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High content protein interaction screens have revolution-
ized our understanding of protein complex assembly.
However, one of the major challenges in translation of
high content protein interaction data is identification of
those interactions that are functionally relevant for a par-
ticular biological question. To address this challenge, we
developed a relevance ranking platform (RRP), which con-
sist of modular functional and bioinformatic filters to pro-
vide relevance rank among the interactome proteins. We
demonstrate the versatility of RRP to enable a systematic
prioritization of the most relevant interaction partners
from high content data, highlighted by the analysis of
cancer relevant protein interactions for oncoproteins Pin1
and PME-1. We validated the importance of selected in-
teractions by demonstration of PTOV1 and CSKN2B as
novel regulators of Pin1 target c-Jun phosphorylation and
reveal previously unknown interacting proteins that may
mediate PME-1 effects via PP2A-inhibition. The RRP
framework is modular and can be modified to answer
versatile research problems depending on the nature of
the biological question under study. Based on comparison
of RRP to other existing filtering tools, the presented data
indicate that RRP offers added value especially for the
analysis of interacting proteins for which there is no suf-
ficient prior knowledge available. Finally, we encourage
the use of RRP in combination with either SAINT or CRAP-
ome computational tools for selecting the candidate in-
teractors that fulfill the both important requirements,

functional relevance, and high confidence interaction
detection. Molecular & Cellular Proteomics 14: 10.1074/
mcp.M115.050773, 3274–3283, 2015.

Development of high content methods for protein interac-
tion identification have dramatically increased our under-
standing of organization of cellular protein complexes (1). In
addition, development of web-based protein interaction net-
work analysis platforms such as Protein Interaction Network
analysis has greatly helped construction, filtering, and analy-
sis of protein interactomes (2). Regardless of these advances,
one of the major challenges in protein–protein interaction
screens is to dissociate from large number of interactions
those that are functionally relevant for a particular biological
question. Moreover, even though currently used quantitative
methods emphasize the importance of repeatability in weight-
ing the likelihood of an identified interaction to be true (3, 4),
we cannot exclude even one-time identification of a few pep-
tides of a previously unknown protein, as they may lead to the
discovery of an entirely new biological concept, provided the
identified interaction and its functional relevance is properly
verified by subsequent experimentation (1, 5–7). Finally, when
considering the reliability of the identified putative interaction,
the functional classification of candidate interactors to “rele-
vant” versus “nonrelevant” may not be advisable without fur-
ther supporting data. Protein interactions of signaling proteins
with cytoskeletal proteins are the classical examples of such
interactions that might be omitted using such classification,
notwithstanding the vast literature of relevance of these inter-
actions for regulation of cellular signaling (1).

Taking into account these serious concerns, we rationalized
that it would be useful to develop a method that could advise,
regardless of either the reliability of the MS-based identifica-
tion or known biological function of the putative interactor,
what are the proteins from the high content screens that most
likely contribute to the function of the bait protein. This could
direct the choice of proteins for subsequent validation and
functional experiments, optimally without the need to first
verify the protein–protein interaction between the bait and
candidate proteins. We envision that this would be especially
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useful for analysis of proteins for which existing prediction
programs such as FunCoup (8), which infer genome-wide
functional couplings, would not be useful due to the limited
amount of supporting literature or functional data.

In order to develop such a filtering tool for high content
protein–protein interaction data, we considered that an af-
fordable and rapid combination of approaches would involve
functional siRNA screens combined with bioinformatic filters.
As a relevant read-out for the proof-of-principle test, we
chose oncogenic function of established oncoproteins Pin1
(9, 10) and PME-1 (11). The resulting platform, designed as
relevance rank platform (RRP)1, consists of several subse-
quent filtering steps, each of which produces a ranking, and
whose combination then determines the final RRP rank be-
tween the interactome proteins. More specifically, RRP ranks
each interacting protein in the order of its increased likelihood
of contributing to the oncogenic activity of the bait, without
taking into account any information regarding reliability of MS
detection or other interaction quality measurements. This rank
is collectively called a “similarity rank.” Detailed descriptions
of the specific rankings are shown in Fig. 1 and in Supple-
mental Table 1.

EXPERIMENTAL PROCEDURES

Cell Culture—Prostate cancer cell line (PC3) was cultured in RPMI
containing 10% FBS and 1% penicillin–streptomycin antibiotic in 10
cm cell culture dishes. The cells were grown up to 90% confluence in
incubator at 37 °C and 5% CO2. For colony formation assay, PC3
cells were transfected with siRNA for 48 h and plated into three 6-cm
cell culture dishes (1,000 per dish). Cells were incubated for 15 days
in medium containing 10% FBS. Plates were washed with PBS, fixed
in 3.7% formaldehyde, and stained with crystal violet.

