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Abstract

Functional imaging investigations into the brain's resting state interactions have yielded a wealth 

of insight into the intrinsic and dynamic neural architecture supporting cognition and behavior. 

Electrophysiological studies however have highlighted the fact that synchrony across large-scale 

cortical systems is composed of spontaneous interactions occurring at timescales beyond the 

traditional resolution of fMRI, a feature that limits the capacity of fMRI to draw inference on the 

true directional relationship between network nodes. To approach the question of directionality in 

resting state signals, we recorded resting state functional MRI (rsfMRI) and electrocorticography 

(ECoG) from four human subjects undergoing invasive epilepsy monitoring. Using a seed-point 

based approach, we employed phase-amplitude coupling (PAC) and biPhase Locking Values 

(bPLV), two measures of cross-frequency coupling (CFC) to explore both outgoing and incoming 

connections between the seed and all non-seed, site electrodes. We observed robust PAC between 

a wide range of low-frequency phase and high frequency amplitude estimates. However, 

significant bPLV, a CFC measure of phase-phase synchrony, was only observed at specific narrow 

low and high frequency bandwidths. Furthermore, the spatial patterns of outgoing PAC 

connectivity were most closely associated with the rsfMRI connectivity maps. Our results support 

the hypothesis that PAC is relatively ubiquitous phenomenon serving as a mechanism for 

coordinating high-frequency amplitudes across distant neuronal assemblies even in absence of 

overt task structure. Additionally, we demonstrate that the spatial distribution of a seed-point 

rsfMRI sensorimotor network is strikingly similar to specific patterns of directional PAC. 

Specifically, the high frequency activities of distal patches of cortex owning membership in a 

rsfMRI sensorimotor network were most likely to be entrained to the phase of a low frequency 
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rhythm engendered from the neural populations at the seed-point, suggestive of greater directional 

coupling from the seed out to the site electrodes.
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Introduction

Since the initial proposal of meaningful neural activities within the resting state period in 

fMRI (Biswal et al., 1995), there has been a growing momentum within systems 

neuroscience to explore and contextualize the role that spontaneous, synchronous neural 

responses play in brain physiology and cognition. Empirical recordings of resting state 

BOLD fMRI oscillations have yielded tremendous insight into the brain's intrinsic and 

dynamic architecture. It is now well-established that the presence of statistical dependencies 

within resting state fMRI (rsfMRI) signals reflects a core, intrinsic organization (Greicius et 

al., 2009; Keller et al., 2014; O'Reilly et al., 2013) that tends to mimic patterns of evoked, 

task-based behavioral activity (Cole et al., 2014; Smith et al., 2009). rsfMRI is now widely 

applied within the research arena to illuminate, quantify and characterize dynamic patterns 

of functional connectivity across distributed, long-distance cortical networks as well as 

within local cortical neighborhoods (Biswal et al., 2010; Hutchison et al., 2013). Yet despite 

the extensive success of resting state fMRI in repositioning functional connectivity within 

the broader scope of functional neuroanatomy, studies interrogating the neurophysiological 

dynamics of functional connectivity have lagged substantially behind imaging-based 

investigations.

Initial electrophysiological efforts correlated simultaneously acquired 

electroencephalography (EEG) with the time-varying infra-slow-frequency fluctuations in 

the BOLD signal (<0.1 Hz) that define the resting state functional connectivity (Jann et al., 

2010; Mantini et al., 2007). Statistical relationships were noted between various intrinsic 

networks and a full range of the canonical neurophysiological frequency bands as well as 

DC-coupled infraslow oscillations (e.g. the slow cortical potential; Hiltunen et al., 2014). 

More recent EEG as well as magnetoencephalography (MEG) studies have explored various 

regression approaches as well as linear coupling metrics of both phase (Hillebrand et al., 

2012) and amplitude components (Brookes et al., 2011; de Pasquale et al., 2010) of resting 

state signals in an effort to better characterize the spatiotemporal signatures of functional 

connectivity at approximate millisecond timescales.

Taken together, the majority of imaging and electrophysiological resting state studies of 

functional connectivity have led to an overall spatiotemporal complexity that reflects a basic 

level of linear realized synchrony across and between neocortical networks (see Schölvinck 

et al., 2013 for a review). However, it has been proposed that resting state dynamical 

network behavior is not solely a function of linear interactions on an infra-slow time scale; 

rather network synchrony is a product of the interplay between the underlying long-distance 

structural connectivity and local processing dynamics (Cabral et al., 2011). Relying on 
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imaging-based modeling inferences, these authors hypothesized that only a characterization 

of the underlying networks' phase oscillators would lead to a richer understanding of the 

contributions that resting state neural interactions provide to overall computation and brain-

state dynamics. An underlying assumption to this framework is that resting state interactions 

must be defined by a degree of nonlinear, cross-frequency coupling (CFC) that would serve 

to entrain or coordinate higher-frequency activity in multiple, spatially-distant yet 

anatomically connected local neural populations (Singer, 2013).

In line with this hypothesis, two resting state MEG reports have revealed the presence of 

significant, within-network phase-amplitude coupling (PAC) between low-frequency phase 

estimates and higher-frequency gamma amplitude values (Florin and Baillet, 2015; Osipova 

et al., 2008). These studies extend to the resting state the principled mechanistic hypothesis 

of PAC, namely that band-limited, low-frequency oscillations serve to entrain local high-

frequency activities between distally-housed network nodes with minimal lag time. Based 

on task driven synchrony, PAC thus provides a mechanism for the coordination of the long-

distance communication necessary to orchestrate cognition and behavior (Canolty and 

Knight, 2010). Therefore, this observation within the resting state is reflective of a much 

deeper level of cortical interaction (Buzsáki and Draguhn, 2004) unfolding in a behaviorally 

independent context.

Here we use human electrocorticographic (ECoG) recordings to support and expand on 

these initial resting-state, cross-frequency interactions. Relative to scalp-based methods, 

ECoG records high frequency (i.e. high gamma [HG] band ~70–200 Hz) activity at much 

higher fidelity and spatial specificity (Crone et al., 2006). Critically, HG best reflects 

increases in broadband firing rates subserving local cortical processing (Manning et al., 

2009; Miller et al., 2014) and has been shown to reflect patterns of rsfMRI functional 

connectivity (Keller et al., 2013; Ko et al., 2013), and is thus integral to forming a complete 

picture of resting state interactions.

Resting state fMRI and sub-dural ECoG recordings were separately acquired from 4 

individuals with electrode coverage spanning lateral parietal-temporal cortices. We 

employed a seed-point strategy whereby a pre-selected motor electrode identified the 

sensorimotor network and served as the reference point for computing patterns of 

synchrony. ECoG electrodes were identified as owning membership to a cortical 

sensorimotor network based on individual seed-point rsfMRI functional connectivity. We 

then computed biPhase Locking Value (bPLV), a nonlinear measure of cross-frequency 

phase-phase interactions (Darvas et al., 2009a,b) as well as PAC, and contrasted coupling 

metrics from electrodes within- and out-of- the sensorimotor network. Our overall goal was 

to test whether within a well-established intrinsic network (i.e. the sensorimotor network), 

synchrony within the resting state is organized by cross-frequency phase entrainment. Our 

guiding hypotheses are built on previous task-based modulations of long-range CFC during 

motor execution (Darvas et al., 2009b; Yanagisawa et al., 2012). Specifically, because both 

PAC and bPLV have been theorized as computational mechanisms supporting the 

coordination of active motor behaviors, our goal was to determine whether these same 

mechanisms supervise or coordinate spontaneous activities within the resting sensorimotor 

system. Further, based on recent evidence demonstrating CFC causal directionality through 
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a behaviorally driven asymmetry of bPLV (Darvas et al., 2009b) and PAC (Fontolan et al., 

2014), we hypothesized that that phase and amplitude CFC may yield insight into the 

directionality across an rsfMRI-defined neural network during the resting state. The 

identification and characterization of non-linear coupling through electrophysiology is 

critical for fostering insight into the endogenous, dynamic processes that give rise to the 

resting state functional connectivity phenomenon.

