional metapopulation models indicated that the full range of 

behavior observed in two dimensions is also observed in one dimension, as shown in SI, 

section 3.2. Because of the high computational cost of a two-dimensional model in the 

context of Gillespie simulations, we focused our analysis on the one-dimensional setting. 

The corresponding mass-action system is given by a straightforward Gillespie simulation of 

model (1), characterized by a carrying capacity that is n times the local carrying capacity in 

the metapopulation. As above, we denote the carrying capacity of the mixed system by K, 

and hence the local carrying capacity is given by Kpatch = K/n.

In simulations, the number of local patches was set to n = 100. As the initial condition, we 

assume that in a subset of adjacent local patches in the middle of the space, uninfected 

individuals are present at their pathogen-free equilibrium levels. The rest of the patches are 

initially empty. A small number of infected hosts are placed into the middle patch, and the 

infection is allowed to spread from there (see appropriate figures for details). The initial 

number of pathogens was sufficiently large to ensure successful establishment of infection. 

In figure 7a, each point again represents the outcome of a single run, indicated by the color 

code. The figures show 105 instances of the simulation for each scenario, where the log10 of 

all the parameters was varied between −4 and 4. For further details of the simulations, see 

SI, section 3.1. The outcomes again include extinction of the host population, coexistence of 

uninfected and infected populations, and host persistence in the absence of the pathogen. 

Classification of extinction versus persistence was done according to the same principles as 

in the agent-based model, and the issues discussed in that context hold here.

Perfect Mixing—For the mixed system, fig. 7ai indicates the region in which the 

equilibrium values of the underlying ODEs are greater than 1. This is defined by the line S(1) 

= 1 (white) and I(1) = 1 (black), the boundaries within which a feasible internal equilibrium 

occurs in the ODEs. The yellow line indicates R0 = 1. If R0 < 1 (above the yellow line), the 

pathogen cannot invade. As in the agent-based model, the stochastic dynamics converge to 

this equilibrium only in the subset of the parameter space where equilibria are greater than 1, 

while in the rest of the parameter space oscillatory dynamics will lead to population 

extinction for a wide range of initial conditions. The blue region in fig. 7ai indicates the 

coexistence regime starting from one particular set of initial conditions.

Nearest-Neighbor Interactions—The outcomes for the nearest-neighbor interactions 

are shown in fig. 7aii. The definition of the local equilibria is straightforward in this case, 

since they are defined by a local patch with a carrying capacity Kpatch. As with the agent-

based model, we find that the local equilibria indicate whether extinction or coexistence is 

observed across the whole space. The region where the local equilibria for uninfected and 

infected hosts are greater than 1 are again outlined by the white and black lines. In SI, 

section 4.1, we show that in the limit of high migration rates and with a large number of 

patches, the infected and uninfected individuals coexist if the local equilibria of these 

populations are greater than 1. For low migration rates and a small number of patches, the 
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boundaries of the coexistence region are well approximated by S(1) = s and I(1) = s, where s 

is a number of the order of 1 (SI, sec. 4.2). Relatively small regions of coexistence outside 

those areas can arise from spatial-refuge effects, as described above.

Comparison—As with the agent-based model, we find that nearest-neighbor interactions 

can promote extinction (fig. 7a). This can be interpreted more clearly in the metapopulation 

model. It is very different from the well-known Turing instability, which requires a 

significant difference in diffusion/migration rates between the infected and the uninfected 

hosts (see SI, sec. 6). Instead, it can be a considered a consequence of habitat fragmentation. 

The carrying capacity is significantly smaller in the local patch of a metapopulation than in 

the mass-action system. Because the equilibrium number of uninfected hosts scales with the 

carrying capacity, extinction can occur in the nearest-neighbor metapopulation model in 

large parameter regions where persistence is found in the mass-action system.

