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Protein kinases are an important class of enzymes in-
volved in the phosphorylation of their targets, which
regulate key cellular processes and are typically medi-
ated by a specificity for certain residues around the
target phospho-acceptor residue. While efforts have
been made to identify such specificities, only ~30% of
human kinases have a significant number of known bind-
ing sites. We describe a computational method that uti-
lizes functional interaction data and phosphorylation data
to predict specificities of kinases. We applied this method
to human kinases to predict substrate preferences for
57% of all known kinases and show that we are able to
reconstruct well-known specificities. We used an in vitro
mass spectrometry approach to validate four understud-
ied kinases and show that predicted models closely re-
semble true specificities. We show that this method can
be applied to different organisms and can be extended to
other phospho-recognition domains. Applying this ap-
proach to different types of posttranslational modifica-
tions (PTMs) and binding domains could uncover speci-
ficities of understudied PTM recognition domains and
provide significant insight into the mechanisms of signal-
ing networks. Molecular & Cellular Proteomics 15:
10.1074/mcp.M115.052357, 236–245, 2016.

Phosphorylation is a prominent protein posttranslational
modification (PTM)1, which involves the transfer of a phos-
phate group (PO4

3-) to different amino-acids, including serine
(Ser), threonine (Thr), or tyrosine (Tyr) residues of proteins. In

human, this process is catalyzed by over 500 protein kinases
(1), which can regulate protein function by inducing confor-
mational changes in the protein structure, promote or disrupt
protein interactions, or alter protein localization or expression.
This process is crucial for the regulation of many biological
pathways, including cell division, apoptosis, differentiation,
and the response to stress. By phosphorylating other kinases
and proteins, kinases form complex signaling networks. How-
ever, our understanding of the architecture of these networks
remains limited.

The mode by which protein kinases recognize specific tar-
get residues depends on the accessibility of these residues,
and more importantly, kinases have been shown to have
preferences for certain amino-acids flanking the central phos-
pho-acceptor Ser/Thr/Tyr site. These preferences define the
kinase substrate specificity, often referred to as the kinase
substrate “motif.” These motifs were initially defined by
searching for consensus sequences among a set of known
target sites. For example, the cyclin dependent kinase (CDK2)
is known to preferentially target the motif [SerThr]ProX[Ar-
gLys] (a proline at position �1, any amino acid at position �2,
and Arg/Lys at position �3) (2). Computational approaches
were then developed to combine known kinase-target sites
and their flanking regions to model kinase specificity and
successfully predict novel target phosphosites (3, 4). Under-
standing preferences of kinases toward their substrates
therefore offers significant insight into the mechanisms of
signaling networks.

Over the past decade, there has been an ever-increasing
quantity of phosphorylation site data, typically identified using
mass spectrometry (MS), with over 100,000 sites identified in
human (5–7). Yet, these phosphoproteomic experiments have
provided us with a large number of phosphosites for which we
do not known the upstream regulatory kinase. Compendiums
of kinase-site relationships curated from the literature (5–7)
currently associate roughly 6% (6,320/107,444) of known
phosphosites to one or more kinases. The experimental char-
acterization of kinase target sites allows for the discovery of
specificities for many kinases, but they are typically expen-
sive, time consuming, and are not possible to perform on
kinases that are difficult to work with.

Several methods aim at modeling kinase specificity using
the collections of known targets sites. These include scan-x
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(8), Scansite (4), NetPhorest (3), GPS (9), KinasePhos (10), and
many more. However, these methods depend on the avail-
ability of many known target sites for each modeled kinase.
Here, we aim to tackle a more difficult challenge of predicting
the specificity of kinases, without any direct knowledge of its
experimentally determined target sites. The prediction tool
Predikin (11) takes such an approach by trying to predict
kinase specificity by examining 3D models of kinases bound
to their substrate peptides. This analysis has identified resi-
dues in the kinases catalytic domain referred to as substrate
determining residues (SDRs), which confer a preference for
residues in the phosphosites flanking regions. Predikin uses
these SDRs sites to match a new kinase sequence to a kinase
with known specificity. In this way, Predikin also makes use of
known kinase target site information. In addition, Predikin
depends on the availability of protein structures and therefore
cannot be easily scaled to kinase families without 3D struc-
tures nor to other PTM recognition domains.