Materials & methods

Subjects

Three epilepsy subjects (1 female; age range 19–38) were recruited from the Seattle 

Regional Epilepsy Center at Harborview Medical Center (HMC) and one subject (1 female; 

age 13) was recruited from the Epilepsy Unit at Seattle Children's Hospital (SCH). All 

patients were undergoing long-term ECoG monitoring for surgical treatment of intractable 

epilepsy. Resting-state recordings were acquired 1) pre-operatively using fMRI and 2) post-

operatively from sub-durally placed platinum ECoG electrode arrays (Ad-Tech, Racine, 

WI). Placement and positioning of ECoG electrode arrays were determined exclusively on 

clinical requirements for each individual patient. All measurements reported here come from 

macro-grid electrodes with a 2.3 mm exposed surface diameter per electrode and a 1 cm 

inter-electrode distance. All patients provided informed consent in accordance with the 

University of Washington Institutional Review Boards or informed assent according to the 

Seattle Children's Hospital IRB policies.

Acquisition

MR imaging acquisition—Images were acquired pre-operatively on a Philips 3 T 

Achieva for HMC patients and on a Seimens 3 T Magnetom scanner for the SCH patient. 

All images were acquired using an 8-channel SENSE head coil. For anatomical volume 

registration and surface reconstructions, a magnetization prepared rapid gradient echo 

(MPRAGE) high-resolution T1 sequence (repetition time (TR)/echo time (TE)/flip angle: 

6.5 milliseconds (ms)/3 ms/8°; matrix size of 256 × 256 and with 170 sagittally collected 

slices with a slice thickness of 1 mm) was acquired.

Resting state fMRI—At both sites, a standard resting state fMRI (rsfMRI) Echo Planar 

sequence was utilized to establish functional connectivity maps for each participant. This 

sequence consisted of an 8-minute rsfMRI sequence (TR/TE/FA: 2000/21/90) with 38 

axially oriented slices, 3.5 mm in-plane resolution with a matrix size of 64 × 64. For all 

subjects, five ‘dummy’ volumes were included but not acquired to stabilize T1 equilibration 

effects. Subjects were asked to lie still with eyes open while staring at a centrally placed 

cross-hair.

Electrocorticography acquisition—Resting state and behavioral ECoG recordings 

were conducted at the patient's bedside. For the resting state recordings, the patient was 

asked to remain awake and silent with eyes open and generate as little movement as possible 

during an 8 min free-running recording session. A Guger g.USBamps (GugerTec, Graz, 

Austria) amplifier system was used for all electrophysiological recordings. Data from 64 
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channels for each patient were sampled at 1200 Hz with respect to a standard scalp reference 

electrode (HMC patients) or a subgaleal reference electrode (SCH patient). All recordings 

were DC-coupled, hardware (low-pass at 500 Hz and high-pass at 0.1 Hz) and notch filtered 

at 60 Hz. The BCI2000 software suite (Schalk et al., 2004) was utilized for stimulus 

presentation during the motor screen behavioral task (see below).

Functional screening—To identify a seed-point electrode for ECoG and rsfMRI 

functional connectivity analyses, we first conducted a simple, visually-cued motor screening 

task requiring each subject to perform overt movement of their tongue and hand in response 

to a visual cue. In this task, the subject was presented a visual cue prompting them to move 

either their tongue or the hand contralateral to the ECoG grid placement. The cue was 

presented for 3 s and followed by a 3 second inter trial interval. The purpose of this session 

was to identify electrodes that demonstrated task-driven modulation of HG activity during 

overt motor movement relative to rest. Significant (p < 0.05; Student's t-test) contrasts were 

employed to identify cortical areas showing an increase in HG power (70–200 Hz) power 

during active task execution relative to rest. The electrode that showed the largest resulting 

t-value was selected from the full montage and labeled as the seed-point for all subsequent 

functional connectivity approaches.

Analysis

Imaging

Resting state fMRI analysis: Standard rsfMRI pre-processing steps were implemented in 

FEAT (FMRI Expert Analysis Tool) Version 6.0, part of FSL (FMRIB's Software Library, 

www.fmrib.ox.ac.uk/fsl) to remove non-neuronal sources of variance. These included skull 

stripping using BET, motion correction (realignment to the center volume) with FSL 

MCFLIRT, spatial smoothing using a 6 mm full-width half-maximum (FWHM) Gaussian 

kernel, grand-mean intensity normalization and a high-pass linear drift removal. To limit the 

effect of physiological noise on functional connectivity, the overall time series was then 

temporally low-pass filtered removing frequencies above 0.2 Hz. Additionally, ventricular 

CSF signal, white matter (WM) and whole brain, global signal were extracted. Each 4D data 

set was entered into a multiple regression analysis, treating the movement parameters, CSF, 

WM and global signal as nuisance variables.

A seed point analysis strategy was employed to estimate motor functional connectivity maps 

for each individual patient. An 8 mm spherical seed-point was centered on the cortical tissue 

directly beneath the selected electrode as determined from the motor screening results. Seed-

point functional connectivity maps were then generated by a voxelwise regression of the 

mean time-course of all voxels within the seed-point using FSL FILM. Each map was 

converted into Z-scores using a general linear model approach (FSL FEAT). The Z 

(Gaussianised T/F) statistic images were thresholded using GRF-theory-based maximum 

height thresholding with a (corrected) significance threshold of p < 0.05. Whole brain maps 

were generated for each individual and overlaid onto the native cortical surface rendering 

(see below).
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Electrocorticography

Pre-processing—All ECoG data pre-processing and analyses were conducted in the 

MATLAB computing environment (The MathWorks, Natick, MA). Preprocessing 

(functional screening and resting state recordings) included manual inspection for channels 

or time periods contaminated with obvious non-physiologic artifact or substantial inter-ictal 

activity. For each subject, the data were then re-referenced to the common average across all 

good channels. Signals were then notch-filtered to remove line noise at 60, 120 & 180 Hz 

using 4th-order Butterworth filters. For the purposes of the functional screening (motor) data 

only, power spectra were derived for the HG band using the absolute square of the analytic 

amplitude estimate from the Hilbert transform. Data were then log transformed to 

approximate a normal distribution. For individual resting state runs, we then computed the 

biPhase locking values and phase amplitude coupling. For CFC computation, we estimated 

the instantaneous analytic amplitude and phases for each clean data set using a complex 

wavelet transform with the Morlet wavelet.

biPhase locking value (bPLV)—The biPhase locking value bPLV is a non-linear 

measure of CFC. Its application to task related data within the motor domain and its 

properties are described in detail in (Darvas et al., 2009a). Here we give a brief overview of 

the methods. The bPLV tests for the presence of modulation of one frequency f1 by a second 

frequency f2, e.g. by a multiplicative non-linearity. This approach yields two sidebands: a 

signal that arises at the sum (i.e. f3 = f1 + f2) and subtraction (i.e. f3 = f1 – f2) of the two 

frequencies. It is important to note that f1 and f2 are assumed to be completely independent 

and can arise from very different neural mechanisms. The bPLV tests whether the phase of 

f3 is locked to the sum of the phases of f1 and f2. Here we test for signals X at f1, Y at f2 and 

Z at f3 for all paired interactions across a ECoG montage that is specific to 1) a seed 

electrode to all other electrodes and 2) vice versa. When (f1 + f2) and f3 are locked at 

different electrodes, the presence of a bPLV can be interpreted as a coupled interaction. For 

example, when X and Y are measured in a single electrode and Z elsewhere, the bPLV can 

be seen as a directional measure, since two independent processes (X, Y) at one site 

influence a distant site (Z), but not necessarily vice versa. In its earlier applications, bPLV 

has been mostly used in an event-related fashion, where the presence of non-linear coupling 

was examined with respect to a specific, external event. In our present study, such events do 

not exist and we are interested in measuring the spontaneous, endogenous bPLV across a 

neural system. The event related definition of the bBLV, as e.g. given in (Darvas et al., 

