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Abstract

West Nile virus (WNV) is a mosquito-transmitted member of the Flaviviridae family that has
emerged in recent years to become a serious public health threat. Given the sporadic
nature of WNV epidemics both temporally and geographically, there is an urgent need for a
vaccine that can rapidly provide effective immunity. Protection from WNV infection is corre-
lated with antibodies to the viral envelope (E) protein, which encodes receptor binding and
fusion functions. Despite many promising E-protein vaccine candidates, there are currently
none licensed for use in humans. This study investigates the ability to improve the immuno-
genicity and protective capacity of a promising clinical-stage WNV recombinant E-protein
vaccine (WN-80E) by combining it with a novel synthetic TLR-4 agonist adjuvant. Using
the murine model of WNV disease, we find that inclusion of a TLR-4 agonist in either a sta-
ble oil-in-water emulsion (SE) or aluminum hydroxide (Alum) formulation provides both
dose and dosage sparing functions, whereby protection can be induced after a single
immunization containing only 100 ng of WN-80E. Additionally, we find that inclusion of
adjuvant with a single immunization reduced viral titers in sera to levels undetectable by
viral plaque assay. The enhanced protection provided by adjuvanted immunization corre-
lated with induction of a Th1 T-cell response and the resultant shaping of the IgG response.
These findings suggest that inclusion of a next generation adjuvant may greatly enhance
the protective capacity of WNV recombinant subunit vaccines, and establish a baseline for
future development.
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Introduction

West Nile virus (WNYV) is a mosquito-borne member of the family Flaviviridae that has
emerged in recent years to become a serious public health threat. The virus was initially identi-
fied in the West Nile district of Uganda in 1937, and has since spread worldwide. West Nile
Virus was first identified in North America in the United States in 1999, and has since spread
into Canada [1], Mexico [2], as well as central and South America [3]. Following introduction
into North America, the number of WNV cases increased steadily as the virus spread geo-
graphically; in 2003, almost 10,000 cases were reported in the US, resulting in 264 deaths [4].
Cumulatively between 1999 and 2010 there have been over 780,000 symptomatic cases of
WNV in the US. Of these, 16,000 have resulted in neurologic disease, and over 1500 have been
fatal [5]. During the 2012 reporting season, the United States reported the second highest num-
ber of WNV infections since the outbreak began, with 5674 total cases reported, compared to
only 712 cases in 2011 [6]. Serious complications from WNV infection, which result from
spread of the virus into the central nervous system (CNS), include meningitis, paralysis, and
eventually death (Reviewed in [7, 8]). Infection of the kidneys has also been reported, although
the significance of this and contribution to virus induced morbidity remains unclear [9]. The
continued geographic spread and consistent seasonal outbreaks of WNV highlight the need for
development of effective vaccines.

WNV (family Flaviviridae, genus Flavivirus) is an enveloped positive-strand RNA virus.
The viral genome is translated as a single polypeptide that is co- and post translationally pro-
cessed to yield the 3 structural and 7 non-structural proteins [10]. The 3 virus structural pro-
teins are the capsid (C) protein and the pre-membrane protein (prM) which is cleaved during
virus maturation to yield the membrane (M) protein and envelope (E) protein. The E protein
contains the receptor binding and fusion functions of the virus, and an X-Ray crystal structure
for the WNV-E protein, as well as many other members of the genus, have been determined
[11-14]. Like all Flavivirus E proteins, the WNV E-protein can be divided into three distinct
structural domains; DI, DII, and DIII. Antibodies to domains DII and DIII have been shown to
neutralize the virus, and correlate with resolution of infection in preclinical models [15]. For
this reason, the E-protein has been extensively evaluated as a vaccine candidate in both preclin-
ical animal models and in the clinic (Reviewed in [16, 17]). WNV E protein antigen has been
delivered as part of an inactivated virus [18-22], as a recombinant protein [23-33], as a DNA
vaccine [34-41], as an RNA vaccine [42], and using various replicating and non-replicating
viral vectors [43-54]. Live-attenuated vaccines for WNV have also been developed [55-61]. Of
the potential vaccine candidates, the live attenuated vaccines have shown promise in the clinic,
inducing high levels of virus neutralizing antibodies [62-64]. A recombinant E subunit vaccine,
WN-80E, has also been advanced into the clinic, but was found to induce low level neutralizing
antibodies when adsorbed to Alum [65]. Given the safety advantages of sub-unit vaccines rela-
tive to live attenuated agents, additional development of a WN-80E based vaccine would pro-
vide an attractive vaccine candidate.

Vaccine adjuvants are critical for the effective development of protective responses with
many antigens. Toll-like receptor (TLR) agonist adjuvants are particularly promising, as they
engage the innate immune system to stimulate a more robust and durable adaptive immune
response [66]. Ligands for TLR 7/8 (Imiquimod, Resiquimod) [67], TLR 9 (CpG) [68, 69], TLR
5 (Flagellin) [70], and TLR 4 [66, 71, 72] have been evaluated pre-clinically as components of
vaccine adjuvants. TLR 9 and TLR 5 have been specifically evaluated in combination with
WNV E protein or domain III antigens, and have shown promise in enhancing immunogenic-
ity in mouse models [30, 73]. However, the safety and scalability of these TLR-agonists may
make their use in the clinic problematic. TLR 4 agonist adjuvants, in contrast, have been
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shown to be safe and effective in several clinical trials, and the TLR4 agonist adjuvant MPL is a
component of the licensed HPV vaccine Cervarix® (GlaxoSmithKline, Rixensart, Belgium).