To conclude, we note that the analysis of the metapopulation model performed here serves 

three separate goals. (1) It provides an intuitive theoretical justification for using the local 

dynamics to infer properties of the global dynamics, which is not at all obvious in the case 

of the agent-based modeling. (2) It allows for an analytical proof that the phenomenon 

observed here (the increased likelihood of extinction in the nearest-neighbor system, 

compared to that in the mass-action system) is not of the same nature as the Turing 

instability (Levin 1974); see SI, section 6 for the details. (3) It allows us to make the next 

step, which is to generalize our findings to a wider class of systems and derive conditions 

under which our results are expected to hold; see the next section.

Broader Application to Enemy-Victim Interactions: Axiomatic Modeling

So far, we have considered a specific host-pathogen system. We started from an agent-based 

model and derived an ODE that can describe these dynamics. This ODE model was 

subsequently used as a basis for the metapopulation model. Questions arise about the degree 

to which the results described here depend on the particular formulation of the model and 

whether they hold for enemy-victim interactions in a broader setting. This is important 

because the host-pathogen system makes assumptions that may not hold in the context of 

other enemy-victim interactions, for example, the assumption that susceptible (victim) and 

infected (enemy) individuals compete for available space. We examine the robustness of 

results using a general, axiomatic ODE model. Denoting the victim population by x and the 

enemy population by y, the general form of the equations is as follows:

(3)

(Abrams and Ginzburg 2000).

The growth rate of the victim population is given by the function f(x, y, K), which can be 

described by a variety of expressions and can (but does not have to) depend on the number 

of victims and enemies. It is assumed that this function does not grow with the numbers of 

victims and enemies and that it grows with the carrying capacity, K. This is equivalent to 

including crowding effects in the model. The exploitation term is given by the function g(x, 
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y, K), which corresponds to the functional response of the enemy. It is natural to assume that 

this function increases with the number of victims, x: the more victims, the larger the 

exploitation possibility. The function F(g, x, y) describes the numerical response of the 

enemy and is an increasing function of g. We also make an additional assumption that the 

numerical response contains a natural death term for the enemies. In particular, an explicit 

form of F could be F = g − a, where the enemy dies at a rate a in the absence of victims.

Under these assumptions, it is possible to show the following very general statement (see SI, 

sec. 5 for the details of the proof and the precise mathematical formulation). Spatial nearest-

neighbor interactions can be more prone to extinction than corresponding mass-action 

systems if (∂ g/∂y)(∂ỹ/∂K) + ∂g/∂K < 0, where ∂g/∂y and ∂g/∂K are the rates of change of the 

exploitation function with respect to the number of enemies and the carrying capacity, 

respectively, and ∂ỹ/∂K is the rate of change of the steady state number of enemies with 

respect to the carrying capacity, which is always positive. In particular, either of the 

following two conditions will guarantee the presence of this effect: (1) the exploitation 

function, g, decreases with the number of enemies, y, and does not depend on the carrying 

capacity, or (2) the exploitation function decreases with the carrying capacity, K, and does 

not depend on y. These conditions can be interpreted biologically as follows. Condition 1 

assumes the existence of a saturation effect, which is present in functional responses that 

assume predator interference, such as in the Beddington-De Angelis functional response 

(Beddington 1975), or in frequency-dependent infection terms (McCallum et al. 2001). 

There is extensive empirical support for such formulations in the context of both host-

pathogen (McCallum et al. 2001) and predator-prey systems (Begon et al. 2006). Condition 

2 corresponds to the situation where the exploitation function scales with the density of the 

victims, rather than with their total number, as discussed in Begon et al. (2002). Therefore, 

our results do not depend on particular formulations and assumptions of the host-pathogen 

system and hold true in the context of general enemy-victim interactions under the defined 

assumptions.

To confirm these theoretical findings, we used three variants of the metapopulation model 

that are distinct from the initial model considered and contain different growth terms for the 

victim populations and different exploitation terms; see figure 7. Note that in all the cases, 

either condition 1 or condition 2 holds. We ran the same types of simulations as in 

“Metapopulation Dynamics” and related the local equilibrium results to the global outcomes 

of the dynamics. As before, there are significant regions in the parameter space where the 

system with nearest-neighbor interactions is characterized by extinction while persistence is 

observed in the mass-action simulations. The reason is again that local equilibrium values, 

which are smaller than the global ones, drive the outcome of the system.