2009a), can be readily rewritten to measure ongoing bPLV over time. Let θX(ti,f1),θY(ti,f2) 

and θZ(ti,f1+f2) be the instantaneous phase estimates of signal X, Y and Z for the ith sample, 

then the bPLV estimate of T samples is given by:

(1)

In the case of perfect phase coupling, the bPLV is equal to one, and in the case of complete 

asynchrony, it is zero. However, this is only true for the limiting case of □ → ∞. Here, we 

average over 8 s of data at a sampling rate of 1200 Hz, i.e. T = 576,000. Also note, that since 
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we average the continuous zero lag phase over full time, the number of independent 

estimates of phase is dependent on frequency, e.g. alpha frequencies at 10 Hz are averaged 

over 10 times fewer effectively uncorrelated samples than f = 100 Hz. Thus, the resulting 

map bPLVXYZ(f1,f2) over the two coupling frequencies f1 and f2, even under the null 

hypothesis of no coupling, has a frequency dependent bias. In order to accommodate this 

bias, we carried out a normalization step for each frequency pair (f1, f2), which is described 

in detail in the following section on statistical testing. Our efforts were guided by previous 

studies on CFC revealing significant low-to-high frequency coupling (Canolty and Knight, 

2010; Darvas et al., 2009b; Florin and Baillet, 2015). We focused here on coupling of low 

frequency (1–40 Hz, in 1 Hz steps) to high frequencies (70–200 Hz, in 1 Hz steps). Because 

of the asymmetric nature of this coupling, we consider two distinct situations, outgoing 

bPLV, where X and Y are taken from the motor-defined, seed electrode and Z is elsewhere 

on the ECoG array (i.e. site electrode) and incoming bPLV, where X and Y are elsewhere 

and Z is the recorded at the seed electrode. Finally, to examine the specificity of bPLV 

coupling, we computed and compared the conjugated sideband component (f2 – f1) for each 

computed multiplicative interaction (as described in Darvas et al., 2009a) spanning identical 

frequency ranges.

Phase amplitude coupling (PAC)—PAC is a well-established method to test for CFC 

and has been extensively discussed in the literature see e.g., (Canolty and Knight, 2010) for 

a discussion of the functional role of PAC, for e.g. (Onslow et al., 2011; Penny et al., 2008; 

Tort et al., 2010) technical aspects of this method. We used an amplitude normalized version 

of PAC, as described in (Florin and Baillet, 2015), to measure the free running coupling 

with this modality across our full resting state recording. For preferred-phase calculations, 

where typically HG amplitude is binned over a low frequency phase, e.g. theta or alpha, in a 

range from – pi to pi, we computed a pseudo Z-score to highlight the phase dependent 

amplitude changes vs. average amplitude over time. We normalized instantaneous amplitude 

in each phase bin with its mean and standard deviation over time. The rationale for 

amplitude normalization is to provide a measure of PAC independent of absolute amplitude 

for any given electrode. Here, this procedure allowed for the collapsing of frequency, f1 

(phase) by frequency, f2 (amplitude) maps across a group of subjects and electrodes with 

different electrode coverage but with similar differences in distance. As for the asymmetric 

nature of bPLV, we considered two cases of directionality, outgoing i.e. the low frequency 

phase at the seed electrode coupling to high frequency amplitude at any non-seed, site 

electrode on the ECoG grid or vice versa for incoming connections.

Surface rendering and co-registration—Surface reconstructions of cortical anatomy 

were performed using previously published methods (Blakely et al., 2009; Hermes et al., 

2010). Briefly, preoperative magnetic resonance images (MRI) are co-registered with 

postoperative Computed Tomography (CT) scans using the Statistical Parametric Mapping 

software package. Three-dimensional reconstructions of the pial surface were generated 

using Freesurfer (http://surfer.nmr.mgh.harvard.edu/) and custom code implemented in 

MATLAB. Electrode positions estimated from postoperative CT were projected to the 

reconstructed pial surface using the method outlined by Hermes and colleagues (Hermes et 

al., 2010).
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Electrode labeling—Multiple rsfMRI motor functional connectivity maps were generated 

across an array of weighted, statistically significant thresholds. For each patient, Z-scores 

were scaled from a minimum threshold of Z > 2 through the maximum individual Z-score 

value for a given patient. Each rsfMRI seed-point functional connectivity map was finally 

projected onto the brain surface using custom MATLAB scripts. Functional maps were 

warped into native T1 space using affine transformation and a tri-linear interpolation to 

bring the functional data into native 13 mm space. Data were then rendered onto surface 

space using the MATLAB isosurface 3D projection algorithm and scaled to T1 surface by 

linear superposition of voxels meeting threshold and weighted by spherical Gaussian kernels 

using a standard deviation of 3 mm centered at the location of each active voxel coordinate.

Finally, for each scaled rsfMRI functional connectivity map, ECoG electrodes were selected 

and identified as belonging to the ‘within-network’ or ‘out-of-network’ based on any 

overlap with the rsfMRI functional connectivity estimates. Magnitude effects of functional 

connectivity differ tremendously at the individual level. We defined network membership 

across all values of rsfMRI functional connectivity estimates which allowed for a contrast of 

our coupling metrics across different number of channels owning within-network 

membership relative to those defined as out-of-network. This data driven approach was 

specifically utilized to avoid a bias in the selection of network membership.

Identification and selection of coupled frequencies—For both coupling procedures, 

i.e. bPLV and PAC, we computed a mean (across subjects) interaction map from the low 

frequency range (1–40 Hz) to the high frequency range (70–200 Hz) for incoming and 

outgoing interactions from each seed to all site ECoG electrodes. Note that the seed 

electrode can interact with itself, as both bPLV and PAC are asymmetrical interaction 

measures. This resulted in 64 maps from each subject and 256 in total for 4 subjects, where 

each pixel represents an interaction frequency pair, corresponding either to the two 

independent phases (bPLV) or phase and amplitude (PAC). We were interested in common 

properties across maps in order to isolate and select significantly coupled frequencies. 

Because each subject 1) had varying spatial coverage, 2) the ECoG was recorded during the 

resting state and 3) different seed electrodes (based on different functional localizer 

characteristics) were identified for each subject, it would be difficult to interpret specific 

measures of interaction. Instead we focused on common features in the interactions maps 

that were based on the commonality as identified through the functional label derived from 

the rsfMRI motor functional connectivity maps, which is the membership label of a 

particular electrode in our two-way interaction measure (within-network or out-of-network). 

Therefore, we divided all 256 coupling maps for each PAC and bPLV incoming & outgoing 

algorithm, into interactions from the seed (or with the seed) to another ‘within-network’ site 

electrode or ‘out-of network’ site electrode. With this distinction in place, we computed a 

two-sided t-test, with unequal sample sizes, for each frequency pair (f1, f2) or pixel in that 

2D map, revealing significant differences between within-network interactions and out-of-

network interactions. Sample sizes will not be equal, as there are typically more of the latter. 

Since the test is pixel-wise, the frequency dependent bias in our estimation of e.g. the bPLV, 

as noted in the previous section, was converted into a normalized t-statistic. Both the bPLV 

and the PAC values come from unknown distributions. Therefore, we resorted to a non-
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parametric permutation test, to determine significant t-values. We applied a cluster based 

maximum statistic (Bullmore et al., 1999) to account for multiple comparison correction 

across the whole map. Under the null hypothesis, i.e. no functional difference between 

within-network and out-of-network electrodes, we randomly exchanged labels for the 

interactions maps and would not expect a significant difference. For each permutation, we 

randomly shuffled the labels of our total set of 256 maps, and draw a number of within-

network and out-of-network maps without replacement, equal to our original t-test. For these 

permuted sets, we then computed a new t-statistic and applied a threshold to the resulting t-

statistic map, based on the 99 (p < 0.01) percentile for a t-statistic with 254 degrees of 

freedom. We identified clusters in the map above this threshold and recorded (for each label-

shuffle permutation) the maximum cluster size across the whole map. A sufficiently dense 

histogram of maximum cluster sizes was established based on 10,000 permutation steps 

under the null-hypothesis. Finally, this histogram was used to identify significant clusters in 

the original t-statistic map, by applying the same threshold and accepting only clusters in the 

95 percentile of our maximum cluster size distribution, i.e. which have p<0.05 of occurring 

randomly under the null hypothesis (see Fig. S1 for visual description of procedure).