In the current study, we have investigated the ability of a novel, fully synthetic lipid-A (SLA)
TLR4 agonist to serve as an effective adjuvant when combined with the clinical stage antigen
WN-80E [25, 26]. We find that SLA combined with either a stable oil-in-water emulsion (SE)
or combined with Alum can induce a robust immune response to WN-80E, characterized by
production of high level neutralizing antibodies. Furthermore, both of these formulations can
affect antigen dose sparing and reduce the viral load in mice to undetectable levels following a
single immunization compared to the same formulation without SLA. Investigation of cellular
immune responses show that adjuvant formulations which reduce viral loads in mice also
show increased levels of germinal center and, in some cases, plasmablast B-cells following
immunization. Furthermore, inclusion of SLA increases the number of long lived antibody
secreting cells in the bone marrow following a single immunization. These results highlight the
versatility and utility of SLA as an adjuvant for WNV vaccines, and suggest a vaccine formula-
tion whose components have a well documented safety profile for advancement into clinical
testing.

Materials and Methods
Virus Stocks and Vaccines

Stocks of WNV (NY99 strain) were prepared from infected Vero cells (CCL-81, ATCC).
Briefly, confluent cells were inoculated with WNV at a MOI of 0.1. Virus growth medium
(MEM supplemented with 5% fetal bovine serum) was added to the flask after the virus was
adsorbed onto drained monolayers for 60 minutes. Cells were examined daily following infec-
tion, and supernatant was harvested when cytopathic effect was evident throughout the culture.
Decanted medium from the infected cells was clarified by centrifugation at 5000 x g for 10 min.
Clarified supernatant was supplemented with additional FBS to a concentration of 15%. Virus
was aliquoted and stored at -80C. Thawed stocks were titrated by plaque assay with titers of
virus stocks typically 10°® pfu/ml.

The WN-80E protein utilized in these studies was provided by Hawaii Biotech, and has
been previously described [26]. Briefly, the protein is a carboxy-truncated WNV E-protein
which is produced in Drosophila S2 cells. Protein was provided in PBS, and stored at -80°C
until use.

Adjuvants and Immunogenicity Studies

All animal work described in this research was conducted under protocols approved prior to
study initiation by the Infectious Disease Research Institute (IDRI) Institutional Animal Care
and Use Committee (IACUC). The research conducted here was specifically approved by the
IACUC.

SLA is a synthetic lipid-A derivative which is related to glucopyranosyl lipid A (GLA),
which has been previously described [74]. For these studies, SLA was combined with Allhydro-
gel (SLA-Alum), combined with a stable oil-in-water emulsion (SLA-SE) containing squalene,
or delivered as an aqueous formulation (SLA-AF).

For immunogenicity studies, 6-8 week old female C57Bl/6 mice were immunized via the
intra-muscular route in a final volume of 100pl/immunization (50pL delivered to each leg) at 0
(prime) and 21 (boost) days. Seven days following each immunization serum, spleen and ingui-
nal lymph nodes were collected for analysis. Twenty one days following each injection, addi-
tional serum and bone marrow were collected for analysis of WNV specific antibody titers and
for ELISPOT analysis.
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Challenge Studies

Following immunization, 6-8 week old female C57Bl/6mice were challenged with 10° plaque
forming units (PFU) of WNV via intra-peritoneal injection of virus in 0.25 mL total volume.
Following challenge, all animals were observed daily for signs of virus induced morbidity and
mortality. 72 hours following challenge, peripheral blood was obtained from all animals via the
retro-orbital sinus to determine serum virus titers. For survival studies, and per institutional
IACUC guidelines, animals showing overt neurological symptoms including ataxia, decreased
righting reflex, tremors, paralysis and others, or those which exhibit weight loss of more than
20% following challenge were euthanized by controlled CO, inhalation.

Plaque Assay

Serial 10 fold dilutions of serum were prepared in BA-1 medium (M-199 salts, 1.0% bovine
serum albumin, 350 mg/L sodium bicarbonate, 100 units/mL penicillin, 100 mg/L streptomy-
cin, and 1.0 mg/L amphotericin in 0.05 M Tris [hydroxymethyl aminomethane], pH 7.6) were
prepared in 96 well plates (Corning). Diluted samples were added to 6-well (Corning) plates
seeded 24 hours prior with 1 X 10° Vero cells/well, and incubated for 60 minutes with shaking
at 15 minute intervals to ensure even virus distribution. Wells were overlaid with a 0.5% aga-
rose (Seakem) solution and incubated at 37°C for 48 hours to allow plaque formation. Follow-
ing incubation, cells were stained with crystal violet to visualize and enumerate plaques.

Plaque-Reduction Neutralization Test (PRNT)

Sera from immunized mice were inactivated by incubation at 56°C for 30 minutes. Inactivated
sera was serially diluted 2-fold in BA-1 medium in a 96 well plate (Corning) beginning with a
1:5 dilution in a total volume of 100 pL. Following serum dilution, 100 pL of virus (200 pfu)
was added to all serum samples. Virus:serum mixtures were incubated at 37°C for 60 minutes.
Following incubation, virus in all samples was titrated using standard plaque assay techniques.
Briefly, virus-serum mixtures were incubated with Vero cell monolayers (200 uL/well) at 37°C
for 45 minutes with rocking to distribute the medium every 15 minutes. Wells were overlaid
with 0.5% agarose and incubated for 2 days at 37°C in a CO, incubator. Plaques were enumer-
ated on day 3 following crystal violet staining. Negative (media only) and positive controls
(immune serum) were included in each assay. Neutralizing antibody titers are given as the end-
point titer capable of reducing the number of plaques by 90% compared to a virus only control
(PRNTyy).