As mentioned in the context of the agent-based model, there are also parameter regions 

where the opposite holds: in some regions where extinction occurs in the mass-action system 

(because of oscillatory dynamics), coexistence occurs in the nearest-neighbor system. This 

corresponds to the well-known phenomenon that unstable dynamics can be stabilized in 

spatially structured populations (Briggs and Hoopes 2004). The exact parameter regime 

where this occurs depends on initial conditions, which determine the trajectories of the 
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dynamics. This is seen in the blue region outside the area enclosed by the dashed line in the 

nearest-neighbor plots (fig. 7).

We went a step farther and set up an agent-based simulation governed by the same rules as 

one of the metapopulation models above (fig. 8; see SI, section 2.1 for details of 

implementation). We observed the same behavior, which is consistent with the theoretical 

predictions derived for the metapopulations. This demonstrates that spatial, nearest-neighbor 

interactions can have a dual effect on the persistence of enemy-victim interactions and that 

this result is independent of the particular form of the enemy-victim model, provided that the 

two above-described constraints are met. If persistence is observed in a mass-action setting, 

nearest-neighbor interactions lead to properties that are characteristic of a fragmented 

habitat, thus leading to an increased propensity for extinction. On the other hand, if well-

mixed systems display unstable dynamics that lead to extinction, spatial interactions can 

stabilize those interactions and lead to persistence, a well-described phenomenon (Briggs 

and Hoopes 2004).

Discussion

Guided by the previous theoretical literature, a variety of experiments have supported the 

concept that spatial habitat structure and nearest-neighbor interactions promote persistence 

of enemy-victim systems if they are unstable under complete mixing (Huffaker et al. 1963; 

van de Klashorst et al. 1992; Holyoak and Lawler 1996; Janssen et al. 1997; Holyoak 2000; 

Ellner et al. 2001). Other experiments, however, have confirmed the results that we present 

here (Burkey 1997). They were performed using a number of bacterivorous protozoa 

(including Colpidium striatum, Tetrahymena thermophilia, and Chilomonas paramecium) 

and a ciliate predator (either Euplotes aediculatus or Didinium nasutum). Predator-prey pairs 

were selected that were persistent in large, undivided stock cultures. Comparing undivided 

mircrocosms with subdivided ones of an equivalent total volume, the experiments showed a 

significantly higher chance of extinction across the subdivided microcosms than in the 

undivided habitats, supporting the theoretical findings reported here, that is, that spatially 

structured interactions promote extinction. While the functional responses of the predators 

were not determined in these studies, we hypothesize that they were characterized by the 

constraints assumed in our models, because the higher extinction probability observed in 

subdivided, linked microcosms would otherwise not be possible, according to our model. 

We would like to point out that although our specific models described host-pathogen 

interactions, our axiomatic modeling has shown that the extinction-promoting role of spatial 

interactions holds in generalized enemy-victim models, and thus the protozoan examples 

discussed here are appropriate systems to interpret in the light of our theory. The described 

experiments are the closest to our model setup that we could find in the literature, and they 

provide the first step toward testing and validating the model predictions. The agreement 

with our theoretical notions encourages additional work to validate the model in further 

detail.