Time series shuffling and permutation statistical testing—Our permutation cluster 

test guided selection of peak frequency patterns to investigate the spatial distribution of CFC 

at the individual subject level. We selected the peak range of coupled low frequency phase 

estimates and high frequency amplitude or phase profiles. This resulted in a pooled phase 

estimate for φX(f1) at a 11–15 Hz range peak value and for φX(f2), φY(f1 + f2) spanning a 

85–95 Hz window for bPLV incoming calculations and φX(f1) within 16–20 Hz range peak 

value and for φX(f2,t), φY(f1 + f2,t) spanning a 133–143 Hz window for outgoing bPLV 

patterns. PAC estimates for each individual were computed over the peak frequency regions 

for the low frequency phase estimated across the 6–10 Hz bin and amplitude estimates 

binned across 74–84 Hz range.

To test for statistical significance across individual paired-channel interactions, we applied 

standard permutation tests to shuffled time series data. This approach serves to generate a 

null distribution of no significant CFC for both interaction metrics. For each shuffle, phase 

data were binned again into 8 sec time windows across the full duration of a recording. Time 

segment order was then randomly shuffled and bPLV and PAC were re-estimated as noted 

between the seed and all site electrodes and vice versa. The maximum value at a 95% 

confidence interval threshold across all couplings per shuffle was estimated and entered into 

the distribution. 1000 shuffles were conducted for each individual to generate surrogate CFC 

distributions. This approach is by nature more conservative than traditional total random 

phase shuffle. Specifically, it does not completely decimate all phase continuity as in the 

case for a completely random full time series phase shuffle (which would eliminate all 

synchrony — Hurtado et al., 2004; see Foster and Parvizi, 2012 for a similar approach as 

applied to the resting state). More specifically, our shuffling and permutation technique 

preserves the general local phase evolution within a time segment while disrupting the 

global temporal structure across the full time series. Finally, we computed the mean 95th 

percentile confidence intervals of each bPLV and PAC null distribution. Any between real 
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seed and site electrode pair showing greater bPLV or PAC estimates relative to the null 

distribution at an alpha level of 0.05 was considered statistically significant.

Linear regression analysis—We used a linear regression model to examine the 

relationship between the seed-site or site-seed CFC magnitude and resting state functional 

connectivity metrics at the level of individual electrodes. We began by Z-normalizing CFC 

metrics across both CFC domains and subjects to facilitate a cross metric comparison. Then 

electrode center coordinates were warped into raw echo-planar space using a tri-linear 

transform. Mean, un-scaled Z-score values were calculated from a 4 mm (full diameter) 

spherical sample placed directly below the center coordinate of all electrodes within a 

montage. Across all channels within each subject montage, Pearson's r correlations were 

calculated between average functional connectivity (Z-scores) and normalized CFC 

estimates and applying an ordinary least squares model fit. Finally, all regressions were 

normalized using a Fisher's r-to-z transform.

Results

Seed electrode selection

Electrode coverage varied slightly from subject to subject, but generally spanned the lateral 

temporal and parietal areas including precentral zones for all four subjects. We first 

established seed-based rsfMRI maps of functional connectivity for each individual using a 

data-driven approach to select a seed-point across all electrodes within each individual 

subject montage. A functional localizer task was utilized to identify seed-points. All subjects 

performed an overt-motor screen task during ECoG recording to identify functional 

electrodes responding during cued movement of the contralateral (from the placement of the 

grid) hand as well as tongue (Fig. 1A). The resulting electrode with the highest T score (i.e. 

HG power with respect to rest) across these two functional conditions was then selected as 

the seed electrode. Note the range of electrode coverage across all subjects was greatest 

across the lateral extent of temporoparietal zone. In order to select seed electrodes from 

homologous cortical regions across subjects, we excluded any electrode outside of classic 

motor regions (e.g. occipital responding channels in subject 2). Subjects 1 & 2 each showed 

minimal HG responses during cued tongue movement but extensive responses on hand 

trials. Conversely, subjects 3 & 4 showed little to no HG power modulation during the cued 

hand execution but had more widespread pattern of activity during the tongue movements. 

This response pattern across subjects was likely related to the specific placement and 

coverage of the ECoG grid. Therefore, the highest responding hand electrode for subjects 1 

& 2 and the tongue electrode for subjects 3 & 4 was selected as the seed point for all 

subsequent connectivity analyses.

Identification of within-network and out-of-network site electrodes

We then generated hand (subjects 1 & 2) and tongue (subjects 3 & 4) rsfMRI functional 

connectivity maps. For each subject the center coordinates of the selected seed were used to 

identify and select the underlying cortical tissue to serve as the seed point for a voxel-wise 

regression of rsfMRI functional connectivity (green dot in Fig. 1B). As typical for single 

subject approaches, the resulting seed-point functional connectivity maps showed a range of 
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statistically significant Z-score thresholds across all subjects (Fig. 1C; c.f. Zhang et al., 

2009). All subjects showed at least a maximum threshold value of Z = 13. Electrodes were 

labeled as either overlapping with the seed-point rsfMRI map (within-network) or lying 

outside of it (out-of-network — see Fig. 1 C, D for visual description). This approach 

resulted in a range of within-network and out-of-network site electrodes, as defined by 

rsfMRI functional connectivity thresholds. For example, at a threshold of Z = 13, 2 subjects 

showed only the seed electrode as a within-network member and 2 subjects showed the seed 

electrode and only one nearest neighbor site as within-network members. Further, a Z-score 

threshold of 5 resulted in a total of 75 electrode pairings across the 4 subjects. The total 

number of coupled pairs for each rsfMRI threshold is shown in Fig. 2A. The group-mean 

maximum distance (estimated as center to center distance between channel pairs on the grid, 

in cm) between the seed electrode and within-network site electrodes decreased as a function 

of rsfMRI threshold (Fig. 2B).

Resting state ECoG, non-linear coupling measures

We then calculated bPLV and PAC across all seed to site electrode pairs (see Fig. 2C & D). 

Fig. 2C demonstrates the existence of bPLV between a seed electrode and a within-network 

site electrode from subject 1. As evidenced by higher biPhase locking values (heat map), the 

mean phase of f3 shows preferential coupling to the mean sum of phase of f1 and f2. Because 

this interaction is unidirectional, the presence of f1 and f2 at the seed electrode (as in this 

example) locking to the phase of f3 at the distal, site electrode is suggestive of an outgoing 

(i.e. from the seed out) pattern of coupling. Similarly, Fig. 2D shows an example of PAC 

between a seed electrode and a within-network, site electrode. It is important to note that 

these plots are merely representative examples demonstrating the presence of CFC within 

ECoG signals in the absence of externally-directed behavioral events. Our main objective 

here is to characterize the global spatiotemporal patterns of CFC within resting state signals. 

Therefore to identify mean frequencies showing significant CFC, we binned (across 

subjects) all within-network and out-of-network electrodes for each rsfMRI threshold value 

and computed group level statistics contrasting the CFC characteristics across these two 

functional distinctions.