Antibody responses

WN-80E-specific endpoint titers for IgG, IgG1 and IgG2c were determined seven days and
twenty-one days post immunization. High binding polystyrene 384 well plates were coated
with WN-80E (2 pug/ml) in 0.1 M bicarbonate coating buffer for 2.5 hours at room temperature.
Plates were washed three times with 0.1% PBS—Tween 20 before and after a two hour blocking
incubation with 0.05% PBS—Tween 20+1% BSA at room temperature. Mouse sera was serially
diluted in 0.05% PBS—Tween 20+0.1% BSA using a Nanonscreen NSX-1536 and incubated
overnight at 4°C and washed five times. Plates were incubated for 1 hour with anti-mouse IgG,
IgG1 or IgG2c HRP conjugates (Southern Biotechnologies) with shaking. Following five
washes, plates were developed by the addition of SureBlue tetramethylbenzidine substrate (Kir-
kegaard & Perry Laboratories) using a Nanoscreen robot. The enzymatic reaction was stopped
with 1 N H,SO4 using a Multipette Sagian robot. Plates were read at 450-570 nm using the
Synergy ELISA plate reader (Biotek) and Gen5 software.
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Antibody Secreting Cell ELISPOT Assay

WNV WN-80E specific antibody secreting cells present in the bone marrow were quantified
using an ELISPOT assay. One day prior to assay initiation, Multiscreen ELISPOT plates (Milli-
pore) were coated with 1ug of WN-80E/well, and incubated overnight. Blocked plates were
washed three time with washing buffer (PBS + 0.5% Tween 20), blocked with collection
medium for two hours, and washed 3 times. Bone marrow was collected 21 days post-immuni-
zation in RPMI medium supplemented with 10% fetal bovine serum (FBS), quantified using a
Guava automated cell counter (Millipore) and resuspended to 1 X 10° cells/mL. Cells were seri-
ally diluted 3-fold, added to plates, and incubated for 5 hours at 37°C. Secreted antibody was
detected by addition of a 1:100 dilution of horse radish peroxidase (HRP) conjugated goat anti-
mouse IgG antibody (Southern Biotech). Spots were visualized with an AEC Peroxidase sub-
strate kit (Vector Labs) according to manufacturer’s instructions. Spots were quantitated on a
CTL bioanalyzer.

Intracellular cytokine staining

In order to quantify vaccine specific T-Cell responses, splenocytes were isolated from five mice
per group following immunization. Red blood cells were lysed using Red Blood Cell Lysis
Buffer (eBioscience) and resuspended in cRPMI 1640 (10% FBS, 1% Penicillin/Streptomycin;
0.1% 2-Mercaptoethanol). Cells were plated at 107 cells/well in 96-well plates and were stimu-
lated for 2 hours with media or WN-80E Antigen (10 ug/mL) at 37°C. At t = 2 hours, 1:50 Gol-
giPlug (BD Biosciences) was added and the cells were incubated for an additional 8 hours at
37°C. Cells were washed and surface stained with fluorochrome labeled antibodies (1:100 dilu-
tion in 1% BSA-PBS) to CD4 (clone RM4-5), CD8 (clone 53-6. 7), CD44 (clone IM7) and
B220 (RA3-6B2) (BioLegend and eBioscience) in the presence of anti-CD16/32 (clone 93) for
15 minutes in the dark at room temperature. Cells were fixed and permeabilized with Cytofix/
Cytoperm (BD Biosciences) for 30 minutes at room temperature in the dark. Cells were washed
with Perm/Wash (BD Biosciences) and stained for 15 minutes with fluorochrome labeled anti-
bodies to detect intracellular cytokines as follows: IFN-y (clone XMG-1.2), IL-2 (JES6-5H4),
TNF (MP6-XT22), IL-5 (clone: TRFKS5) and IL-10 (clone: JES5-16E3) (BioLegend and
eBioscience) Cells were washed, resuspended in 1% BSA-PBS and filtered using a 30-40um PP/
PE 96 filter plate (Pall Corp). Up to 10° events were collected on a four laser LSR Fortessa flow
cytometer (BD Biosciences). Data were analyzed with Flow]Jo (Treestar).