We decided to take an alternative approach at predicting
kinase specificity. Previous studies have shown that it is pos-
sible to use information regarding the interaction partners of a
peptide-binding protein to identify potential motifs mediating
these interactions (12). We reasoned that putative interaction
partners of a kinase are more likely than random proteins to
be phosphorylated by that kinase. Thus, phosphosites occur-
ring on interaction partners of kinases should confer a bias in
amino acid composition toward the kinase’s specificity, which
can be revealed by motif enrichment (Fig. 1). We tested this on
human kinases to identify already known specificities, as well
as other understudied kinases. We experimentally determined
peptide targets of four understudied kinases and showed that
predicted models closely resemble the experimentally identi-
fied sites. We extended our analysis to show that specificities
can be predicted, not only for kinases, but also for other
phospho-residue binding domains, such as 14-3-3 proteins
and to an acetyl-lysine binding bromodomain. We also ap-
plied our method to mouse and showed that the predicted
specificities of some kinases are conserved. We show here
that it is possible to combine large-scale PTM data with
protein network information to derive the specificity of PTM
regulators and believe that this approach can be widely ap-
plicable to different PTM types.

EXPERIMENTAL PROCEDURES

Data Sources for Phosphosites and Functional Interactions—Func-
tional interaction data were collected from STRING (v9.1). Phosphor-
ylation sites were collected from public databases, including Phos-
phoSitePlus (5), PhosphoELM(6), and HPRD (7) and from a study of
mouse tissues (13). Phosphosites were then mapped to protein se-
quences provided by STRING. Kinase orthologs for 471/493 (95%)
kinases were obtained from InParanoid v8.0 (14).

Kinase Domain Prediction—Given a protein sequence, we used
Kinomer (15), which uses multilevel hidden Markov models and
HMMER (16) to identify protein kinases, and classify them into their
appropriate kinase family. E-value cutoffs for each family were used
as defined in (15). If a kinase was assigned more than one predicted

family, the one with the highest E-value was used. These families
were also used to determine if the kinase is Ser/Thr-specific or
Tyr-specific. We assume that a kinase is either Ser/Thr-specific or
Tyr-specific and do not account for dual specificity kinases.

Motif Enrichment—To identify motifs enriched within a set of phos-
phosites, compared with a background, we used the motif-x algo-
rithm (17). Here, we used two background sets, defined as 10,000
15-mers centered on nonphosphorylated Ser/Thr or Tyr residues,
depending on if the kinase is Ser/Thr-specific or Tyr-specific. All
enrichments were carried out for �7 residues surrounding the central
residue with occurrences � 10 and p � 10�6. Since the motif-x tool
was only available via an online webserver, we reimplemented the tool
for the R programming language, which can be found here:
https://github.com/omarwagih/rmotifx.

Kinase Specificity Models—Specificity models were constructed
as PWMs, which are commonly used to model specificities of linear
motifs (18). PWMs can then be used to score peptides. We use an
adapted version of the matrix similarity score (MSS), originally devel-
oped in the MATCH algorithm (19), as described in (20). The MSS
ranges from 0–1, where 0 represents no predicted binding, and 1
represents perfect predicted binding.

The performance of a given PWM was evaluated as the area under
the ROC curve (AUC), which is the curve representing the relationship
between the false positive rate and true positive rate as the MSS
score cutoff is varied:

FPR �
FP

FP � TN
TPR �

TP
TP � FN

Here, FP, TP, TN, FN represent the number of false positives, true
positives, true negatives, and false negatives, respectively. The
PWMs were used to score positive and negative sequences in order
to generate these values. For a kinase of interest, we define the
positive sequences as the set of phosphosites annotated to the
kinase and the negative sequences as phosphosites annotated to any
kinase not belonging to the same kinase family, as defined by Man-
ning et al. (1).

In the case where the performance of experimental models were
evaluated (i.e. using the gold-standard sequences), we performed
10-fold cross validation in which the kinase sequences are randomly
split into 10 bins. Each bin is iteratively used as the test set, while the
remaining nine are used to construct the PWM. This results in 10
AUCs, which are averaged to provide an unbiased proxy of the
PWM’s prediction power.