Group-level cross-frequency coupling characteristics

We utilized a conservative statistical approach to identify frequency specific CFC patterns at 

the group level. Based on numerous previous studies (Canolty and Knight, 2010; Darvas et 

al., 2009b; Florin and Baillet, 2015) and computational efficiency, we limited our analysis to 

a specific low frequency to high frequency CFC. Figs. 3 and 4 show frequency-by-frequency 

interaction maps plotting bPLV or PAC contrasts between within-network and out-of-

network sites. At the group level, we contrasted mean bPLV and PAC between within-

network and out-of-network electrode pairs using t-tests with unequal sample sizes (Fig. S1) 

and minimizing the effects of multiple contrasts by applying a pixel cluster correction. This 

identified peak frequency clusters (maximum cluster size effect — see Fig. S1B & C) at a p 

< 0.05 level to eliminate spurious effects from the original label contrasts. This combined 

statistical analysis resulted in 12 corrected bPLV & PAC maps (e.g. at each rsfMRI 

threshold) per incoming (Fig. 3) and outgoing (Fig. 4) CFC metric.
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Our approach revealed the presence of significant CFC specific to seed-site channel pairs 

located within the resting state network, as labeled by fMRI. Across both incoming and 

outgoing maps, significant PAC was much more prominent and widespread relative to 

bPLV. Similar to resting state PAC estimates extracted from single electrodes (Foster and 

Parvizi, 2012), prominent PAC was noted across a broad range of high frequency amplitudes 

(40–160 Hz) and prominent low frequency phase spectrum (i.e. 1–10 Hz) with peaks in both 

occurring both in the delta, theta and low alpha ranges. The magnitude of this effect was 

greatest at higher rsfMRI thresholds (rsfMRI Z-scores > 9, Figs. 3 & 4), though we also 

observed significant PAC across all lower rsfMRI threshold values.

It is important to note that the use of the t-statistic ensures robustness vs. outliers, as these 

would increase the overall sample variance and thus lower the t-statistic. This carries over 

into the permutation test as well, since the joint variance, which scales the differences of the 

means in the t-statistics stays the same under the label swapping procedure. Critically, this 

means that findings of CFC for a given rsfMRI Z-score threshold are due to contributions 

from all electrodes identified to be in-network.

Significant bPLV in contrast was not as robust. Only small, specific clusters were observed 

and generally only at high rsfMRI thresholds (Z-score > 10 for incoming couplings and Z-

score > 9 for outgoing couplings — see Fig. S2 for all bPLV maps). The exception to this 

observation was a significant cluster appearing in rsfMRI Z-score map = 5 (Fig. S2). 

Notably, the range of frequencies revealing significant bPLV coupling within the resting 

state were nearly identical to bPLV estimates during motor execution tasks (Darvas et al., 

2009a,b). These included low frequency phase coupling that was nearly exclusively within 

the beta range, with f1 peaking between 13 and 20 Hz. Finally, under the two-tailed t-test 

classification, we also observed one negative responding cluster at a rsfMRI threshold of Z-

score = 2. This effect indicates greater bPLV between seed and out-of-network electrodes 

pairs at this threshold relative to seed and within-network pairs (Fig. 3).

Incoming vs. outgoing coupling as a measure of directionality

For both CFC approaches, incoming and outgoing coupling can be loosely interpreted as a 

causal interaction in the Granger sense. Unlike traditional phase locking measures, such as 

the phase-locking value (PLV, Lachaux et al., 1999) or phase coherence where the 

interaction between two signals X and Y is symmetric with respect to the order of the 

signals, this is generally not the case for the bPLV (F. Darvas et al., 2009b) or PAC 

(Fontolan et al., 2014). This asymmetry enables the use of the bPLV as a directional 

measure, if it is (for instance) calculated between two disparate signals, X and Y. In this 

case, BXYZ(f1,f2,t) reduces to BXXY(f1,f2,t) and its value quantifies the strength of 

interaction from X to Y, if the phases in X at f1 and f2 are independent. Specifically, as the 

case X is directional to Y in the Granger model (Granger, 2001), because knowledge of 

φX(f1,t) and φX(f2,t) can be used to predict φY(f1 + f2,t), but not vice versa. Further, this 

argument does readily generalize to PAC, which is also an asymmetric measure of 

interaction. Here, the existence of a coupling between e.g. a low-frequency phase of X 

entrains or predicts the amplitude gain of Y at a distant site. This framework has been shown 
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as a general measure of directionality during top-down auditory cognition (Fontolan et al., 

2014).

Here, directional CFC was computed as 1) the phase of the low-frequency rhythm 

originating at the seed electrode coupling to high frequency responses at other non-seed site 

electrodes as a measure of outgoing connectivity and 2) the high-frequency activities 

originating at the seed electrode being entrained to the phase of low frequency oscillations 

from all site electrodes as a measure of incoming connectivity.

While the distinction of relative directionality of peak coupling frequency ranges did not 

result in any remarkable PAC differences, notable frequency coupling effects were evident 

in the bPLV analyses. Specifically, a pattern of statistically significant incoming bPLV 

emerged beginning at rsfMRI threshold Z = 10 whereby a common phase-phase interaction 

occurred at frequencies centered at approximately (f1: ~13 Hz, f2: ~90 Hz). This specific 

frequency–frequency phase synchrony is well aligned with previously published event-

related bPLV ECoG results during a motor execution task (Darvas et al., 2009b). In contrast, 

common phase-phase outgoing interactions were seen at frequencies centered at 

approximately (f1: ~18 Hz, f2: ~138 Hz). There is no spurious coupling (in this instance to 

the 120 Hz harmonic of the line noise) as the bPLV measure as we implemented and used it, 

only tests for up-coupling of frequencies, i.e. 18 Hz phase and 138 Hz phase in this case 

couple to the phase of 156 Hz. Finally, these characteristic frequency parameters were 

specific to the multiplicative summation (f1 + f2) sideband of bPLV coupling (Fig. S3).

Spatial characteristics of significant resting state CFC

Using the selected peak frequency coupling parameters from the group level analyses, we 

computed PAC and bPLV from seed to all site electrodes at the individual level. We then 

generated a null distribution of both PAC and bPLV estimates using standard non-

parametric permutation tests from time segment shuffled data and tested significant CFC by 

deriving 95% CI from this distribution. Electrodes displaying signifi-cant CFC are shown on 

individual subject surface renderings in Fig. 5. Across all subjects, a cumulative sum of 65 

electrodes showed signifi-cant CFC when binned across all bPLV and PAC incoming and 

outgoing values. Similar to the group level analyses, resting state PAC was more prominent 

with respect to bPLV estimates with more than double the number of electrodes showing 

significant PAC (Fig. 6B).

The most prominent spatial distribution feature across significant CFC estimates occurred 

for the PAC outgoing connections (Figs. 5 & 6A). For both bPLV directional estimates 

(incoming and outgoing) and PAC incoming estimates, there was qualitatively little 

predictable spatial distribution pattern spanning the cortical surface. However, PAC 

outgoing connections resembled the rsfMRI functional connectivity seed points to a much 

greater degree. To quantify the spatial similarities between maps, we applied simple linear 

regression and ordinary least squares fitting to the rsfMRI Z-score estimates extracted from 

the cortical tissue directly beneath all electrodes within a montage and normalized CFC 

metrics (Fig. 6C–E). The mean normalized r coefficient between PAC outgoing and rsfMRI 

seed point motor connectivity maps was higher relative to the other estimates of CFC. 

However, across all 4 subjects, this effect failed to reach statistical significance (CS = 6.57, 
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p = 0.0868, Kruskal–Wallis one-way analysis of variance by ranks). Although this particular 

analysis is clearly underpowered, the only consistent finding across all 4 subjects was a 

significant correlation between PAC outgoing connections and rsfMRI connectivity maps 

(Fig. 5E). Subject 3 did show similar patterns of correlation across 3 of the 4 measures of 

CFC and 2 out of 4 subject showed significant relationships between patterns of PAC 

incoming CFC and fMRI connectivity. Thus, while the spatial patterns of significant 

outgoing PAC connectivity most closely mimic (both qualitatively and quantitatively) 

patterns of rsfMRI functional connectivity, additional patterns of CFC are clearly present 

within the resting state and likely serve to drive intrinsic computational synchrony.

Despite the presence of significant resting state phase-amplitude and phase-phase coupling 

in all subjects, there was very little overlap that occurred between different CFC measures. 

Of the 65 significantly coupled electrodes (either incoming or outgoing), only 11 (or 

approximately 17%) non-seed, site electrodes showed greater than 1 form of significant CFC 

(see Fig. 7B). Outside of the seed electrodes, no other electrode showed more than 2 

significant forms of resting state CFC. Of the 11 electrodes showing greater than one form 

of significant CFC, 6 showed overlap between PAC incoming and outgoing synchrony and 1 

showed overlap between bPLV incoming and outgoing couplings.