B cell quantification

Seven days following immunization, inguinal lymph nodes were isolated from five animals per
group. Cells were re-suspended in cRPMI 1640 (10% EBS, 1% Penicillin/Streptomycin; 1:1000
2-Mercaptoethanol) and plated at 107 cells/well in 96-well plates. Cells were surface stained in
staining buffer (1% FBS, 1:250 EDTA, PBS) with fluorochrome labeled antibodies (1:200) to
CD138 (clone281-2), GL7 (clone GL7), CD95 (clone Jo2), IgM (clone 11/41), B220 (CloneRA3-
6B2), IgD (clone 11-26¢.2a), CD38 (clone 90) and 1:100 CD16/32 (clone 93) for 15 minutes in
the dark at 4°C. Non B cell lineage cells (designated lineage-) were identified and excluded
from analysis by staining (1:200) and gating for Ly6G (clone 1A8), CD11b (clone M1/70),
CD11c (clone N418), F4/80 (clone BM8), Ter119 (clone TER-119) and Thy1.2 (clone 53-2.1)
hi populations. Cells were fixed and permeabilized with Cytofix/Cytoperm (BD Biosciences)
for 20 minutes at room temperature in the dark and washed with Perm/Wash (BD Biosci-
ences). Cells were resuspended and filtered in staining buffer using a 30-40 um PP/PE 96 filter
plate (Pall Corp). Up to 10° events were collected on a four laser LSR Fortessa flow cytometer
(BD Biosciences). Data were analyzed with Flow]Jo (Treestar).
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Results

SLA Stimulates Higher WNV Neutralizing Antibody Titers Following a
Single Immunization in Mice

In preliminary studies, we evaluated the ability of the TLR4 agonist adjuvant synthetic lipid A
(SLA) formulated in a stable oil-in-water emulsion (SE) to enhance the immune response and
enable antigen dose-sparing when combined with WN-80E. We utilized SE as a comparator
due to widespread use of this class of adjuvants in commercial vaccines. In addition, we sought
to compare these adjuvant formulations to WN-80E formulated with Alum, as this formulation
has also been tested clinically. Following a single injection of WN-80E adjuvanted with alum,
SE or SLA agonist combined with SE (SLA-SE), we examined both cellular and humoral WN-
80E specific immune responses. Seven days following immunization, we observed an increase
in the number of WN-80E specific IENy+ CD4+ T-cells in the spleen of SLA-SE immunized
animals compared to those immunized with SE or alum (Fig 1). ICS analysis of T-cell popula-
tions demonstrated that many of these IFNy™ T-cells secreted multiple cytokines, with a high
percentage those from the SLA-SE immunized animals showing a canonical T,1 phenotype
(IFNy+/TNFo+/IL-2+) (Fig 1). The production of T;,1 CD4+ T-cells at this timepoint was cor-
related with an increase in IgG2c antibodies in the serum 21 days post-immunization (Fig 2).
In contrast, total IgG and IgGl titers in serum at day 21 were similar among all adjuvanted
groups (Fig 2). Examination of the neutralizing potential of the induced antibodies showed a
correlation between the presence of IgG2c antibodies in the serum and increased neutralization
potential; animals immunized with SLA-SE had the highest IgG2c titers and showed elevated
PRNT titers compared to those immunized with alum or SE. Furthermore, high PRNT titers
were induced even at relatively low antigen doses; the PRNT titers observed following immuni-
zation with 1 ug WN-80E + SLA-SE were significantly greater (P<0.05) than those observed
following immunization with 1 pg of protein alone (Fig 1). Taken together, these results suggest
that SLA-SE can increase the neutralizing antibody titer generated after a single injection with
WN-80E, and that inclusion of the SLA agonist may allow up to 100 fold dose sparing of the
antigen.

SLA Can Enhance the Protective Efficacy of WN-80E In Multiple
Formulations

Given the increase in neutralizing antibodies induced by the combination of SLA and SE, we
investigated whether or not addition of SLA could increase protective capacity when combined
with the licensed adjuvant Alum. Mice were immunized once with reduced amounts (either

1 pg or 0.1 pg) of antigen in combination with stable emulsion or alum containing adjuvants
via the intramuscular route. Five animals per group were euthanized 21 days following immu-
nization to examine serum antibody responses to WN-80E, and the remaining animals

(n = 10/group) were challenged via the intra-peritoneal route with 100 LDsg WNV (NY99
strain). Three days following challenge, serum was collected from all mice, and virus titers
were determined by plaque assay. At day 21 post immunization all mice in adjuvanted groups
induced similar levels of total serum IgG and IgG1 against WN-80E compared to antigen alone
(Fig 3). As in the previous experiments, the inclusion of the SLA agonist adjuvant induced a
significantly increased level of IgG2¢c when combined with both Alum and SE, as well as in

an aqueous formulation (Fig 3). Those groups showing a significant increase in IgG2c titers
also showed elevated PRNT titers at this timepoint (Fig 3). Consistent with previous work,
immunization with SE alone also induced a neutralizing antibody response. These results

are consistent with our previous findings, that SLA containing adjuvants show increased
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Fig 1. Induction of a Th1 CD4+ T-Cell Response in SLA-SE Immunized Animals. Seven days following a
single immunization, isolated splenocytes (n = 5 mice/group) were phenotyped by ICS. IFNy+ CD4 T-cells
were induced following immunization with WN-80E in combination with SLA-SE. At decreased antigen doses
(100 ng/mouse), inclusion of SLA-SE resulted in a significant increase in cytokine positive cells relative to
antigen only controls (p<0.005). Additional cytokine profiling shows that many of the IFNy cells in the SLA-SE
group displayed a Th1 phenotype, and were positive for TNFa and/or IL-2 (B).

doi:10.1371/journal.pone.0149610.g001

neutralizing potential, and that this is correlated with the induction of a Th1 antibody response
characterized by increased levels of IgG2c.