We supply a resource that contains all of the information used for
the specificity predictions of each kinase. This can be accessed from
http://evocellnet.github.io/kpred/. For each kinase, the user can find
the specificity logo as well as the list of interacting partners and
phosphosites used to generate the prediction. We also provide an R
package to allow others to more easily use this method for their own
PTM and species of interest. The package and a tutorial on how to
use it are available via the help section of the prediction website.

Profiling In Vitro Kinase Substrates—Identification of in vitro kinase
substrates was conducted as previously described (21). Briefly, lysate
proteins were extracted from HeLa S3 cells at about 80% confluence
in 15 cm dishes, and the total protein amount was measured by a
BCA protein assay kit. Dephosphorylation was then carried out with
TSAP (Promega, Madison, MI, USA) at 37 °C for 1 h, and TSAP was
inactivated by heating to 75 °C for 30 min. For in vitro kinase reaction,
each 100 �g of dephosphorylated proteins (1 �g/�l) was reacted with
1 �l of each recombinant kinase (0.5 �g/�l) or distilled water as a
control at 37 °C in kinase reaction buffer (40 mM Tris-HCl (pH 7.5), 20
mM MgCl2, 1 mM ATP) for 3 h. AKT2, catalytic domain [120–481(end),
accession NP_001617.1], full-length EIF2AK4 [1–1649(end) accession
Q9P2K8.2], full-length HIPK2 [1–1198(end) accession Q9H2X6] and
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full-length SRPK2 [1–688(end) accession NP_872633.1] were ob-
tained from Carna Biosciences Inc. (Kobe, Japan). The kinases were
expressed as N-terminal GST-fusion protein using baculovirus ex-
pression system with SF9 cells and were purified using glutathione
Sepharose chromatography. The reaction was stopped by heating to
95 °C for 5 min. After protein reduction/alkylation, Lys-C/trypsin di-
gestion (1/100 w/w) was performed and phosphopeptides were en-
riched by TiO2-based hydroxyl-acid-modified metal oxide chroma-
tography (22).

Phosphopeptides were desalted by StageTips and analyzed by
nanoLC-MS/MS using a self-pulled analytical column (150 mm
length � 100 �m inner diameter) packed with ReproSil-Pur C18-AQ
materials (3 �m, Dr. Maisch, Ammerbuch, Germany). An Ultimate
3000 pump (Thermo Fisher Scientific, Germering, Germany) and an
HTC-PAL autosampler (CTC Analytics, Zwingen, Switzerland) were
used coupled to an LTQ-Orbitrap XL (Thermo Fisher Scientific). A
spray voltage of 2,400 V was applied. The MS scan range was m/z
300–1,500. The top 10 precursor ions were selected in MS scan by
the Orbitrap with r � 60,000 for MS/MS scans and the ion trap in the
automated gain control (AGC) mode, where automated gain control
values of 5.00 � 105 and 1.00 � 104 were set for full MS and MS/MS,
respectively. To minimize repetitive MS/MS scanning, a dynamic
exclusion time was set at 20 s with a repeat count of 1 and an
exclusion list size of 500. The normalized CID was set to be 35.0.
Mass Navigator v1.2 (Mitsui Knowledge Industry, Tokyo, Japan) with
the default parameters for the LTQ-Orbitrap XL was used to create
peak lists on the basis of the recorded fragmentation spectra. Pep-
tides and proteins were identified by automated database searching
using Mascot v2.3 (Matrix Science, London, UK) against SwissProt
release 2010_11 (02/11/2010, 522,019 entries) with a precursor mass
tolerance of 3 ppm, a fragment ion mass tolerance of 0.8 Da, and
strict trypsin specificity allowing for up to two missed cleavages.
Carbamidomethylation of cysteine was set as a fixed modification
and oxidation of methionines; phosphorylation of serine, threonine,
and tyrosine were allowed as variable modifications. Peptides were
considered identified if the Mascot score was over the 95% confi-
dence limit based on the “identity” score of each peptide and if at
least three successive y- or b-ions with a further two or more y-, b-,
and/or precursor-origin neutral loss ions were observed, based on the
error-tolerant peptide sequence tag concept. After identification,
phosphopeptides identified from the control samples were rejected. A
randomized decoy database created by a Mascot Perl program gave
a 1% false-discovery rate for identified peptides with these criteria.
Phosphosite localization was evaluated using a site-determining ion
combination method based on the presence of site-determining y- or
b-ions in the peak lists of the fragment ions, which supported the
phosphosites unambiguously.