As mentioned above, previous work has shown that Turing instability can destabilize 

dynamics in spatially structured populations under specific assumptions. The effects 

described here are of a different nature, as shown in SI, section 6.
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An important finding concerns the conditions for extinction in the spatial, agent-based 

model. Although we consider a relatively large, continuous habitat in the agent-based model, 

interactions in a small subset of this habitat, which we call the “local neighborhood,” 

determine whether the populations persist or become extinct. This is interesting from a 

theoretical point of view. The idea of a “characteristic scale” has been proposed in the 

literature in the context of different predator-prey models (de Roos et al. 1991), where the 

system’s behavior was found most predictable on an intermediate scale defined by the 

individuals’ motility and interactions. Pascual et al. (2001) showed that in a class of systems 

exhibiting oscillatory dynamics, the functional forms governing the local predator- prey 

interactions at those characteristic scales are the same as the ones describing a perfectly 

mixed, mass-action system but contain different parameters. This allowed the authors to 

approximate the long-term dynamics of the spatial system at large scales with a temporal 

predator-prey model describing local interactions. Here, we build on this idea and show that 

the global outcomes of the spatially distributed system can be understood by utilizing the 

laws of local dynamics.

The result that local interactions can predict the outcome of the global system is of 

biological importance because it has implications for habitat fragmentation (Kareiva 1987; 

Bascompte and Sole 1998; Fahrig 2003; Ryall and Fahrig 2006). The result that interactions 

in small, local neighborhoods govern the outcome across the whole space in the agent-based 

model suggests that nearest-neighbor interactions in an undivided habitat lead to properties 

that are reminiscent of fragmented habitats. This was further corroborated by our 

metapopulation model, which was characterized by the same properties as the agent-based 

model. In contrast to the agent-based model, the results are more intuitive with the 

metapopulation model. It explicitly describes a habitat that has been fragmented into a 

collection of local patches in which local dynamics occur independently of each other, with 

the exception of migratory processes that occur at a relatively low rate. The effect of habitat 

fragmentation on extinction and diversity is much discussed in the context of conservation 

(Lindenmayer and Fischer 2006), and our model provides a link between a fragmented 

habitat and an undivided habitat with nearest-neighbor interactions.

Our new insights about the extinction-promoting effect of spatially restricted interactions in 

enemy-victim systems has wide implications in ecology and epidemiology, where spatially 

restricted dynamics tend to be more common than well-mixed settings (Crawley 1992). In 

the context of host-pathogen dynamics, the evolutionary transition of planktonic growth in 

bacteria to sessile growth and the formation of biofilms could be of particular interest 

(Jefferson 2004). To a certain extent, our agent-based model can be a good description of the 

most basic dynamics between bacteria in a biofilm and bacteriophages that infect them. 

Biofilms are characterized by pronounced spatial structures and nearest-neighbor 

interactions, where susceptible and infected bacteria share a defined space. While a certain 

degree of migration might occur, particularly with the phage population, our simulations 

have shown that our basic results remain robust. According to our theory, infection by 

phages would render the bacterial population more susceptible to extinction in the context of 

sessile growth than under planktonic growth, thus providing selection pressure against this 

transition, which is also supported by the presence of intricate defense systems in biofilms 

against infection. The insight that the emergence of spatial structure can lower the fitness of 
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bacterial populations is important to take into account when considering the costs and 

benefits of sessile and spatially structured growth.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic representation of the modeling approaches. a, An agent-based model is used to 

describe nearest-neighbor interactions on an undivided habitat, and the outcomes are 

compared to a corresponding mass-action system. Each spot can either be empty (cross), 

contain an uninfected host (open circle), or contain an infected host (filled circle). b, In 

addition, a metapopulation model is explored, where the habitat is divided into a number of 

relatively small local patches, in which individuals mix well. Individuals can migrate to 

neighboring patches. The outcomes are compared to a corresponding mass-action system of 
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equivalent overall size. c, Update algorithm of the agent-based model, shown schematically. 

All these concepts are explained in detail in the text.
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Figure 2. 
Parameter dependence of the outcomes in the basic agent-based model describing host-

pathogen dynamics. Compared are the mass-action (i) and nearest-neighbor (ii) scenarios. 