Discussion

We reveal the presence of both cross-frequency phase-amplitude and phase-phase coupling 

in the resting state between neocortical populations across a sensorimotor network that were 

specifically identified by native rsfMRI functional connectivity. Using data-driven 

methodology and conservative statistical permutation approaches, we observed phase-

amplitude coupling across a broad range of gamma frequencies and a limited range of lower 

frequency phase estimates, generally within the high theta to low alpha range. The 

contributing frequencies driving this coupling are in good agreement with previous resting 

state MEG reports (Florin and Baillet, 2015; Foster and Parvizi, 2012; Osipova et al., 2008) 

as well as PAC during task execution over homologous cortical loci (Yanagisawa et al., 

2012). Further, we noted the presence of significant cross frequency phase-phase coupling 

but at generally more specific high and low band-limited frequency ranges.

Additionally, we reveal for the first time a good degree of spatial correspondence between 

the varying spatial patterns of a rsfMRI seed point connectivity map and the directionally 

selective CFC. Importantly, both imaging and electrophysiological connectivity metrics 

originated from identical cortical loci. This relationship was greatest for PAC outgoing 

connections relative to other metrics of directional CFC. That is, we observed that the best 

spatial match to the patterns of rsfMRI seed point motor maps occurred when the phase of 

low frequency oscillations at the seed electrode significantly entrained the high frequency 

amplitude estimates at site electrodes. This observation is suggestive that, in the absence of 

overt task structure, low frequency oscillatory behavior from neural assemblies at the seed 

region drives the gain control of local processing dynamics at distal site electrodes. 

Globally, these results suggest that voxelwise correlations of resting state BOLD signals 

associated with a seed-point are, in part, associated with the entrainment of a low frequency 

rhythm originating at that seed locale. We did however observe significant relationships 
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between rsfMRI maps as well as other CFC spatial patterns, suggestive of additional and 

highly dynamic interactions across the neocortical surface.

Importantly, all electrophysiological recordings of macro-scale oscillating signals were 

acquired via indwelling, sub-dural electrode arrays. As a consequence, the signals were 

sampled with a high degree of spatial specificity. Furthermore, because field potentials are 

recorded directly from the cortical surface and thus completely bypass dural and scalp 

influences, they are minimally impacted by zero-lag volume conduction. Despite this 

possibility, we note the presence of significant of cross-frequency phase-amplitude and 

phase-phase couplings across long distances (e.g. >4 cm) as well as matching spatial 

patterns of fMRI connectivity, signals based on hemodynamics. The current results are thus 

robust with respect to the low-amplitudes of high frequency signals and are highly spatially 

and temporally specific. Collectively, these results support the hypothesis that CFC is not 

only able to entrain high frequency state dynamics during task execution (Canolty and 

Knight, 2010), but exists in endogenous, spontaneous signals, engendered directionally 

across discrete, spatially-organized neural populations in the absence of overt, goal-directed 

behavior.

We were specifically interested in characterizing the degree to which dynamical patterns of 

phase coupling spanning multiple time scales drive connectivity across a well established 

intrinsic network (i.e. the sensorimotor network). We choose to specifically contrast bPLV 

and PAC estimates at the group level to identify global frequency parameters of CFC 

associated with resting state networks as labeled by fMRI. We selected this approach not 

only because both methods have been shown to support and coordinate active information 

processing across sensorimotor regions during overt motor task (Darvas et al., 2009b; 

Yanagisawa et al., 2012) but also because of discrepancies in rsfMRI functional connectivity 

maps, e.g. use of hand functional connectivity maps from two subjects and tongue functional 

connectivity maps from the other 2 subjects. Furthermore, there were also differences in 

electrode coverage across patients. However, our hypothesis was that the regions spanning 

the sensorimotor system would exhibit similar electrophysiological resting state functional 

connectivity characteristics irrespective of specific anatomy (hand vs. tongue connectivity). 

By binning all within-network electrodes together across subjects and specifically 

contrasting CFC with out-of-network channels, we tested this hypothesis and the 

accumulative results likely reflect global properties of sensorimotor functional connectivity 

maps. Our strict statistical criteria likely prevented spurious CFC at this group level. Such 

shared characteristics may also reflect electrophysiological properties of other large-scale 

cortical networks such as the default mode network (DMN) (Foster and Parvizi, 2012) or 

dorsal attention network (Florin and Baillet, 2015). For example, Foster and Parvizi, 2012, 

revealed that the low-frequency PAC entrainment rhythm within the resting state varied as a 

function of functional cortical boundary with oscillators in the DMN cycling in the theta 

range and an oscillators within the inferior visual cortex in the alpha range. Clearly future 

ECoG studies will need to investigate CFC across additional spatially defined cortical 

network hubs to support such a hypothesis. However, Foster and Parvizi's (2012) 

contribution raises the suggestion that the low-frequency entrainment dynamics in the 

resting state may in part be defined by the characteristic idling rhythm inherent to different 

functional systems of the cortex (c.f. Groppe et al., 2013) as been for example seen with 
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theta-gamma PAC within the hippocampus (Lisman and Jenson, 2013). Sensorimotor 

systems are classically defined as owning both ‘idling’ rhythms at both the Beta range (12–

30 Hz) as well as the alpha ‘Mu’ range (8–12 Hz) (Mackay, 1997). Thus, it is curious to note 

that the peak low frequency rhythms reflected in both PAC (6–10 Hz) and bPLV (~13 Hz 

for incoming and ~18 Hz for outgoing) connectivity. Taken together, it is conceivable PAC 

estimates entrained by the Mu rhythm provides a more prominent role in coordinating wide-

spread local activities across the sensorimotor system within the resting state while Beta 

reflects more specific functional features of resting state synchrony.

Neurophysiological mechanisms of CFC

Numerous studies have now converged on the hypothesis that PAC presents as a candidate 

mechanism facilitating the synchronization of local activities across spatially disparate 

neural populations (i.e. local-to-global coupling; see Canolty et al., 2006; Canolty and 

Knight, 2010; Voytek et al., 2010). The rationale for this candidate signal propagation model 

posits that event-related high frequency bursts (i.e. within the HG band) reflect local 

computational activity. When the need arises to coordinate multiple, spatially distinct neural 

populations for the successful execution of behavior, the phases of local low-frequency 

oscillations serve as a synchronization or gating mechanism to time-lock the excitability or 

gain of high frequency activities with minimal time lag (Canolty and Knight, 2010; Florin 

and Baillet, 2015). Within the resting state, this phenomenon has been observed across the 

cortex using MEG roughly within the same band-limited low (predominately within the 1–

10 Hz range) and high frequency ranges noted here. Florin & Baillet (Florin and Baillet, 

2015) observed widespread PAC across the cortical surface during the resting state. They 

revealed that different spectral PAC profiles emerged that roughly conformed to the spatial 

patterns of established large-scale rsfMRI cortical networks, suggesting PAC between low-

frequency phase estimates and high frequency amplitude signals serves as underlying 

mechanism for long distance resting state interactions. Unfortunately these authors did not 

have native rsfMRI data to directly relate the two measures. Here we selected ECoG 

electrodes based on a defined functional connectivity criteria (overlap with resting state 

fMRI functional connectivity maps from each individual participant). Consequently, we 

were able to directly contrast CFC with rsfMRI functional connectivity from identical neural 

populations from each subject. Because of the inherent high degree of spatial speci-ficity of 

ECoG (i.e. avoids spatial uncertainty due to source modeling and noise covariance), our 

results extend this hypothesis and suggest that presence of low frequency phase coupling to 

high frequency amplitudes is a specific feature of rsfMRI sensorimotor functional 

connectivity.