High-throughput RNAi Screening for Cell Proliferation Effects—
Custom human siRNA library was acquired from Qiagen on 384-well
plates with three non-overlapping siRNAs targeting each gene. Li-
brary and control siRNAs were transferred to black clear bottom
tissue-culture-treated 96-well plates (Costar #3904) using acoustic
droplet ejection method with Echo 550 liquid handler (Labcyte,
Sunnyvale, CA). The assay plates were used right away or used later,
in which case they were kept sealed in �20 °C until used. Prior to
transfection, 20 �l of Optimem medium (Gibco, Grand Island, NY)
containing 125 nl of Lipofectamine 2000 (Invitrogen) per well was

added using Multidrop Combi nL (Thermo Scientific, Waltham, MA),
and plates were mixed for 15–90 min. After mixing, 500 cells per well
were added in 80 �l of culture medium using Multidrop Combi
(Thermo Scientific). Final concentration of siRNA in assay plates was
12 nM. After transfection, cells were incubated at 37 °C for 7 days in
the presence of 5% CO2 in cell incubator (HERACell 240, Thermo
Scientific). Cell proliferation was measured by adding 100 �l per well
of CellTiter-Glo (Promega, Madison, WI) followed by shaking for 5 min
at 600 rpm (Titramax 1000, Heidolph) and centrifugation for 5 min at
1,000 rpm (SL40R, Thermo Scientific), and luminescence was de-
tected using Pherastar FS plate reader (BMG Labtech, Baden-Würt-
temberg, Germany). The controls used in the screens were from
Qiagen or Eurofins MWG. As negative control AllStars negative and as
positive control AllStars Death control were used with four replicates
per plate of each. As internal controls, siRNAs targeting Pin1, PME1,
and CIP2A were used with four replicates per plate of each control.
For each plate, the following calculations were performed to obtain
relative inhibition values for all wells (% inhibition � 100*((averageneg-
averagesample)/(averagenegative-averagepositive))). Z’ was calculated for
all plates with the following formula: Z’ � 1–3*((stdevppositive-
stdevpnegative)/abs (averagepositive-averagenegative)). Z’ values for the
screens performed are included in Supplemental Table 2.

RRP Similarity Rankings—To identify the set of genes most func-
tionally related to PIN1 and PME-1, we calculated a similarity ranking,
which combines complementary information from three functional
assays into a single ranking of genes. In the first ranking, the siRNAs
were ranked according to their difference in percentage inhibition
levels from the average PIN1, or PME-1 siRNA % inhibition in PC-3
cells, so that the siRNA with the lowest absolute difference obtained
the top rank equal to 1. In the second ranking, the siRNAs were
ranked similarly as in the first ranking but using the average percent-

1 The abbreviations used are: RRP, relevance ranking platform;
Pin1, peptidyl-prolyl cis-trans isomerase NIMA-interacting1; PME-1
(PPME1), protein phosphatase methylesterase1; AP-MS, affinity pu-
rified-mass spectrometry; CSNK2B, casein kinase 2, beta polypep-
tide; PTOV1, prostate tumor overexpressed1; MYC, avian myelocy-
tomatosis viral oncogene homolog; CDC27, cell division cycle 27;
NONO, non-POU-domain-containing, octamer-binding; CDK1, cyclin
dependent kinase1; PP2A, protein phosphatase 2 A; PR65, protein
phosphatase 2, regulatory subunit A (PR 65), alpha; PP2AC, protein
phosphatase 2A, catalytic subunit; PKM2, pyruvate kinase muscle;
MS, mass spectrometry; MAPK3 (ERK1), mitogen activated protein
kinase3 (extracellular signal-regulated kinase1); AKT1, v-Akt murine
thymoma viral oncogene homolog1; CRAPome, Contaminant Repos-
itory for Affinity Purification; HSPA8, heat shock 70 kDa protein 8;
FDPS, farnesyl diphosphate synthase; HRNR, hornerin; ERp72, en-
doplasmic resident protein 72; CIP2A: cancerous inhibitor of PP2A.
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FIG. 1. Schematic presentation of relevance rank platform
(RRP) principle.
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age inhibition measured in the PNT2 cells instead of that in the PC-3
cells and again giving the top rank to the siRNA with the smallest
absolute difference. The third ranking was based on expression sim-
ilarity with PIN1 and PME-1 using expression profiles of clinical sam-
ples both in prostate adenocarcinoma and healthy tissue from the
MediSapiens database (http://www.medisapiens.com/) (12). Finally,
we took a statistical approach, redundant siRNA activity analysis (13),
which takes into account potential off-target activities by considering
the enrichment of ranks of the siRNAs targeting the same gene, when
moving from individual siRNAs to the final gene-level similarity ranks.