RESULTS

Network-Based Prediction of Kinase-Substrate Specific-
ity—We hypothesized that the interaction network of a protein
kinase should be enriched in its target proteins. This hypoth-
esis was confirmed by the observation of a very significant
enrichment of known kinase targets in the functional interac-
tion or physical interaction partners of kinases (Supplemental
Fig. 1). In order to predict kinase specificities, we then com-
bined information on human protein interaction data and
phosphorylation data derived from large-scale MS studies.
Given that kinases bind their target proteins transiently, we
used functional interactions derived from STRING (23) as a
source for potential kinase interactors. We collected a total of
2,425,314 interactions in 22,523 proteins and compiled ex-

perimentally determined phosphorylation sites from three
public databases (PhosphoSitePlus (5), PhosphoELM (6) and
HPRD (7)). Phosphosites were mapped back to proteins hav-
ing information in STRING, resulting in 107,444 sites in 12,207
proteins. We identified 493 kinases in this reference proteome
(81% serine/threonine and 19% tyrosine kinases) using the
Kinomer prediction tool (15) (Methods). For a given kinase, all
phosphosites occurring on the STRING partners of a kinase
were collected and enriched for motifs using the motif-x al-
gorithm (17) (Fig. 1, Methods). A random sample of 10,000
unphosphorylated Ser/Thr/Tyr sites were used as the back-
ground for enrichment. Phosphosites matching the most sig-
nificant extracted motifs were then used to build a position
weight matrix (PWM), which highlights the predicted specific-
ity of the kinase and can be used to score novel phosphosites
(Fig. 1).

FIG. 1. Overview of the method. (1) Experimentally identified phos-
phosites on functional interaction partners of a kinase are collected.
(2) The sites are then subject to motif enrichment to identify overrep-
resented motifs, likely representing the kinase specificity. (3) Phos-
phosites matching the top k significant motifs are then retained and
used to construct a specificity model.
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A survey of all known phosphorylation sites revealed a
strong enrichment for prolines at position �1 (Pro�1) (Sup-
plemental Fig. 2). This results in consistent enrichment of
Pro�1 motifs (Supplemental Fig. 3, Supplementary Results).
To circumvent this, we require to know if a kinase is proline-
directed (i.e. prefers Pro�1). We found that kinases of the
CMGC family, including CDKs, MAPKs, GSKs, and CDK-like
kinases have Pro�1 motifs as shown in their experimental
binding sites (Supplemental Fig. 4). Also, of all the non-CMGC
kinases (with �20 known targets) only 1.57% (1/68) were
found to be proline directed. Thus, if a kinase is not predicted
as CMGC, phosphosites containing Pro�1 are removed from
foreground and background sets prior to motif enrichment.

There are two variable parameters in our method: the cutoff
for the functional-interaction prediction score from STRING
and the top k number of significant motifs extracted during the
enrichment. To determine the best thresholds to use, we
tested the predicted kinase specificity models against a set of
9,595 gold-standard kinase–substrate relationships. We car-
ried out the benchmarking using a set of nine well-studied
kinases from a diverse set of kinase families (ABL1, AKT1,
ATR, AURKB, CDK2, CSNK2A1, GSK3B, MAPK1, and
PRKACA) with well-recognized specificities in the literature.
We varied the STRING cut-off, and the top k motifs extracted.
The performance of the resulting PWM in each case was
evaluated using the area under receiver operating character-
istic (AUC) (Methods). We found that increasing the STRING
score threshold, overall, resulted in higher AUCs (Supplemen-
tal Fig. 5). However, in most cases, we did not see a signifi-
cant increase after a score cutoff of 400, and therefore, we
used that cut-off throughout our analysis. We chose to select
the top five motifs for two reasons. First, the AUCs among
varied k values did not vary considerably. Second, overselect-
ing motifs could mask the predicted specificity of the kinase
(Supplemental Fig. 6). We also tested if difference sources of
evidence (e.g. text mining, coexpression, interaction data)
within the STRING database resulted in a different perform-
ance. Overall, using different evidence provided by the
STRING database did not provide a significant increase in
the AUCs, and a larger number of kinases can predicted using
the combination of all evidence types (Supplemental Fig. 7).