Non-linear phase-phase interactions have received considerably less investigation. This is 

the first report to demonstrate the presence of significant bPLV within the resting state. 

bPLV is a complex measure probing dynamic cortical interactions across multiple yet 

independent phase estimates (Darvas et al., 2009a,b). The result is a measure of asymmetric 

phase-phase coupling across discrete neural populations. Cortical phase synchrony has been 

studied extensively at multiple temporal and spatial scales (Boonstra et al., 2006; Hutt et al., 

2003; Kreuz et al., 2007; Lachaux et al., 1999) and relates directly to a temporal onset 

synchrony of the underlying neuronal firing patterns (Murthy and Fetz, 1996). One prevalent 
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hypothesis regarding cortical-cortical cross-frequency phase uniformity is that it supports 

communication between two regions (Schnitzler and Gross, 2005). However, when such 

coupling is expressly linear (i.e., classic PLV), it comes at the expense of independent 

computation occurring specifically in those two regions at those frequencies, an approach 

which may be problematic for cortical areas with heterogeneous functional characteristics 

requiring integration across multiple time scales. bPLV, on the other hand, is a proposed 

mechanism for assembly coordination between regions that preserves functional 

independence between neural populations at multiple time scales (Darvas et al., 2009a,b). 

Thus, the existence of significant bPLV between seed and site electrodes suggest the 

presence of complex, dynamic phase integration across multiple time-scales within the 

resting state.

Global phase entrainment properties within the resting state

Qualitative contrasts between CFC measures, both at the group and individual levels, 

establish the hypothesis that phase-amplitude coupling relative to cross frequency phase-

phase coupling is a much more prominent and wide-spread form of neocortical, non-linear 

resting state synchrony. Unlike phase-amplitude coupling, where typically a low-bandwidth 

gamma amplitude couples to a relatively slow (<10 Hz) phase, biPhase coupling requires 

tight, specific timing to occur in order to drive phase occurrences across multiple 

frequencies. It is conceivable that the presence of an overarching coordinating event (e.g. 

behaviorally mediated phase resetting) is necessary to drive complex cross-frequency phase-

phase couplings between disparate neuronal populations within a large-scale cortical system. 

For example, relative to a resting baseline, our previous work has shown the presence of 

consistent and significant bPLV across a well-established anatomical pathway (premotor 

connections to primary cortex) during a cued movement task (Darvas et al., 2009b). 

Importantly, the noted frequency ranges driving bPLV in this scenario were identical to the 

frequency patterns of bPLV that were observed in the current context, one that provided no 

specific phase resetting or external coordinating event. Although we did find evidence of 

significant similarity between bPLV and rsfMRI results when contrasted across all 

electrodes in 2 of the contrasts (Fig. 6D), the qualitative comparison of significantly coupled 

channel pairs was dramatically dissimilar to the rsfMRI maps. Thus, based on the current 

evidence, we argue that top-down influences or goal-directed behavioral events may be a 

necessary contingency to foster significant patterns of biPhase coupling within the resting 

state.

Directional measures of synchrony

We found evidence of consistent, significant relationships between rsfMRI motor maps and 

PAC outgoing estimates, two measures of connectivity driven by endogenous signals 

recorded from the same neocortical seed point. This finding is noteworthy because it is the 

first to reveal that neural populations that showed correlated resting state BOLD fluctuations 

to the time course established by a seed region are also likely to show high frequency 

entrainment to the phase of low frequency rhythm from that same seed population. More 

specifically, these data suggest that the resting state sensorimotor network is, in part, shaped 

neural populations whose high frequency activities are entrained to the low frequency phase 

of the neural assemblies located within the seed region. This is a preliminary hypothesis as 
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both measures of connectivity were not acquired simultaneously and clearly additional 

forms of CFC serve to drive resting state computation. Nonetheless, these data lay the 

foundation for an intriguing global hypothesis that generic membership (i.e. functional 

connectivity) within ubiquitous, large-scale networks such as the DMN maybe specifically 

shaped by the directional entrainment from neural assemblies at a seed point. Such a 

measure of directionality may begin, for instance, to reveal the presence of global 

directionality across a network within the resting state, an observation that may serve as a 

more accurate biomarker for tracking patterns of degeneration in Alzheimer's Disease as 

neuropathology spreads to or away from highly connected hubs.

Limitations

An additional characteristic of the spatial pattern of directional CFC that was noted was the 

fact that an overwhelming majority of identified seed-to-site channel pairs (~83%) showed 

only one form of significant resting state CFC (Fig. 7B). This indicates that (as a general 

principle) the large-scale populations that drive ECoG surface potentials only show one 

form of significant coupling when binned across an 8 minute resting state period. However, 

this observation is based on mean CFC, averaged across an 8-minute period of task-free rest. 

Contemporary rsfMRI studies have illuminated the fact that functional connectivity is not a 

static process but rather more generally defined as a dynamic, ongoing process (Hutchison et 

al., 2013). Thus our computational approach (i.e. integrating across the full time series) is 

likely discarding a much more dynamic and underlying process within the resting state. Our 

initial hypotheses centered on revealing and subsequently characterizing the presence or 

absence of cross-frequency phase-amplitude and phase-phase coupling as a function of 

rsfMRI network label. Future studies will clearly need to explore the degree to which CFC 

exists as a dynamic process in the resting state and whether significant patterns of CFC can 

simultaneously subsist across two distance neural populations.

An overall, inherent limitation to use of ECoG as an investigative tool for human 

neurophysiology is the sampling population from which recordings can be made. In the 

current context, all imaging and electro-physiological recordings were taken from 

individuals with partial, intractable epilepsy and thus should be taken with some degree of 

caution. This fact also clearly points out another major limitation to use of ECoG as tool of 

inquiry; namely limited spatial sampling resolution. Despite the high spatial specificity, 

ECoG spatial coverage is solely dependent upon the clinical needs and requirements for 

clinical monitoring. It is entirely conceivable that distinct patterns of CFC, defined by band-

limited differences of low-frequency phase entrainment, exist across functional or 

cytoarchitectural boundaries. For instance, Foster & Parvizi, (Foster and Parvizi, 2012) 

noted that at single electrodes housed within the medial parietal zone of the DMN or within 

the visual cortex along the inferior occipital stream showed high frequency amplitude 

coupling differences to delta and alpha range oscillations, respectively. We took a 

completely data-driven and unbiased approach to select frequency-coupling parameters for 

both bPLV and PAC measures. We made an assumption of similar connectivity properties 

across the sensorimotor network constructed by different functional localizers. Future efforts 

will have to examine whether coupling across frequency profiles results in variable spatial 

maps.
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One additional consideration here is the influence of contralateral connectivity within and 

across the sensorimotor system. Unfortunately, due to the limitations inherent to ECoG, 

typical clinical needs prohibit sampling across the cortical hemispheres. Nonetheless, it is 

well established that motor systems receive contralateral connections from the homologous 

cortical regions, a fact that fueled the initial resting state functional connectivity hypotheses 

(Biswal et al., 1995). rsfMRI studies have shown that motor regions positively correlate with 

the time course of a seed point placed in the contralateral motor region as well as cluster 

together using ICA decomposition metrics (Biswal et al., 2010). Therefore, it is clear that 

spontaneous interactions that define cortical connectivity across the sensorimotor system are 

influenced by contralateral interactions and likely serve to shape the topography of a 

network including the distribution of CFC. It is conceivable that contralateral influences in 

the current results maybe one influence guiding the observed spatial variability across 

participants.

Conclusions

We reveal the existence of significant phase-amplitude and phase-phase coupling within the 

resting state recorded directly from the human cortical surface and that patterns of outgoing 

PAC connectivity best reflect patterns of native rsfMRI functional connectivity estimates. 