Reagents and Antibodies—RPMI (11875–119), FBS (10082147),
and immunoprecipitation kit-Dynabeads-Protein G (10007D) were
purchased from Life Technologies. Penicillin–streptomycin 100x
(A001A) solution was purchased from Himedia. The antibodies
against PIN1 (H-123:SC-15340), c-Jun, MYC, FTSJ1 (B-2:SC-
390355), DDX24 (C-12:SC-104863), FNBP3 (D-20:SC-68080), PME-1
(B-12: SC-25278), Lamin A/C, (H-110 SC-20681; H-110), rabbit anti
goat IgG-HRP (SC-2922), and normal rabbit IgG (SC-2027) were
purchased from Santa Cruz Biotechnology. PP2Ac antibody was from
Cell Signaling (#2038). The antibodies against anti-mouse IgG-
HRP(A9044), anti-rabbit IgG(A0545) were purchased from Sigma Life
Science.

Immunoprecipitation and Strep-Tag Pull-Down Experiments—The
cells were washed with cold PBS two times and collected in PBS
using a scraper. The cells were centrifuged at 6000 rpm for 5 min. The
cells were lysed in lysis buffer (50 mM Tris (pH 7.5), 5 mM EDTA, 150
mM NaCl, 1 mM dithiothreitol, 0.01% Nonidet P-40, 0.2 mM phenyl-
methylsulfonyl fluoride, and 1X protease inhibitor mixture). The cells
were sonicated for 10 s. The cells were again centrifuged for 15,000
rpm for 20 min at 4°C. The supernatant was collected in an Eppendorf
tube. 50 �l of lysate was collected for input. Remaining cell lysate was
divided into two equal parts in two Eppendorf tubes and made 1 ml
using lysis buffer and labeled as Pin1 IP and normal rabbit IgG. The
lysates were incubated with 2 �g of Pin1 and normal rabbit IgG in
respective tubes at 4°C with gentle rolling for 12–24 h. On the next
day, homogenous solution of magnetic beads were taken in two
Eppendorf tubes and placed in a magnet. The supernatant was
thrown. The lysates containing antibody complex were incubated with
the beads for 1 h at 4°C with gentle rolling. Again, the tubes were
placed in the magnet and the supernatant was thrown. The beads
were washed with 200 �l of washing buffer for five times by gentle
pipetting with ice incubation for 30 s in each wash. The tubes were
placed in a magnet, and the supernatant was thrown. This was
repeated for five times. The samples along with input were heated
with 2XSDS sample buffer for 5 min at 100°C. The samples were
again placed in the magnet, and the supernatant was collected in new
tubes. The input (2% of lysate volume), PIN1 IP and normal rabbit IgG,
was loaded on 10% SDS-PAGE and subjected to electrophoresis.

For PME-1 interaction validation pull-downs, two 10 cm dishes of
PC-3 cells were transfected with 15 �g plasmid DNA (pcDNAStrepIII,
pcDNA_PME-1StrepIII, and pcDNA_PME-1R369DStrepIII) and 30 �l
Lipofectamin 2000 (Life Technologies, Foster City, CA). 48 h, trans-
fection cells were harvested, resuspended in 2 � 1 ml membrane lysis
buffer (11), and mechanically disrupted. Lysates were cleared by
centrifugation, and strep purification from subsequent supernatants
was performed using 0.2 ml Strep-Tactin Superflow columns (IBA)
following the manufacturer’s instructions. Primers for site-directed
mutagenesis (R369D mutant): forward: 5�-ACTTTCCTGATCGACCA-
CAGGTTTGCAGAA-3� reverse: 5�-TTCTGCAAACCTGTGGTCGAT-
CAGGAAAGT-3�. The QuikChange site-directed mutagenesis kit (Agi-
lent) was used to introduce the point mutation.

Proximity Ligation Assay—The proximity ligation assay was per-
formed according to manufacturer protocol (Olink Bioscience, Up-
psala, Sweden). Briefly, cells plated on coverslips were grown to 70%

confluence, fixed for 10 min in 4% PFA followed by 10 min permea-
bilization in TBS, 0.1% Triton. Subsequently, the sample was blocked
with blocking solution and incubated in a preheated humidity cham-
ber for 30 min at 37 °C, followed by incubating primary antibodies (in
blocking solution) overnight at 4 °C. Subsequently, cells were washed
with Buffer A, and a PLA probe was incubated in a preheated humidity
chamber for 1 h at 37 °C followed by ligase reaction in a preheated
humidity chamber for 1 h at 37 °C. Next, amplification-polymerase
solution for PLA, followed by incubating cells in a preheated humidity
chamber for 100 min at 37 °C.