Each point represents the outcome of a single run, indicated by the color code. Red indicates 

extinction of hosts and pathogens, blue indicates coexistence, and gray indicates persistence 

of the host in the absence of the pathogen. Above the white and below the black lines, the 

equilibrium number of hosts and pathogens, respectively, is greater than 1. This derives 

from corresponding ordinary differential equations with a carrying capacity K = N × N for 

mass-action and Kloc = 9 for nearest-neighbor interactions. Above the yellow line, the 

pathogen cannot invade, as determined by numerical simulations. For ease of comparison, 

the dashed lines in the plots of the nearest-neighbor system indicate the coexistence region 

for the mass-action system. The parameters A, B, and R were varied as indicated, and D = 0. 

The size of the grid was 30 × 30 (a) or 300 × 300 (b). Simulations were started by placing a 
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square of 5 × 5 infected individuals within a square of 13 × 13 susceptible ones centered 

around the middle of the grid. The rest of the grid was empty. The cutoff time for the 

simulations was 3 × 105 (a) or 106 (b) time steps. For details, see text and Supplementary 

Information, section 2.1, available online.
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Figure 3. 
Histogram showing the distribution of extinction times in a nearest-neighbor and a mass-

action setting for one particular parameter combination of the parameter space explored in 

the agent-based model, figure 2. For this parameter combination, the persistence time in the 

mass-action setting is about 3 orders of magnitude longer than that in the nearest-neighbor 

setting. Parameters were as follows: R = 0.1; B = 0.001; A = 0.000025; D = 0; N = 30 × 30. 

Initial conditions are the same as in figure 2a.

Wodarz et al. Page 22

Am Nat. Author manuscript; available in PMC 2016 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Two types of coexistence in larger grids in nearest-neighbor simulations of the basic agent-

based model describing host-pathogen dynamics. The spatial configuration across the grid is 

shown. Green indicates uninfected hosts, red infected hosts, and gray empty space. Each 

picture is a snapshot at a time when the system has attained its long-term behavior. a, In the 

parameter space where the local equilibria are greater than 1, the agents are distributed 

evenly across the grid and no macroscopic patterns are seen. b, If the local equilibrium 

number of hosts is slightly less than 1, a different type of coexistence is observed. Locally, 
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the pathogen drives the host population to extinction, but continuous movement of the host 

away from the pathogen allows long-term coexistence across space. The plot shows multiple 

moving fronts. Parameters were as follows: R = 0.014; D = 0; B = 0.032; A = 0.008 (a). R = 

0.15; D = 0; B = 0.32; A = 0.007 (b). The grid size was 300 × 300. Initial conditions are the 

same as in figure 2.
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Figure 5. 
Individual trajectories or time series demonstrating the dynamics that are observed in the 

agent-based model. Hosts are shows in blue, pathogens in red. a, These graphs demonstrate 

the central result of our model: if hosts and pathogens persist in a mass-action setting, then 

extinction can occur in a spatial, nearest-neighbor scenario. b, In certain parameter regions, 

the established view about the effect of space on persistence is also observed in our model: 

when dynamics in a mass-action setting lead to extinction, persistence can be observed in a 

spatial, nearest-neighbor setting. Parameters were as follows. R = 0.5; D = 0; B = 0.01; A = 

0.0002 (a); R = 0.004; D = 0; B = 0.01; A = 0.0002 (b). The grid size was 300 × 300 in both 

cases. Initial conditions are the same as in figure 2.
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Figure 6. 
Effect of migration on the outcome of the agent-based model. In addition to the basic 

processes in the agent-based model, we now also assumed that an individual (uninfected or 

infected) can migrate with a probability m. A parameter combination was selected in which 

consistent extinction was observed for nearest-neighbor interactions while consistent 

persistence was observed in a mass-action setting, according to the definitions described in 

the text and figure 2. a, The nearest-neighbor model was run for a variety of migration 

probabilities, and the distribution of extinction times was documented by histograms. The 
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outcome for relatively low migration rates is the same as the outcome observed in the 

absence of migration, as shown in the inset. As the migration probability becomes higher 

than the infection probability, time to extinction increases significantly and converges to the 

mass-action picture for high migration probabilities (i.e., no extinction for very long periods 

of time). b, As the migration probability approaches and exceeds the infection probability, 

the time to extinction increases exponentially. Parameters were as follows: R = 0.5, B = 