These non-linear CFC functional connectivity metrics within the resting state reveals a 

dynamical system of directed interaction and integration, one that is driven by the low 

frequency phase coupling. At a systems level, these results contribute to an ongoing 

narrative suggesting that the existence of highly complex and dynamic events define the 

resting state (Schölvinck et al., 2013). Electrophysiological studies of the resting state have 

lagged substantially behind functional MR imaging based approaches, despite the fact that 

electrophysiological methods will be critical for characterizing the structure, nature and flow 

of spontaneous activity over the entire range of spatial, temporal, and spectral scales. It is 

the characterization of resting state interactions at the time scale of neural coding that will be 

necessary for understanding the computational operations that such spontaneous but 

associated neural activities support.
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Fig. 1. 
Seed selection, rsfMRI map development and network classification. To objectively identify 

an electrode to serve as a seed point throughout our analyses, we employed a simple cued 

hand/tongue (with trials randomly interleaved) motor task during ECoG recording. A) 

Shows the results from a two-tailed student's T-test contrasting log HG power during cued 

movement relative to rest. For each subject (aligned in rows), the highest positive 

responding electrode (i.e. warm colored T-value) was selected as the seed electrode and thus 

served as the seed location for all functional connectivity analyses (green dot in B). Note, 

the 64-channel montages for subjects 3 & 4 (i.e. rows 3 & 4) were changed between motor 

screening and resting state recordings. In this case, only active electrodes during resting state 

were considered as candidates for the seed electrode. Seed-point rsfMRI functional 

connectivity maps were generated according to standard methodology applying well-
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established statistical thresholding procedures. B) Shows a typical map at an approximate 

mid-range threshold value (Z-score = 5) for each subject. However, at the single subject 

level, threshold values can vary prior to group normalization procedures (c.f. (Zhang et al., 

2009)). Therefore, to avoid a bias in the electrode selection process based on threshold 

differences, we generated twelve Z-score defined ‘rsfMRI threshold maps’ for each subject. 

C) Shows 4 representative threshold maps for each subject. Electrodes overlapping with 

each resulting rsfMRI seed-point functional connectivity map (outlined in red) were 

considered ‘within-network’ electrodes (blue electrodes) while all others were labeled as 

out-of-network (black electrodes). This process was repeated for all thresholds and subjects. 

D) Shows a histogram of the network membership label (blue color) for all electrodes within 

a montage by rsfMRI threshold (x-axis).
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Fig. 2. 
Metrics and demonstration of non-linear coupling within resting state ECoG signals. A) The 

total number of coupled (including source locking i.e. a seed to itself) of within-network 

interactions across all subjects for each rsfMRI threshold. B) Group mean distance metrics 

between the seed electrode and all within-network site electrodes as a function of rsfMRI 

threshold. To estimate mean distance, the maximum distance between a seed and a within-

network site electrode for each imaging based threshold was determined and averaged 

across 4 subjects. C) Example phase-phase (in radians) spectrogram illustrating the 

existence of biPhase outgoing coupling (i.e. bPLV) between the signal at the seed (x-axis) 

and a site electrode (y-axis) from a single subject (subject 1). For the seed electrode, the sum 

of phase f1 (in this case 12 Hz) and f2 (90 Hz) is locked to the phase of f3, which is 

calculated as the sum of these two frequencies (in this case 102 Hz) at a site, within-network 

electrode (y-axis). The magnitude of bPLV is related to the consistency or degree of this 

cross-frequency locking. Here, for the case of zero or random locking, one would expect a 

uniform distribution across all angles, whereas in this case stripes were evident in the 

spectrogram indicating a preferred (i.e. coupled) phase locking. D) A phase-amplitude 

coupling (PAC) outgoing representative example from subject 1. The normalized amplitude 

(heat map reflects Z-scores) across all high frequencies (y-axis) from a site, within-network 

electrode shows a relative, preferred phase from a low-frequency signal (in this example, 8 

Hz) at the seed electrode (x-axis).
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Fig. 3. 
Frequency–frequency CFC maps contrasting within-network to out-of-network coupling 

from incoming patterns of connectivity. Spectrograms reflect mean PAC and bPLV 

contrasts for incoming couplings across the full resting state period, binned into different 

rsfMRI threshold maps (columns). For all plots, warm colored pixels denote greater mean 

CFC (t-values) for within-network seed-site pairs relative to out-of-network seed-site pairs. 

The top row shows the PAC results where the x-axis represents the low frequency spectrum 

at the site electrode at which phase information is significantly coupled to the higher 

frequency amplitudes at the seed electrode. bPLV results are shown in the bottom row and 

represent frequencies (x-axis: φX(f1) & y-axis: φY(f2)) whose phase sum together at the site 

electrode and lock to the phase of φY(f1 + f2) at the seed electrode. Importantly, f1, f2 and f3 

can be completely independent from one another.
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Fig. 4. 
Frequency–frequency CFC maps contrasting within-network to out-of-network coupling 

from outgoing patterns of connectivity. Spectrograms reflect mean PAC and bPLV for 

outgoing couplings across the full resting state period, binned into different rsfMRI 

threshold maps (columns). The results are presented identically as in Fig. 4, with the 

exception that the PAC, as a reflection of outgoing couplings, show the low-frequency phase 

estimates at the seed electrodes (x-axis) coupled to the amplitudes estimates of frequencies 

at the site electrode (y-axis). Similarly, bPLV results are shown in the bottom row and 

represent frequencies (x-axis: φX(f1) & y-axis: φY(f2)) whose phase sum together at the 

seed electrode and lock to the phase of φY(f1 + f2) at the site electrode.
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Fig. 5. 
Spatial patterns of significant directional CFC in the resting state. The spatial distribution of 

directional bPLV and PAC estimates were mapped back onto the original electrode montage 

for each individual participant (shown in rows). The heat map reveals the magnitude of 

coupling with respect to our permutation statistical test. For each contrast map, seed 

electrodes are either bordered in white (if significantly coupled onto itself) or plotted as a 

white dot (if no significant coupling occurred). The seed electrode was chosen for each 

participant through use of a functional localizer task. The electrode showing the strongest 

statistically significant response during an overt hand (subjects 1 & 2) or tongue (subjects 3 

& 4) task was selected as the seed point for all connectivity analyses. Significantly coupled 

site electrodes with the seed are ballooned to more clearly reveal the spatial location of that 

electrode. The original rsfMRI map is plotted in the left most column as a visual reference. 

Note the qualitative similarities between significant PAC outgoing coupling and the rsfMRI 

maps. This also reveals that electrode coverage in all subjects does not span the full spatial 

extent of the rsfMRI functional connectivity maps.
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Fig. 6. 
Spatial characterization of incoming and outgoing cross-frequency coupling (CFC) metrics. 

A. For each subject, PAC outgoing connectivity and rsfMRI maps were overlaid in order to 

illustrate the remarkable similarities in spatial patterns across the two maps. Note, the color 

scheme for the fMRI was adjusted (relative to Figs. 1 & 5) to a cool scheme and 

significantly coupled electrodes were inflated in size to better reveal the contrast between 

single electrode and the underlying fMRI data. For these purposes, significantly coupled 

electrodes were colored red independent of coupling magnitude. B. Reveals the cumulative 

sum of significant (at an alpha level of 0.05 with respect to the shuffling permutation test) 

coupled interactions. C. Example of a significant linear regression from a representative 

subject, plotting rsfMRI Z-scores relative to the normalized PAC outgoing values across all 

electrodes within that montage. Red points denote electrodes with statistically significant 

CFC. D. Normalized correlation coefficients (r-to-z-transformed correlation) binned across 

subjects for each cross-frequency coupling metric. Bars reflect standard error of the mean. 

E. A matrix revealing statistically significant (in green) regressions between CFC and 

rsfMRI maps for each subject.
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Fig. 7. 
Pattern characteristics of significant CFC within the resting state. A. Shows a histogram of 

the number of electrodes showing significant couplings. Notice that the majority of 

electrodes across a montage for each individual subject were not significantly coupled in 

either direction with the seed electrodes (e.g. on average 47 out of 64 electrodes were not 

significantly coupled with the seed electrode). For electrodes where significant coupling 

occurred, the vast majority of these electrodes showed only one significant form of mean 

coupling when binned across the full time series of the 8 minute resting state. B. This effect 

was broken down further into the specific electrodes CFC estimates. As can be seen, the 
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large majority of significantly coupled electrodes were only coupled in one direction and 

under one CFC metric.
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