Western Blot Analysis—Samples for Western blotting were col-
lected in SDS-PAGE sample buffer (1* SDS sample buffer: 62.5 MM
Tris-HCL (pH 6.8 at 25°C), 2% w/v SDS, 10% glycerol, 50 mM DTT,
0.01% w/v bromphenol blue), boiled for 5 min, and centrifuged for 10
min at 10,000*g to remove insoluble material. After, SDS-PAGE pro-
teins were transferred on to a nitrocellulose membrane. The antibody
concentration and reaction with primary and secondary antibody was
done according to the manufacturer’s instructions. The proteins were
visualized by enhanced chemiluminescence with either the Super-
Signal West Femto Maximum Sensitivity Substrate (Pierce Biotechnol-
ogy, Inc.) or the Proteome Grasp ECL Kit (Pierce Biotechnology, Inc.)

AP-MS Analysis of PME-1 Interactome—To identify PME-1 asso-
ciated proteins, we established stable HT-1080 cell clones expressing
either StrepPME-1 fusion protein or Strep-tag alone. The protein
complex purification and MS identification were done as described
earlier (14, 15). Briefly, cells were lysed in membrane lysis buffer and
homogenized with ten strokes of a tight-fitted pestle in a dounce
homogenizer. Lysate was centrifuged for 1 h at 100.000 g at �4 C. 1
ml Strep-Tactin Superflow columns were used for complex purifica-
tion. After washes, the proteins were eluted with the provided elution
buffer and fractions were collected. Proteins separated on 10% Bis-
Tris gel using MOPS running buffer (BioRad, Hercules, CA) were silver
stained, and the protein bands that showed visually enrichment in
StrepPME-1 samples as compared with Strep-tag samples were
isolated from both lanes for MS analysis. Following trypsin digestion,
the LC-MS/MS analysis was performed on a nanoflow HPLC system
(CapLC, Waters, San Diego, CA) coupled to a QSTAR Pulsar mass
spectrometer (Applied Biosystems/MDS Sciex, Canada) equipped
with a nanoelectrospray ionization source (Proxeon, Odense, Den-
mark). Peptides were first loaded on a trapping column (0.3 � 5 mm
PepMap C18, LC Packings) and subsequently separated inline on a
15 cm C18 column (75 �m � 15 cm, Magic 5 �m 100 Å C18, Michrom
BioResources, Inc., Sacramento, CA). The mobile phase consisted of
water/acetonitrile (98:2 (v/v)) with 0.2% formic acid (solvent A) or
acetonitrile/water (95:5 (v/v)) with 0.2% formic acid (solvent B). A
linear 25-min gradient (from 2% to 35% B) was used to elute pep-
tides. The flow rate was 200 nl/min.

MS data were acquired automatically using Analyst QS 1.1 soft-
ware (Applied Biosystems/MDS SCIEX, Ontario, Canada). An infor-
mation-dependent acquisition method consisted of a 1 s TOF MS
survey scan of a mass range 350–1600 amu and 2 s product ion scan
of a mass range 50–2000 amu. The two most intensive peaks over 20
counts with charge state 2–3 were selected for fragmentation.

Data were searched against the SwissProt database (version 57.6)
using in-house Mascot (version 2.2.06). The Mascot search settings
included a taxonomy filter “human,” trypsin as an enzyme, precursor-
ion mass tolerance of 0.3 Da, fragment-ion mass tolerance of 0.3 Da,
one missed trypsin cleavage, and variable modifications of carbam-
idomethylation of cysteine and methionine oxidation. A significance
threshold of p � 005 was used. Mascot search results were imported
to Scaffold (v. 3.0, Proteome Software) for data evaluation.

SAINT and FunCoup Analyses—Mascot search results were up-
loaded to the Prohits platform (16) for further analysis using default
settings. The files were subsequently merged by applying the sum of
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spectral counts for all samples from the same biological replicate. The
data for the two biological PME1 bait replicates and controls were
then analyzed using the SAINT express algorithm (3) to assess the
interactions’ reliability.

Functional coupling scores were extracted for the interaction part-
ners of PME1 and Pin1 from the FunCoup database (8) using evi-
dence from all available species and from human only, respectively.