Next, we checked to see how likely random models con-
structed without the network information performed in com-
parison to our predicted models. If a given kinase has n
STRING interactions, and among those interactors there are
m phosphosites (s1, s2, . . . , sm), then m random phospho-
sites are selected from all known phosphosites in public da-
tabases (r1, r2, . . . , rm). Specificity is then predicted, as pre-
viously described, using these sites. Random models,
constructed using the top five motifs, were compared against
the predicted models in their discriminative power against the
gold-standard sequences, as measured by the AUC. We
found that our predicted models for most of the nine kinases,
with the exception of AKT1 and MAPK1, performed signifi-

cantly better than random (Fig. 2A and Supplemental Fig. 8).
This does not mean that the AKT1 model is incorrect since it
performs very well at predicting known AKT1 target sites
(AUC � 0.90, Fig. 2A). However, some kinases like AKT1 have
specificities that are well modeled by the most represented
motifs across all sites. Thus, in these cases, the network
information appears to provide almost no gain compared with
random sampling. In opposition to these kinases, ATR has a
specificity that is very uncommon with a preference for glu-
tamine at position �1 that is very well recovered by this
approach (Figs. 2A and 2F) but very unlikely to be observed in
a random pool of phosphosites.

These results demonstrate the ability to integrate protein
interaction information with large-scale data on protein phos-
phorylation to derive kinase specificity models.

Prediction of Kinase Specificity across All Human Kinases—
Our method was applied to all kinases, resulting in predictions
for 282/493 (57%) of kinases (Supplementary data). Kinases
that did not result in a prediction either had a low number of
partners or a scarcity of phosphosites on partners. We se-
lected 85 kinases with �20 known target phosphosites as
well as a prediction and compared how well the predicted
models performed with respect to the kinase family (Fig. 2B).
The average AUC across all kinases was 0.64 with 32%
(27/85) of kinases having an AUC greater than 0.7 (Fig. 2B).
We found that CMGC, PIKK, and AGC families performed
best, whereas TKL, STE and TK kinases had a larger fraction
of poorly performing models. Excluding the TKL, STE, and TK
kinases, the average AUC increases to 0.68 with 44% of
kinases (27/61) scoring higher than 0.7 (Fig. 2B). We specu-
lated that the differences in performance across the different
kinase families reflect different degrees of specificity in the
kinase–substrate recognition. For example, many tyrosine ki-
nases have additional targeting domains (i.e. PTB and SH2
domains). Also, several STE kinases are known to have an
additional interaction surface for a “docking motif” (24, 25).
For these kinases, targeting is achieved by multiple interfaces
or often aided by other mechanisms (see Discussion), and
therefore, they might be less specific in the recognition of
sequences around the phosphosite. In line with this reason-
ing, we found that kinases that had additional protein domains
also had worse-performing models (p � 1.88 � 10�3, Wilc-
oxon signed-rank test; Supplemental Fig. 9). We tested this
notion more explicitly by comparing our predicted models
with a proxy for kinase promiscuity. For the same set of
kinases, we built PWMs using the gold-standard target sites
and computed an experimental AUC using 10-fold cross-
validation (Methods), which reflects how well the gold-stand-
ard models perform at distinguishing their own sites. Interest-
ingly, we found that AUCs of predicted models showed a
strong correlation to that of the experimental (r � 0.757, p �

2 � 10�16; Fig. 2C), suggesting that kinases with high true
specificity are more likely to have high predictability.
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We selected a few example kinases to demonstrate the
specificity determinants captured by our approach (Figs. 3D–
3G). The predicted specificities strongly resemble that of the
experimental and, in many cases, are much more apparent.
For example, the pronounced preference for glutamine at �1
for ATR is recovered (Fig. 2F). The known Akt preference for
an arginine at -3 and -5 is fully recovered in the predicted
model. In addition, there is a more apparent preference for
[ArgSerThr] at -2, and arginine at -1 that is not as apparent in
the experimental specificity (Fig. 2G).