In addition to serologic evaluation, we investigated the ability of SLA containing adjuvants
to protect animals from lethal WNV challenge following a single immunization. Mice were
immunized once with WN-80E with or without adjuvant, and challenged 21 days post-immu-
nization. Following challenge, all control mice succumbed to infection by day 10. Consistent
with previous data utilizing WN-80E, mice immunized with 1pg antigen alone showed a 70%
survival rate, while 80% of animals immunized with WN-80E combined with either SE emul-
sion alone or an aqueous formulation of SLA (SLA-AF) survived. All animals immunized with
Alum, SLA-Alum or SLA-SE adjuvants survived challenge (Fig 4, Table 1). Comparison of sur-
vival curves show that survival in animals immunized with 100ng of WN-80E combined with
adjuvant is equivalent to that observed with 1 pg of antigen alone.

In addition to survival, we have examined the viral titers 3 days following challenge, and
find that adjuvants were variably effective in reducing viral load (Fig 4). Animals immunized
with 0.1 ug WN-80E and Alum or SE alone showed detectable titers in 70% and 30% of
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Fig 2. ELISA Titers Following A Single Inmunization with WN-80E. Serum antibody titers were
determined by ELISA 21 days following a single immunization with WN-80E in combination with adjuvants.
Titers of Total IgG (A), IgG1 (B) and IgG2c (C) were determined for all mice (n = 5/group). One way ANOVA
was used to evaluate significant differences in antibody levels and PRNT titers between groups. Similar
levels of Total IgG and IgG1 were observed in allimmunized animals. Significantly elevated levels of IgG2c
were detected in mice immunized with SLA-SE compared to those immunized with 10 ug of antigen alone
(p<0.0001). Neutralizing antibody titers were also determined by PRNT assay (D) to assess antibody
function. There is a trend toward increased titer in SLA-SE immunized animals at all anitgen doses, and
significant increases in PRNT titer are observed at the 1ug antigen dose.

doi:10.1371/journal.pone.0149610.g002

animals. Addition of SLA to SE reduced the number of animals with detectable titer to 10%,
while addition of SLA to Alum resulted in no detectable virus titer in any animal at this time
point. Collectively, these results demonstrate that addition of the TLR agonist SLA in formula-
tions can enhance the protection of WN-80E antigen in mice by reducing serum virus titers to
minimal or undetectable levels at a low antigen dose (0.1 pg) after only a single immunization.

SLA Induces an Increase in IgG™ Antibody Secreting Cells In The Bone
Marrow Following A Single Immunization

In addition to stimulating a robust acute phase protective response, effective vaccines must also
stimulate durable long term immunity. To investigate the ability of SLA to enhance durable
responses to WN-80E, we have investigated the presence of WNV E-protein specific IgG anti-
body secreting cells (ASC) in the bone marrow following a single immunization (Fig 5). These
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Fig 3. SLA Formulated with Alum or SE Increases Functional Antibody Titer Following A Single
Immunization with WN-80E. Serum antibody titers were determined by ELISA 21 days following a single
dose of WN-80E in combination with Alum or SE formulations with or without SLA. Anti-WN-80E titers of Total
1gG (A), IgG1 (B) and IgG2c (C) were determined for all mice (n = 5/group). One way ANOVA was used to
identify significant differences in antibody levels. Significantly elevated levels of IgG2c were detected in mice
immunized with SLA containg adjvuants, as well as SE alone compared to those immunized with 1 pg of
antigen alone. Mice immunized with SLA-SE showed the highest levels of IgG2c (p<0.0001). Mice receiving
SLA-SE also had elevated levels of IgG2c relative to animals immunized with SE alone. Neutralizing antibody
titers were also determined by PRNT (D) to assess antibody function. Elevated PRNT titers are observed in
mice that received either SE alone, or SLA containing adjuvants in combination with WN-80E.

doi:10.1371/journal.pone.0149610.g003

long-lived cells are a correlate of durable immunity due to their ability to continually produce
and secrete antibodies. To quantify WNV specific ASC, bone marrow was collected 21 days fol-
lowing immunization, and ASC quantified using an ELISPOT assay. SLA containing adjuvants,
in addition to SE, induced increased numbers of IgG+ ASC relative to antigen alone. Addition
of SLA to SE resulted in further significant increases in ASC numbers. Overall, adjuvants
which were capable of reducing serum virus titer also stimulated production of ASC, demon-
strating their potential to generate long-term durable immunity.

SLA Induces an Increase in Germinal Center B-Cells and Plasmablasts
Following Immunization

The previous experiments demonstrate the utility of the TLR4 agonist SLA as an adjuvant for a
single-shot WNV vaccine in multiple formulations, and show that the SLA-Alum and SLA-SE

formulations provide robust immunity insofar as minimal virus could be detected on day 3
post-challenge in the majority of challenged animals. In a second independent study, we
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Fig 4. Immunization with SLA Containing Adjuvants in Combination with WN-80E Enhances Survival
and Reduces Viral Titer to Undetectable Levels. Following a single immunization of WN-80E in
combination with the indicated adjuvants, mice (n = 10/group) were challenged with 100 LDs, of WNV via the
intraperitoneal route. Surivial of mice was monitored over 14 days following challenge (A,B). Survival curves
were compared using a Mantel-Cox test, with p-values compared to immunization with WN-80E shown.
Three days post-challenge, serum was collected from all animals in order to assess virus titers. Animals
immunized with SLA-Alumhad undetectable titers in all animals (P<0.0005). Those imminzed with SE or
SLA-SE had minimal titers while those immunized with Alum, SLA-AF or no adjuvant showed only slightly
reduced titers compared to unimmunized controls (P<0.05).

doi:10.1371/journal.pone.0149610.g004

further investigated the cellular correlates for reduction of day 3 post-challenge serum virus
titers observed in our study (Fig 6 and S1 Fig). We observe a statistically significant increase in
GC B-cells following immunization with formulations which show the lowest serum virus titers
following challenge; SLA-Alum, SE, and SLA-SE (Fig 6). Increased germinal centers could be
observed as early as 7 days post-immunization, reached a peak 14 days post-immunization,
and declined by day 28. SLA-Alum, SE and SLA-SE all showed statistically significant increases

Table 1. Survival and Viral Titers Following WNV Challenge.