RESULTS

RRP Analysis of Pin1 Interactome—In prostate cancer, Pin1
has a prognostic role (9), and it enhances tumor growth in
immunodeficient mice (10). We verified the oncogenic role of
Pin1 in supporting colony growth and MYC expression in
widely utilized prostate cancer PC-3 cells (Supplemental Fig.
1). Therefore, this cell line was chosen as a model in which to
assess the usefulness of RRP in selecting among the Pin1
interactome those proteins that are relevant for its function.

Based on integrated protein interactome database, Protein
Interaction Network analysis (2), Pin1 had 88 interacting pro-
teins (Fig. 2A and Supplemental Table 3) at the time this work
was initiated. As the first rank, an siRNA library consisting of

three individual siRNAs (Supplemental Table 4) against Pin1
(bait) and each of its interacting proteins was used to screen
for cell viability effects in high-throughput 384-well plate for-
mat in PC-3 cells. As shown in Fig. 2B, Pin1 depletion
caused marked cell death also in these assay conditions,
visualized by phase contrast microscopy image of a 384-
well plate. Cell viability assay values for knockdown of Pin1
interacting proteins and their corresponding ranking 1 val-
ues are shown in Supplemental Table 4. For the rank 2, we
examined the context dependence of Pin1 interactome by
studying the cell viability effects of Pin1 and its interactome
in immortalized prostate epithelium PNT2 cell line (Fig. 2C).
The effects of inhibition of Pin1 interacting proteins in PNT2
cells and the corresponding ranking 2 values are shown in
Supplemental Table 4. As an additional indicator of functional
similarity (rank 3), we next calculated the sum of expression
profile correlations, here based on the expression data from
MediSapiens database (12) (www.medisapiens.com), be-
tween bait (Pin1) and interacting proteins in malignant and
normal prostate tissues. Relevance of this ranking is sup-
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FIG. 2. RRP analysis of Pin1 interactome. (A) Graphical presentation of analyzed Pin1 interactome based on: Protein Interaction Network
analysis (2). (B) Phase contrast microscopy images of PC-3 cells transfected with indicated siRNAs on 384-well plate. (C) Graphical
presentation of correlation of cell viability effects of individual siRNAs in PC-3 and PNT2 cells. (D) RRP ranking of top ten proteins with most
similar function to Pin1. FunCoup similarity index (min. 0, max. 1) indicates for very high similarity in function with Pin1 for most RRP top ranked
proteins. NA, not applicable due to lack of sufficient database information. Validation indicates either physical or functional validation for
indicated interaction. N.d., not determined.
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ported by the well-established findings that genes that share
biological functions show also coexpression in vivo (17). Fi-
nally, we took a statistical approach, redundant siRNA activity
(13), which ensures that the genes with multiple moderately
active siRNAs were weighted more than the ones with only
one effective siRNA, to move from individual siRNAs to the
final gene-level similarity ranks. The final RRP similarity rank
order between Pin1 interacting proteins is shown in Fig. 2D
and Supplemental Table 5.

Validation of CSKN2B and PTOV1 as Functional Pin1 Inter-
acting Proteins—All proteins selected for Pin1 RRP analysis
were selected based on their previous identification as Pin1
interacting proteins (2). Importantly, the top RRP ranked pro-
tein with highest predicted similarity to Pin1 function was
CDC27 (Fig. 2D), which is an established Pin1 target involved
in mitosis regulation (18). Also, interaction between SUPT5H
and NONO with Pin1 has been validated previously by pull-
down experiments (19, 20). In addition, we validate here
protein interaction between Pin1 and PRPF40A, FTSJ1,
CSNK2B, PTOV1, and DDX24 in PC3 cells (Supplemental Fig.
2 and Fig. 2D).

To further substantiate the capacity of RRP to rank inter-
acting proteins based on their functional relevance to bait,
we assessed the effects of depletion of Pin1 and two of the
RRP top ten ranked proteins with no previously demon-
strated association with Pin1 function, CSKN2B and
PTOV1, for expression of AP-1 transcription factor c-Jun
phosphorylated on transactivating serines 62 and 72 (21), as
Pin1 promotes transcriptional activity of c-Jun (22). Notably,
RNAi-mediated depletion of Pin1, CSKN2B, or PTOV1 each
substantially inhibited expression of phosphorylated c-Jun
(Fig. 3A). Interestingly, whereas PTOV1 depletion did not
affect Pin1 proteins levels, CSKN2B RNAi resulted in very
potent inhibition of Pin1 expression (Fig. 3B). To further

challenge the hypothesis, we analyzed the Pin1 interactome
by FunCoup analysis (8). Importantly, the relatively high
average FunCoup value of 0,91 for the top ten RRP ranked
Pin1 interacting proteins, except for CHPF for which there is
not sufficient functional information available, validates that
RRP is able to rank the interacting proteins with highest
likelihood of being relevant to the bait function (Fig. 2D and
Supplemental Table 6). In fact, analysis of the entire Pin1
interactome with FunCoup showed a significant correlation
between the capacity of these two methods to rank func-
tional similarity of Pin1 and its interactome in those cases
where the interaction partner was available in the FunCoup
database (Spearman correlation � -0.32, p � .018, Supple-
mental Table 6).