In attempt to identify features comprised by better perform-
ing models, we searched for relationships between the AUC
of the predicted model and (1) the number of functional inter-
acting partners, (2) the number of phosphosites on interacting
partners, (3) the distribution of information content, and (4) the
number of extracted motifs. We observed weak correlations
(r � 0.361, Supplemental Fig. 10) for each of the individual
features. However, we were able to achieve a higher correla-
tion by combining a number of features using a linear regres-
sion model (r � 0.542, p � 8.37 � 10�8). This model can thus
be used to assign a quantitative measure of confidence re-

lated to the truth of predicted specificity, which we use to rank
our predictions (Supplementary Data).

We tested several alterations of the method, such as using
different background sets for motif enrichment as well as
using only high confidence phosphosites, and overall did not
observe a strong improvement in the AUC (Supplementary
Results, Supplemental Figs. 11–12). For example, to obtain a
list of higher confidence sites, we tried excluding phosphosite
positions that are supported only by one study or excluding
from the analysis highly abundant proteins (Supplemental Fig.
11). To test the impact of removing the Pro�1 sites, we used
an alternative strategy whereby we did not filter Pro�1 pep-
tides but used as background all phosphosites instead of
phospho-acceptor residues. Although we were still able to
retrieve many correct predictions, the performance was lower
in this alternative implementation.

Mass-Spectrometry-Based Validation of Kinase Specific-
ity—We selected four kinases with few known target sites in
the literature, across different kinases subfamilies for which
we had a predicted model (CMGC kinases SRPK2 and HIPK2,
AGC kinase AKT2, and PEK kinase EIF2AK4). For each of

FIG. 2. Benchmarking of the method. (A) The performance of each predicted model compared with models predicted using random
phosphosites. Seven of nine cases perform better than random (.p � .01, *p � .05, **p � .01, *** p � .001, one sided z-test). Error bars
represent the median absolute deviation for 1,000 random models. 85 kinases with 20 or more known substrates were used as the gold
standard. (B) Performance of predicted models across different families. The gray line denotes near-random performance. (C) Performance of
gold-standard models is compared with that of the predicted models. A strong correlation suggests a relationship between the specificity of
the kinase and predictability of a specificity model. (D-G) Examples of predicted specificity models. The top and middle panel of each example
shows the specificity of the kinase as constructed from known substrates and as predicted by our method, respectively. The bottom panel
shows the top five extracted motifs and the number of phosphosites matching them.
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these kinases, we identified in vivo target sites using the
phosphoproteomic approach described by Imamura et al. (21)
(Fig. 3A). Briefly, HeLa cell extracts were treated with phos-
phatase to remove any existing phosphosites, and kinases
were added in separate experiments. Phosphorylated extract
were then subjected to trypsin digestion, phosphopeptide
enrichment, and nanoLC-MS/MS (Fig. 3A). We identified a
total of 483 novel phosphosites for these kinases (AKT2, n �

248; EIF2AK4, n � 91; HIPK2, n � 106; SRPK2, n � 38,
available in Supplementary Data). The identified target sites
were then compared with our predicted models for these
kinases (Figs. 3B–3E). We found that all predicted models
performed significantly better than random, and three of the
four had an AUC � 0.7 at classifying the experimentally
identified sites (Fig. 3F). These results are in line with the
benchmarks performed and further support the validity of the

approach described here. We note that the SRPK2 kinase
was predicted to have a strong preference for serines and
arginines at several positions. This motif was unusual given
previously described models, though several elements of this
motif are confirmed by the experimental sites (Fig. 3D). The
kinase specificity of SRPK2 was very recently determined
using a chemical genetic approach (26) that provides further
validation for the predicted specificity model for this kinase.

Prediction of PTM Binding Specificities—To demonstrate
the extendibility of our method to other types of linear motif
specificities, we applied the same method to 14-3-3 proteins.
14-3-3 proteins are conserved single domain proteins capa-
ble of binding a phospho-serine or threonine and are respon-
sible for tight regulation of several important pathways such
as cell death, cell cycle control, and signal transduction (27).
Previous studies have shown that binding sites these proteins

FIG. 3. Experimental validation. (A) Workflow for identifying phosphorylation sites. (B–E) Predicted specificity models of four experimentally
validated kinases. The top and middle panel of each example shows the specificity of the kinase as constructed from the target sites of these
kinases identified via MS and as predicted by our method, respectively. The bottom panel shows the top five extracted motifs and the number
of phosphosites matching them. (F) The performance of each predicted model compared with models predicted using random phosphosites.
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have specificities toward their target phosphosites (28) (Fig.
4A). We applied the method to all seven human 14-3-3 pro-
teins (Figs. 4A–4C, Supplemental Fig. 13) and similarly show
that the recovered models are very good predictors of known
binding sites (AUC�0.80) and perform significantly better
than random (Fig. 4D). We recovered the well-known deter-
minants such as arginine at position -3 and some preference
for proline at position �2. We found that there is little to no
overlap between sites used to construct the models for each
14-3-3 protein, despite showing similar predicted specificity
(Supplemental Fig. 14). This suggests that the same motif is
recovered in each case from a different source of partner
sites, adding to the confidence of the recovered models.