Antigen

None
WN-80E
WN-80E
WN-80E
WN-80E
WN-80E
WN-80E

Dose

(ng)

0
1
0.1
0.1
0.1
0.1
0.1

Adjuvant Survival Animals With Detectable Day 3 Virus Titer
Virus Titer (%)? Average (Range)
None 0/10 100 32X 10* (8 X 10%-5 X 10%)
None 7/10 100 7.1X10° (2 X 105 X 10%)
Alum 10/10 70 51X 10° (<100-2.9 X 10%)
SLA 8/10 40 3.7 X102 (<100-2.9 X 10%)
Alum + SLA 10/10 0 <1.0 X 10%® (<100)
SE 8/10 30 5.7 X 102 (<100-4.9 X 10%
SE + SLA 10/10 10 9.5 X 10’ (<100-5 X 10?)

& Virus titer was determined on d3 post-challenge
b Virus titers in this group were below the limit of detection.

doi:10.1371/journal.pone.0149610.t001
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Fig 5. Inmunization with SLA Containing Adjuvants in Combination with WN-80E Induces Antibody
Secreting Cells in Bone Marrow. In an independent experiment, we have examined the ability of WN-80E
combined with SLA containing adjuvants to induce long lived antibody secreting cells (ASC) in bone marrow.
Mice were immunized and bone marrow extracted after 21 days (n = 5/group). The number of antibody
secreting cells was assessed by ELISPOT assay on plates coated with WN-80E. Differences between
groups were compared by one way ANOVA. Adjuvant formulations containing SLA (SLA-Alum, SLA-SE) as
well as emulsion alone induced significantly greater numbers of IgG+ ASC compared with antigen alone.
Animals immunized with Alum or unformulated SLA also showed modest increases in numbers of ASC, but
differences were not significant relative to antigen only.

doi:10.1371/journal.pone.0149610.g005

over both WN-80E alone and WN-80E + Alum at 7 days post immunization. Of the formula-
tions tested, SLA-SE induced the greatest numbers of GC B-cells, which were statistically
increased compared with WN-80E immunization at all timepoints. This formulation also
induced a significant number of plasmablast (CD138+B220lo) cells at 7 days, while more mod-
est increases were observed with SE and SLA-Alum formulations. Plasmablasts were present at
day 7, but were absent at days 14 and 28.

Increases in GC B cells correlated with statistically significant increases in PRNT titers over
the same timecourse. Formulations which showed a statistically significant increase in GC cells
at early timepoints showed significantly increased PRNT by day 28 post-immunization. Emul-
sion based formulations, which showed increased GC B-cells and, in the case of SLA-SE,
increases in plasmablast B-cells, showed a more rapid elevation of serum neutralizing titers,
with statistically increased PRNT titers 7 days post-immunization.

Discussion

There are a number of WNV vaccines in pre-clinical or clinical stages of development, yet to
date, none are available for human use. Live attenuated WNV vaccines based on the 17D strain
of Yellow Fever virus have advanced the furthest in clinical trials; the vaccine has shown posi-
tive safety and immunogenicity profiles in Phase I and Phase II trials [62, 64, 75]. However, as
with all live attenuated vaccines, the ability of the vaccine vector to replicate in immunized sub-
jects and potentially to cause disease during the viremic period remains a concern [76]. Fur-
thermore, live attenuated vaccines such as Yellow Fever pose a more significant risk to elderly
and immunocompromised individuals, who are at greater risk for severe complications from
WNV infection [77-79]. In order to circumvent some of these safety concerns, a number of
subunit vaccines based on the E protein have been developed. Of these, the WN-80E protein is
the most clinically advanced; WN-80E was shown in a phase I clinical study to be safe and
immunogenic after 3 doses of 5 pg, 15 ug or 50 pg of protein adjuvanted with Alhydrogel
(Clinical Trial#: NCT00707642). While these results are promising, the overall level of virus

PLOS ONE | DOI:10.1371/journal.pone.0149610 February 22, 2016 11/20



el e
@ : PLOS ‘ ONE A Novel Adjuvant for Use with West Nile Virus Vaccines

AAAAA 5

Lineage

WN-80E
Naive WN-80E  + SLA-SE C)
MANCEINIRAE M E o™
5 ® @ d

B) CD95 D)
i
& 3.0, i . 06~
< 1 D7 ok & I D7
§ mm D14 = Bm D14
O o HE D28 O (4] mm D2
§ *f* Fekkk # HH §
@ 1.0 o 0.2 *
© [
[0 (0]
£ £
— -
- 0 = (o