Taken together, functional relevance in Pin1 biology has
been validated for 4/10 of the highest ranked Pin1 interacting
proteins (CDC27, NONO, CSKN2B, and PTOV1), and protein
interaction have been validated for 8/10 of the highest RRP
ranked Pin1 interacting proteins. Together with comparison to
FunCoup analysis (Fig. 2D and Supplemental Table 6), this
provides a proof-of-concept demonstration of RRP’s poten-
tial to supervise the selection of bait-relevant interacting pro-
teins for follow-up experiments from high-content protein in-
teractome data.

AP-MS Identification of PME-1 Interactome—Pin1 was se-
lected as an example case to probe performance of RRP
analysis because it has a well-established interactome that
allows assessment of both the reliability of the interaction
data, as well as the use of FunCoup and functional validation
experiments. To further test the robustness of RRP to guide
the selection of bait-relevant interacting proteins, we started
from high-content protein interactome that has not been sub-
jected to prefiltering for the reliability of protein interaction
identification, using a bait protein for which there is limited
published information available. To this end, we set up to
purify a de novo protein complex by one-step Strep-tag
method (15). PME-1 (PPME1) is a methylesterase that pro-
motes ERK pathway activity in human glioblastoma by inhi-
bition of protein phosphatase 2A (PP2A) (11). For single-step
affinity purification coupled with mass spectrometry (AP-MS)
identification of PME-1 interactome, we established a cell line
stably expressing either Strep-tag alone (Strep) or Strep-
PME-1 fusion protein. Both PP2A scaffold protein PR65 and
the catalytic subunit PP2Ac were found to copurify with
Strep-PME-1 (Fig. 4A), whereas neither of these were de-
tected in the eluates of control Strep cells (Supplemental Fig.
3A). Moreover, unrelated protein PKM2 did not copurify with
PME-1, indicating that the chosen one-step purification con-
ditions show some selectivity for specific interactions (Fig.
4A). In a large-scale AP-MS experiment, silver-stained bands
that visually showed enrichment in Strep-PME-1 samples as
compared with an adjacent Strep control lane in any of the
three experiments (Fig. 4B and Supplemental Figs. 3B, 3C,
and 3D) were subjected to MS identification. As some low

p-c-Jun

c-Jun

Actin

siRNA: Scr Pin1 Scr PTOV1 Scr CSNK2B

Pin1

Actin

siRNA: Scr Pin1 Scr PTOV1 Scr CSNK2B

A

B

FIG. 3. Validation of CSKN2B and PTOV1 as functional Pin1
interacting proteins. (A) Western blot analysis of phosphorylated
c-Jun expression in PC-3 cells depleted of either Pin1, PTOV, or
CSKN2B. (B) Western blot analysis of Pin1 expression in PC-3 cells
transfected either with Pin1, PTOV, or CSKN2B siRNAs.
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abundance proteins could be present also in the correspond-
ing bands from the Strep control lane, those also were ana-
lyzed by MS, and any protein that was identified from the
Strep control lane were omitted from further analysis. Based
on these criteria, the final library of putative PME-1 interacting
proteins contained 49 proteins (Supplemental Table 7). Im-
portantly, proteins in the PME-1 interactome library were not
filtered based on the number of identified peptides and only a
Mascot significance threshold of p � .05 was used to assess
the reliability of AP-MS identification of interacting proteins.
This was done purposely to challenge the capacity of RRP to
dissociate between relevant and nonrelevant interactions
even from low fidelity MS identification.

Evidence of RRPs Functionality in Relevance Ranking of
AP-MS Interactome—Next, the newly identified PME-1 inter-
actome, excluding the previously identified PME-1 interacting
PP2A components (Supplemental Table 7), was subjected to
RRP analysis. In addition, MAPK3 (ERK1) and AKT1 were
included in the RRP library as internal controls representing
known PME-1 effector proteins (11, 23). The relevance of the
PC-3 cell model for assessing PME-1 interactome function
was validated by robust inhibition of colony growth by PME-1
depletion (Supplemental Fig. 4). The results of individual RRP
filtering steps for the PME-1 interactome and the list of final
RRP ranks are shown in Supplemental Tables 8 and 9. RRP’s
improved power to dissociate between functionally relevant
and nonrelevant proteins was validated also in this setting as
the known PME-1 effectors AKT1 and MAPK3 showed up
among the proteins with the most similar function to PME-1
(Fig. 5A).