To highlight the broader usefulness of the method, we
selected p300 that contains a bromodomain that binds acety-
lated lysines and its binding specificity has been well charac-
terized (29). We then obtained a collection of human lysine
acetylation sites and used the same network-based motif
enrichment to predict the specificity of p300’s bromodomain.

We found that the predicted specificity (Supplemental Fig. 13)
is very similar to the known preference for KXXK or KXXXK
(where X is any amino acid and both lysines are acetylated).

These results again show that PTM recognition specificity
can be predicted by combining network information with PTM
data.

Conservation of Kinase–Substrate Specificity—We next
sought to predict kinase specificities in a different organism.
We applied the same approach to mouse (Mus musculus),
which contained 29,732 phosphosites and 2,425,424 STRING
interactions. Using human kinases that had an AUC � 0.6, we
identified one-to-one ortholog kinases in mouse, using the
InParanoid resource (30). By applying our method to these
kinases, we found a close resemblance of the specificity
determinants of human and many of their corresponding
mouse orthologs (Fig. 5). For 56 mouse kinases analyzed in
this way, 19 (34%) showed a similar or better performance at
predicting the known human kinase sites than the orthologous
human model. This suggests that at least these 19 kinase
pairs have very conserved kinase preferences. For the re-
maining cases, we cannot confidently say that there is a
divergence in specificity since we cannot rule an incorrect
prediction.

DISCUSSION

The advances in MS have expanded tremendously our
knowledge of exact protein modifications sites for a number
of different PTM types. However, there is almost no informa-
tion regarding the regulatory interactions connecting regula-
tors to target proteins. Determining the recognition prefer-
ences for PTM enzymes and binding domains in large scale is
still an open problem and remains a limiting factor in achieving
this goal. We used phospho-regulation as a model system
and showed that it is possible to combine PTM information
with interaction network data to derive accurate models of
enzymes and binding domains. Predicted kinase motifs for
59% of human kinases are provided in supplementary mate-
rial. In addition, a resource that contains all of the information
used for the specificity predictions of each kinase can be
accessed from http://evocellnet.github.io/kpred/. The code
required to apply this approach can be found in the help page
along with a tutorial.

We note that even though some models do not perform
better than models created by random sampling of sites, this
does not necessarily reflect the reliability of the predicted
model. Some kinase specificities are well modeled by the
most common motifs that are recovered from a random sam-
ple. For these cases, the added information from the network
data does not result in a model that is more accurate than
random. The power of our approach is therefore more obvious
for regulators that have specificities that are less common
such as the DNA damage kinase ATR. For this kinase, the
recovered model is both accurate (AUC � 0.94) and performs

FIG. 4. Prediction of 14-3-3 domain specificities. (A) The speci-
ficity of 14-3-3 domains as constructed by experimentally verified
substrates. (B and C) Prediction of specificities for two 14-3-3 pro-
teins. Each example shows a logo representing the predicted
specificity (left) and the top five extracted motifs and the number
of phosphosites matching them (right). (C) The performance of each
predicted model compared with models predicted using random
phosphosites. All cases perform better than random sampling of
phosphosites (.p � .01, *p � .05, **p � .01, *** p � .001, one-sided
z-test). Error bars represent the median absolute deviation of 1,000
random models.
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much better than models produced by random sampling of
sites.