0.01, A = 0.0005, D = 0, N = 30 × 30. Initial conditions are the same as in figure 2a.
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Figure 7. 
Parameter dependence of the outcomes in the nearest-neighbor metapopulation (ii) and the 

corresponding nonspatial models (i) in the context of four specific models describing 

enemy-victim dynamics. Model a corresponds to the assumptions made in the agent-based 

model of host-pathogen dynamics explored in figure 2. Each point represents the outcome of 

a single run, indicated by the color code. Red indicates extinction of victim and enemy, blue 

indicates coexistence, and gray indicates persistence of the victim in the absence of the 

enemy. Above the white and below the black lines, the equilibrium number of victims and 
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enemies, respectively, is greater than approximately 1 (see Supplementary Information [SI], 

sec. 4, available online), derived from corresponding ordinary differential equation (ODE) 

models. In the metapopulation model, this is the local equilibrium in a patch. Above the 

yellow line, the enemy fails to invade and the coexistence equilibrium is unstable in the 

ODEs, determined analytically. For ease of comparison, the dashed lines in the plots of the 

metapopulation system (ii) indicate the coexistence region for the corresponding nonspatial 

system. The models are as follows: a, dx/dt = rx[1 − (x + y)/K] − dx − (βxy/K), dy/dt = 

(βxy/K) − ay; b, dx/dt = rx[1 − (x + y)/K] − dx − [β xy/(x + y + ε)], dy/dt = [βxy/(x + y + ε)] − 

ay; c, dx/dt = ({rx[1 − (x + y)/K]}/(x + η)) − dx − (βxy/K), dy/dt = (βxy/K) − ay; d, dx/dt = 

({rx[1 − (x + y)/K]}/(x + η)) − dx − [βxy/(x + y + ε)], dy/dt = [βxy/(x + y + ε)] − ay. The 

parameters r, β, and a were varied. The other parameters were assigned the following 

constant values: d = 0; ε = 1; η = 1; μx = 0.1; and μy = 0.1. KIoc= 100 for the local patch in 

the metapoploculation, and K = 10,000 for the mass-action system. The number of patches 

in the metapopulation was n = 100. Equal migration rates for x and y were assumed, to 

facilitate comparison to the agent-based model, but results hold for unequal migration rates. 

For the spatial models, the simulations were started with the central patch containing Kloc 

individuals, including 30 infected hosts. In addition, the five adjacent patches on each side 

contained susceptible hosts at carrying capacity. The remaining patches were empty. The 

cutoff time for the simulation when determining extinction versus persistence was 

determined as follows: the simulation was run until populations hit the boundary of the 

system and was subsequently run 1,000 times longer. For details of simulations, see text and 

SI, section 3.1.
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Figure 8. 
Parameter dependence of the outcomes of the agent-based model corresponding to model d 

of figure 7. Compared are the mass-action (i) and nearest-neighbor (ii) scenarios. Each point 

represents the outcome of a single run, indicated by the color code. Red indicates extinction 

of victim and enemy, blue indicates coexistence, and gray indicates persistence of the victim 

in the absence of the enemy. Above the white and below the black lines, the equilibrium 

number of victims and enemies, respectively, is greater than 1. This derives from 

corresponding ordinary differential equations with a carrying capacity K = N × N for the 

mass-action and Kloc = 9 for the nearest-neighbor loc system. Above the yellow line, the 

enemy fails to invade, determined by numerical simulations. For ease of comparison, the 

dashed line in the plot of the nearest-neighbor system indicates the coexistence region for 

the mass-action system. The parameters A, B, and R were varied, as indicated. Other 

parameters were held constant: D = 0; ε = 0.09; η = 0.09. These values were chosen to adjust 

for the difference in carrying capacity between agent-based and metapopulation models, to 

facilitate comparison. The size of the grid was 30 × 30. Initial conditions and cutoff time 

were the same as in figure 2. For details, see text and Supplementary Information, section 

2.1, available online.
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