Notably, except for AKT1 and MAPK3, the other proteins
listed in Fig. 5A have not been previously identified as PME-1
effectors. To assess the confidence of interaction between
PME-1 and its top ranked RRP candidates, we analyzed the
data with CRAPome (4), the contaminant repository from over

400 AP-MS experiments along with a computational tool al-
lowing estimation of likelihood that an observed interaction is
unspecific. As shown in Fig. 5A, most of the highest RRP
ranking PME-1 interactors, except for chaperone protein
HSPA8, were not frequently identified as contaminating pro-
teins in previous AP-MS experiments using the Strep-Tactin
affinity column that was used here for the isolation of PME-1
complex. Specificity of the interaction between PME-1 and its
top ranked RRP candidates, except for LRRC8E, is also sup-
ported by analysis of MS data by SAINT analysis (3)(Fig. 5A).
Importantly, we further validated interactions between PME-1
and two proteins, FDPS, and HRNR, by antibody-based de-
tection from an independent Strep-PME-1 purification sam-
ple, whereas no enrichment of an unrelated protein ERp72
was found in Strep-PME-1 elution samples (Fig. 5B). HRNR
interaction was identified from a protein band correspond-
ing to about 60 kDa protein size, representing a known
fragment of HRNR that is processed from full length 250
kDa protein (24) (Figs. 4B and 5B, red line). For FDPS, we
show that whereas wild-type PME-1 does interact with
FDPS, this interaction is greatly impaired with PME-1
R369D mutant that is defective in binding to PP2A catalytic
subunit PP2Ac (Figs. 5C and 5D) (25). This further strength-
ens the evidence that RRP analysis can identify functionally
relevant interacting proteins. We also validated protein in-
teraction between PME-1 and Lamin A/C, as among the
interacting proteins it showed the highest number of iden-
tified peptides and Mascot score (Fig. 5E). Based on insol-
uble nature of Lamin A/C, we used in situ proximity ligation
assay for validation (Fig. 5E).

Although we have not proceeded to study the potential
mechanisms by which this HRNR fragment contributes to
PME-1 biology, its previously uncharacterized function in
promoting cancer cell viability and its similarity with PME-1
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oncoprotein function prompted us to validate its potential
cancer relevance by using cBioPortal (26). Surprisingly, al-
though previously thought to be a structural component of

cornified epithelia (27), HRNR showed a very high degree of
genomic changes in multiple human cancer types (Fig. 5F),
further indicating its potential involvement in cancer biology.
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Also, FDPS did show a high degree of amplifications in
several human cancer types (Fig. 5F).

Expectedly, since FunCoup relies on integrating the existing
data on protein interactions and several other types of evi-
dence, something that is very scarce for PME-1, FunCoup
analysis of the entire PME-1 interactome identified by Strep-
tag purification was uninformative (Supplemental Table 10
and Fig. 5A). However, two genes among the top ten RRP
candidates, MAPK3 (the positive control) and EEF2 (PP2A
target protein) did show a high FunCoup index (Fig. 5A and
Supplemental Table 10).

DISCUSSION

Large-scale protein interaction screens have revolutionized
our understanding of the basic principles of how proteins are
organized in large protein complex machineries (1, 28, 29).
However, in many cases, translation of this information to
novel functional paradigms has been challenging. This work
presents an approach to tackle this burden by ranking the
identified interactions, based on potential functional similarity
of the putative interactors with the known function of the bait
protein, rather than solely relying on qualitative and quantita-
tive analysis of the interaction data.

RRP performance was validated by using data from two
different types of protein interaction experiments, database
interactome for Pin1 and newly identified AP-MS interactome
for PME-1. RRP analysis of both of the interactomes resulted
in enrichment of the already validated effector protein as top
ranking RRP hits for both bait proteins. Regarding Pin1, we
also demonstrated novel function for two of the identified
proteins in regulating of c-Jun phosphorylation. Prior to this
work, no interactome analysis has been published for PME-1.
Among identified interacting proteins were components of
PP2A complexes (Fig. 4A), indicating that the PME-1 interac-
tome proteins analyzed by RRP are relevant for PME-1 biol-
ogy. This conclusion is further supported by our demonstra-
tion that PME-1 binding to PP2Ac is relevant for PME-1�s
association with FDPS (Figs. 5C and 5D). FDPS is a very
interesting PME-1 effector candidate for follow-up as it regu-
lates the ERK MAPK pathway activity downstream of RAS
(30), and PME-1 was shown to promote ERK pathway activity
upstream of MEK (11). On the other hand, although the S100
family protein HRNR cannot directly be connected to PME-1-
regulated signaling based on very scarce functional informa-
tion on HRNR, many S100 proteins do regulate kinase signal-
ing and in particular S100A12 was very recently shown,
similar to PME-1, to promote ERK pathway activity (31). On
the other hand, association of PME-1 with Lamin A/C could
be functionally related to the previously demonstrated essen-
tial role of A-type lamins for PP2A-mediated dephosphory-
lation of Rb (32). In addition, recent studies have shown that
one of the top ranked PME-1 interacting proteins, EEF2, is a
bona fide PP2A target protein (33, 34). These potential func-
tional implications of identified PME-1 interactions, together