In the current implementation of this approach, we assume
that kinases that are not CMGC tend not to be proline directed
and remove Pro�1 phosphosites. This may result in mispre-
dicting cases where a non-CMGC kinases is proline directed
and also cases where CMGC kinases are proline directed. We
tested an alternative approach that does not require the re-
moval of Pro�1 phosphosites, but this resulted in a lower
overall performance. However, we note that, even when using
Pro�1 peptides, we can still obtain predictions that do not
have Pro�1. For example, the CK2a1 kinase is a casein
kinase and therefore part of the CMGC group. For this group,
we allow Pro�1 peptides to be included in the predictions and
we still obtain a strong bias for an acidic residue at the �1
position. Additionally, we require to know the class of the
kinase: serine/threonine or tyrosine to filter only phosphosites
matching the class of the kinase. This is because phospho-
tyrosine is in many regards a different PTM from phosphoser-
ine and phosphothreonine. In particular, it occurs at much
lower frequency, so if we would not discriminate between
these two types, the predicted specificities would be domi-
nated by phospho-Ser/Thr.

It is important to take into account that most phosphosite
information was retrieved from phosphoproteomics experi-

ments that have used trypsin for protein digestion. Given that
trypsin cleaves C-terminal to arginine and lysine residues, it is
very possible to expect a bias for Arg/Lys residues in the
phosphopeptides. However, we do not think this bias is a
strong influence on the recovered motifs. If it was a strong
influence, we would expect any bias to be equally possible at
positions before or after the target site and also not specifi-
cally biased for Arg or Lys. Instead, arginine determinants are
more frequent than Lys determinants and Arg determinants
are not symmetrically distributed. Of the 202 Arg determined
positions (defined as having �0.25 relative frequency at the
position), 96% (194/202) are found before the phosphosite
and 0.039% (8/202) are found after the phosphosite. There
are only 19 positions where Lys is the major determinant, and
these tend to be more distributed with 42.1% (8/19) occurring
before and 57.89% (11/19) occurring after the phosphosite.

Different kinase families show different average perform-
ance in their predictions and that the degree of kinase spec-
ificity for the known target sites is correlated with the accuracy
of the predicted models. These observations highlight the
inherent limitation of the approach proposed here. PTM-inter-
acting proteins that recognize their target sites mostly by
residues flanking the target site will be more amenable to this
approach than those that use multiple recognition mecha-
nisms. These include docking motifs, colocalization, coex-

FIG. 5. Conservation of kinase specificity. (A–F) Six examples showing the comparison of predicted human versus mouse models. Each
example shows logos for human gold-standard specificity (top) and the predicted specificity model in human (middle) and mouse (bottom).
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pression, and scaffolding interactions [see (2) for a full review].
In addition this approach assumes that the recognition occurs
in a linear epitope at the PTM position. However, it has re-
cently been shown that kinase targeting can occur also in a
3D epitope instead of a linear motif (31). If a PTM enzyme or
binding domain often recognizes the target site by a 3D
epitope, then this linear motif enrichment strategy will not be
appropriate. These observations should be taken into account
for future use of this method for other PTM recognition do-
mains. We show that this method can be applied to different
modes of site-directed motif-binding domains, such as 14-
3-3 domains and bromodomains, suggesting that the method
could thus be extended further to analyze specificities of other
PTM recognition domains. Finally, we applied this approach
to study the conservation of kinase specificity between hu-
man and mouse kinases. For the cases that we analyzed, at
least 34% appear to have conserved specificity. We suggest
that this approach, in combination with an analysis of poten-
tial mutations in specificity-determining residues, could be
used to identify PTM recognition domains with diverged spec-
ificities across species. Given that these regulators interact
with many different target PTMs, it is expected that their
specificity diverges slowly. This is in contrast to the fast
changes in the PTMs targeted by these proteins that can
diverge quickly (32, 33). Conserved regulator specificity with
diverged target sites is a scenario that is analogous to what is
observed in transcriptional regulation (34). However, there
have been cases described for divergence of transcription-
factor specificity (35), so analogous cases of divergence of
PTM recognition are likely to exist. In addition to studying the
evolution of specificity, applying this method to different or-
ganisms could lend further confidence to the true specificity
of a PTM recognition domain since models trained in different
species could contribute complementary specificity determi-
nants and ultimately be combined to provide better models.

In summary, we describe here a novel approach to predict
PTM recognition motifs, and we believe it can be applicable to
a wide range of recognition domains and contribute signifi-
cantly to our understanding of these signaling systems.

* This work was funded by various grants. PB is funded by Eu-
ropean Research Council Starting Grant ERC-STG-2014 638884
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