£ saline SLA  Aum Aum SE  SE £ saline SLA Aum Aum SE  SE

3 +SLA +SLA s +SLA +SLA

WN-80E (1ug) + Adjuvant WN-80E (1ug) + Adjuvant

E) .
1 0 D D7 *kkk

Il D14

[ee]
1

Log, PRNT90 Titer
»

Saline SLA Alum  Alum SE SE
+ SLA +SLA

Z
o
<
[0}

WN-80E (1ug) + Adjuvant

Fig 6. Vaccine Formulations which reduce WNV titer post-challenge induce germinal center B-cells and plasmablasts following immunization.
Animals were immunized once with WN-80E (1ug) in combination with Alum or SE with or without SLA. Over a timecourse following this immunization,
inguinal lymph nodes were removed and stained for B cell markers by ICS. Gating strategies for germinal center B-cells (A) and plasmablasts (C) are shown.
Immunization with SLA-Alum, SE, or SLA-SE resulted in a sustained increase in the number of germinal center B-cells (CD95*GL7*) (B). Increased numbers
of cells were observed relative to both WN-80E alone (***P<0.0005, **** p<0.0001) and relative to WN-80E combined with Alum (# p<0.05, ### p<0.0005)
at the same timepoint. Numbers of germinal center cells peaked at D14, and declined by D28 post-immunization. Elevated numbers of plasmablast cells
(CD138+B220l0) were also observed at day 7 post-immunization, but declined thereafter (D). Increases in germinal center cell numbers resulted in
significant increases in PRNT titers as early as 7 days post immunization (E). Differences between groups were determined by one-way ANOVA using
Dunnett’'s Multiple comparison test.

doi:10.1371/journal.pone.0149610.9006

neutralizing antibody induced by this vaccine was low relative to live attenuated vaccines. The
primary goal of this study was to identify an adjuvant which may provide both dose and dosage
sparing functions, ultimately enabling durable protection following a single dose of WN-80E
antigen at levels similar to those observed with live attenuated vaccines.
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In pre-clinical development studies with WN-80E, 1 pg of protein was shown to be immu-
nogenic in mice following two injections with the saponin based ISCOMATRIX"™ adjuvant
[26]. In this study, we have demonstrated induction of PRNT titers in mice following a single
injection of 0.1 ug of WN-80E in combination with SLA-SE. The level of neutralizing antibody
following immunization, which serves as a correlate of protection for several other Flavivirus
vaccines, was dependent on the presence of SLA, and was correlated with an increase in serum
IgG2c titers. The induction of IgG2c¢ antibodies is in turn dependent on induction of a Thl
CD4+ T-cell response by SLA, providing a mechanism for SLA mediated enhancement of pro-
tection that is consistent with studies investigating other vaccines [80, 81]. In an additional
arm of this study, we have boosted the response in all groups with an additional injection, and
find that PRNT titers as well as IgG2c levels are increased in all adjuvanted groups (S2 Fig),
including those which do not contain SLA.

The enhancement of neutralizing antibody responses by SLA-SE prompted us to examine
the ability of SLA to enhance antigen specific responses in additional formulations. While
emulsion based adjuvants (e.g. MF95, Novartis) are widely demonstrated to be effective and
are in use clinically in Europe, approval in the US and other countries has been problematic to
date. In order to initiate development of a vaccine formulation that may be advanced into clini-
cal trials, we focused on SLA-Alum for two reasons. First, WN-80E has already shown promise
in clinical trials in combination with Alum. Second, the SLA-Alum formulation utilized in this
study is similar to AS04 (GlaxoSmithKline), which combines the TLR-4 agonist monopho-
sphoryl Lipid-A (MPL) and Alum, and which is licensed for use as a component of the HPV
vaccine Cervarix ™. The primary difference between SLA-Alum and AS04 is the use of a fully
synthetic, rationally designed TLR4 agonist (SLA) which has improved potency compared to a
purified biological product (MPL) which is a mixture of compounds, only some of which show
TLR-4 agonism in humans [72]. As with SLA-SE, we find that SLA-Alum is capable of increas-
ing the neutralizing antibody response following a single immunization with WN-80E, with
the magnitude of the neutralizing response similar between SLA-SE and SLA-Alum at a low
antigen dose.

As expected from previous studies [26], immunization with WN-80E alone or combined
with Alum resulted in significant increases in survival of animals, a finding consistent with the
relatively low lethality of WNV in murine models and previously published work describing
WN-80E. While the mechanism of this protection is unclear, lethality following WNV infec-
tion is associated with infection of the central nervous system (CNS), which may not occur in
all infected animals following peripheral WNV challenge [8, 82]. Previous studies conducted in
a hamster challenge model with WN-80E have shown complete protection of all immunized
animals, despite very low PRNT titers [83]. Our findings are similar insofar as animals with
low neutralizing antibody titers have survived challenge. While there was a trend toward
increased survival of animals immunized with SLA-containing vaccines in our challenge stud-
ies, these do not reach statistical significance.