with presented validation experiments, give future directions
to better understand how PME-1 may function as an onco-
protein in human glioma and other malignancies (11, 35). In
addition, the work reports function of over 100 genes in both
malignant and nonmalignant prostate epithelial cells, provid-
ing a rich foundation for further analysis of cancer specificity
of their function.

While many useful approaches such as CRAPome and
SAINT have been developed to increase the confidence of
dissection between copurifying proteins that are true interac-
tors from those that are considered as contaminants, the
philosophy of RRP is somewhat different. RRP does not as-
sess the reliability of the observed protein interaction per se,
but aims to help the researcher to rank the candidate proteins
according to likelihood of an interaction being functionally
relevant to the function of the bait. Therefore, the added
benefit of using RRP is that once the functional relevance of
the interacting protein has been demonstrated by RRP; this
motivates a researcher to invest on thorough analysis of even
troublesome protein interactions. As demonstrated here, not
all the candidate protein interactions for PME-1 could be
confirmed, which is typical for an AP-MS experiment, and we
therefore encourage the use of a combination of RRP and
SAINT or CRAPome for further filtering of the data and for
selecting the candidate interactors that fulfill the both require-
ments, functional relevance and high confidence interaction
detection. We also reason that RRP might be especially ben-
eficial for identification of mechanisms that are regulated by
more stochastic and weak interactions. As shown by our
previous studies, they may lead to the discovery of an entirely
new biological concept (1, 5, 6). This obviously requires that
the identified interaction and its functional relevance are prop-
erly verified by subsequent experimentation or, as it is pro-
posed here, filtered by RRP for their functional relevance. In
the case of CIP2A, original identification was made from a
single AP-MS purification yielding seven peptides with low
Mascot score, and this has translated to over 100 publications
establishing the protein as one of the most common cancer
driver alterations across human cancers (5, 36, 37).

Importantly, analysis of Pin1 interactome with either RRP or
FunCoup ranked the same top ten proteins as most relevant
to Pin1 function. However, for analysis of interactomes of
proteins such as PME-1 for which there is not sufficient da-
tabase information available to enable the use of FunCoup or
other existing filtering tools, RRP can be the tool of choice.
Unlike FunCoup, RRP can also incorporate the cellular con-
text information, such as a particular cell line or cancer type,
and thereby enables context-specific functional similarity pre-
dictions. The RRP framework presented in this work consists
of different functional and bioinformatics modules that have to
be chosen depending on the nature of the biological question
under study. Importantly, the relevance of modular nature of
RRP is emphasized by the result that the majority of the top
ten RRP ranked proteins from both interactomes would have
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had much lower ranks if only the RNAi screen from the PC3
cell line would have been used as a functional filter (Supple-
mental Table 11). Therefore, RRP clearly offers an added
value beyond the already existing bioinformatics (3, 4, 8) and
RNAi approaches (38, 39). Based on the vast amount of gene
expression data covering also all functionally nonannotated
genes, RRP could in principle be used for any gene whose
function can be addressed by an siRNA-based screening
assay, including not only cell survival analysis but also a
variety of high-content imaging based phenotypic screens.
Regarding low costs of RNAi libraries compatible with a 384-
well format, functional relevance screening as presented here
may in fact be more cost efficient than purchase of various
antibodies for interaction validation with proteins that might
not functionally be relevant for the scientific question ad-
dressed. Naturally, there will be some phenotypes that are not
RNAi compatible, but similar restrictions apply for all filtering
tools.

In summary, the data presented here introduce an ap-
proach to address one of the major challenges in functional
translation of high-content protein interaction data. The pre-
sented RRP platform is a versatile and cost-efficient modular
filtering tool to help the researcher choose those interactors
that most likely will contribute to the function of the bait
protein of interest, either from the existing protein interaction
databases or from AP-MS data.
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