In contrast to survival data, there was a marked difference in the ability of adjuvant formula-
tions to reduce serum viral titer at early times post challenge; in this case, the inclusion of SLA,
particularly to Alum, resulted in dramatic decreases in viral serum virus titer. At low antigen
doses (100ng), immunization with alum resulted in an average titer decrease of less than
10-fold relative to naive controls, with 70% of animals showing measurable virus titers. Addi-
tion of SLA to Alum resulted in undetectable virus in 100% of animals, which represents a
decrease in titer of approximately 1000-fold relative to uninfected controls. All of the emulsion
based formulations tested (SE, SLA-SE) were capable of reducing virus titer, a finding which is
consistent with many studies demonstrating the ability of emulsion based adjuvants to enhance
protective antibody responses.
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In addition to acute phase antibody responses, we have examined the ability of adjuvant for-
mulations to induce long term immunity (Fig 5). In this case, inclusion of SLA increased the
number of WNV-specific IgG+ ASC regardless of formulation. This finding is consistent with
the ability of SLA to improve durability of immune responses to WN-80E, although a long
term study would be required to assess protection from WNV challenge at timepoints distant
from immunization.

Examination of cellular responses following a single immunization demonstrates that those
adjuvant formulations capable of reducing WNV titer had increased germinal center B-cells in
draining lymph nodes as early as 7 days post immunization (Fig 6). These cells reached a peak
at 14 days post immunization and declined thereafter. Importantly, those formulations show-
ing the lowest serum virus titer (SLA-Alum, SE, SLA-SE) also showed significantly increased
titers relative to WN-80E + Alum. The pattern of serum neutralizing antibodies observed in in
this study correlated with GC induction; those formulations which generated an increased ger-
minal center response had significantly increased PRNT titers by d28 post-challenge. In previ-
ous studies, the inclusion of GLA, a TLR-4 agonist adjuvant similar to SLA, was shown to
increase the diversity of antibody variable regions following immunization with a malaria anti-
gen [84], suggesting a TLR-dependent maturation of the antibody response which correlates
with increased neutralization potential. Future studies are planned with WN-80E which
directly address the antibody sequence diversity induced by protective adjuvant formulations,
and these will assess the contribution of both germinal center and plasmablast B-cells to the
neutralizing antibodies induced by vaccination. In addition, characterization of the binding
sites of novel antibodies induced by SLA-SE may allow identification of new important anti-
body binding sites in the WNV E protein. Previous studies have mapped neutralizing antibod-
ies to epitopes in DII and DIII in both WNV as well as other flaviviral E proteins in mice
(reviewed in [15]). However, more recent studies suggest that DIII antibodies may not play a
critical role in neutralization in humans infected with other flaviviruses [85].

Another promising aspect of these results is the possibility of broadened protection against
diverse flaviviruses induced by SLA-Alum or SLA-SE. Many studies have previously investi-
gated cross-protection capability between flavivirus E-proteins, and have found that E-proteins
from one virus can protect against other viruses in the genus [86, 87]. This cross protection is
attributed to structural similarities between the E-proteins of members of a flavivirus ser-
ogroup. In previous studies with other viruses such as highly pathogenic avian influenza
(HPAI), TLR-4 agonist adjuvants have been shown to increase protection not only to homolo-
gous virus, but also to antigenically distinct heterologous viruses [81, 83]. These findings, in
combination with those presented here suggest the possibility that SLA containing adjuvants
represent a tool to enhance protection against drifted flaviviral strains, such as the lineage 2
WNV viruses which are currently emerging in Europe [89-91]. SLA based formulations may
also be useful to enhance the protection across the four dengue virus (DENV) serotypes, where
protection against the multiple serotypes is critical for an effective vaccine.

In summary, we have utilized a clinical stage recombinant WNV antigen, WN-80E, to iden-
tify SLA adjuvant formulations capable of generating robust immune responses. The results
demonstrate that robust responses can be generated after a single dose and these responses pro-
tect against virus challenge in the mouse model of West Nile Viral disease. Furthermore, we
demonstrate that SLA-Alum induces enhanced protection in mice when compared to Alum
alone, as no virus was detected by the plaque method in any of the mice in the SLA-Alum
group. Future work to optimize this formulation by investigating additional doses of SLA and
routes of immunization will provide a foundation for advancement of this vaccine into addi-
tional models and future clinical studies. Ultimately, the use of SLA as an adjuvant may provide
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a more effective vaccine for this emerging public health threat and help to reduce the severity
and size of future WNV outbreaks.

Supporting Information

S1 Fig. Protective Adjvuants Induce a Th1 CD4+ T-Cell response following a single immu-
nization. Mice (n = 5/group) were immunized with WN-80E (1 pg/dose) in combination with
the indicated adjuvants. 7 days following a single immunization, splenocytes were isolated and
phenotyped by ICS. SLA-SE which is shown to reduce serum virus titer in challenge studies
induced an increased number of CD4+ T-cells with a Th1 phenotype (A), and many of these
were also positive for other Thl cytokines including TNFa and IL-2 (B).

(TIF)

S2 Fig. Induction of WN-80E Specific Antibodies in Serum Following Two Injections With
WN-80E. Serum antibody titers were determined by ELISA 21 days following a boost immuni-
zation with WN-80E in combination with adjuvants. Titers of Total IgG (A), IgG1 (B) and
IgG2c (C) were determined for all mice (n = 5/group). Similar levels of Total IgG and IgG1
were observed in all immunized animals. Significantly elevated levels of IgG2c were detected in
mice immunized with all adjuvants compared to those immunized with 10 ug of antigen alone.
Unlike results obtained following a single injection, IgG2c levels were elevated in all animals
receiveing adjuvant relative to those receiving antigen only. Neutralizing antibody titers, deter-
mined by PRNT assay (D), were also elevated in all animals receiving adjuvant.

(TTF)
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