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Some mammals (whales, dolphins, fur seals, sea lions) sleep 
with one hemisphere of the brain being asleep while the other 
is awake.1,2 This is referred to as unihemispheric slow wave 
sleep (USWS) and contrasts with the bihemispheric slow-
wave sleep (BSWS) exhibited by humans and other mam-
mals. Whales (Delphinapterus leucas) and dolphins (Tursiops 
truncates) show only USWS.3,4 Northern fur seals and sea lions 
(family Otariidae) are aquatic and terrestrial. While in water 
these animals have USWS, like cetaceans, but on land they 
have both USWS and BSWS.3 It is unclear whether cetaceans 
have REM sleep, whereas Otariidae have REM sleep on land, 
and it is always bilateral. Some birds also have USWS,5,6 but 
neurochemicals related to USWS have only been measured in 
the fur seal. The evolutionary basis of USWS is unclear.7,8

Polysomnography studies have conclusively shown that 
USWS is indeed sleep because one hemisphere has high-am-
plitude slow wave activity (1.2–4 Hz), while the other hemi-
sphere has desynchronized EEG activity.5,6,9 The daily quota 
of sleep is equally distributed between the hemispheres.10 If 
the hemisphere with USWS is repeatedly interrupted, then that 
hemisphere will have rebound USWS indicating a homeostatic 
need for USWS in that hemisphere.5,6,9 In such unihemispheric 
sleep deprivation studies, there is no compensatory increase 
in sleep in the non-deprived hemisphere, indicating that the 
homeostatic need for sleep accumulates independently in each 
hemisphere. These data indicate that USWS is actively gener-
ated and there is a compensatory need for it.

The discovery of unihemispheric sleep is a boon to sleep 
research as it provides a unique opportunity to empirically 
test neural circuit models of sleep-wake regulation. Lyamin, 
Mukhametov, Siegel and colleagues have clearly recognized 
this and have conducted elegant studies in northern fur seals 
(Callorthinus ursinus) to test the hypothesis that neurochem-
icals linked to wakefulness are elevated in the awake hemi-
sphere compared to the hemisphere with USWS.11–13 In these 
studies the seals were instrumented to record the EEG, EMG, 
and EOG, and also implanted with pairs of guide cannulas tar-
geted in symmetrical positions in each hemisphere. Microdi-
alysis probes collected extracellular fluid from each site every 
10 minutes and the levels of acetylcholine, histamine, norepi-
nephrine (NE), and serotonin in the sample were assessed. 
The seals were maintained on a 12–12h light-dark cycle and 
samples were collected in active waking, quiet waking, BSWS, 
USWS, and REM sleep. Acetylcholine was measured in the 
first study,12 serotonin in the second study,11 and in a study pub-
lished in the current issue of SLEEP, Lyamin and colleagues13 
measured levels of histamine, norepinephrine, and serotonin.
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They found that cortical levels of histamine, NE, and sero-
tonin were highest during active waking, declined in BSWS, 
and were lowest in REM sleep. Subcortical levels of NE (hy-
pothalamus) and serotonin (caudate and thalamus) showed 
a pattern similar to that seen in the cortex. In their previous 
study they had found that acetylcholine levels were maximal 
during active wake, declined during quiet waking and REM 
sleep, and were minimal in BSWS.12 Thus, in BSWS, the levels 
of these neurochemicals are consistent with the pattern seen 
in other terrestrial mammals and correlates very well with the 
pattern of activity of their respective neurons (Table 1).

The surprise was that during USWS levels of histamine, NE, 
and serotonin were not higher in the desynchronized (awake) 
hemisphere compared to the contralateral hemisphere with 
USWS.13 On the other hand, acetylcholine release in the cortex 
was lateralized and tightly linked to the hemisphere that was 
awake.12 Therefore, the current circuit models cannot explain 
how activity of histamine, NE, and serotonin neurons drives 
cortical waking in one hemisphere and not in the other. These 
models also fail to explain accumulation of sleep drive in one 
hemisphere and not the other.

We agree that more data are needed. For instance, the next 
step would be to measure orexin levels in the USWS model 
system since orexin neurons are active in waking but silent 
in REM sleep.14,15 However, it is possible that orexin may 
also not be lateralized to the awake hemisphere since orexin 
levels are minimal in humans with an activated EEG during 
pain.16 Moreover, neurochemicals associated with sleep, such 
as GABA and melanin concentrating hormone (MCH) should 
be measured.17,18 It is important to measure GABA since it is 
strongly linked to sleep. Moreover, new data in mice (who 
only have BSWS) indicate that histamine neurons also release 
GABA.19 Is GABA lateralized in USWS? Peptides associ-
ated with activity, such as prokineticin20 and neuropeptide S21 
should also be measured. Moreover, the effects of sleep depri-
vation in the USWS model on levels of neurotransmitters and 
peptides should also be assessed.

The current widely accepted circuit model of sleep-wake 
regulation is based on studies in animals with BSWS.22 The 
underlying premise of this model is that separate populations 
of neurons are responsible for wakefulness, slow wave sleep, 
and REM sleep (summarized in Table 1 and Figure 1A). Al-
though stimulation of specific phenotypes of neurons can ro-
bustly influence state17,23 lesions (genetic or neurotoxin) of one 
or multiple arousal populations does not change daily levels of 
sleep.24 Moreover, areas of the cortex can be “offline” during 
waking in humans and rats, suggesting that parts of the brain 
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can be asleep even in waking.25,26 Other data indicate that ac-
tivating local neurons in the barrel cortex produces a homeo-
static load at that site, which is then dissipated by increased 
sleep at the site.27 Thus, sleep may represent a collective output 
of small networks of neurons and sleep homeostasis is a re-
flection of local use.28 This is in contrast with the currently 
accepted model that sleep and wake result from activity of 
phenotype-specific subcortical neurons.22

In the small network model, glia are included (see 
Figure 1B).28 Glia outnumber neurons in the brain and a 

growing body of evidence now considers glia to be partners 
with neurons in regulating sleep.29 Emergent sleep-like states 
are evident in small neuronal-glial networks grown in vitro.30 
In wildtype C57BL/6J mice optogenetic activation of local as-
trocytes in the posterior hypothalamus increases sleep.31 Glio-
transmitters such as adenosine likely impart the homeostatic 
load locally.29 This supports the idea of “local use dependent 
sleep.” 32 The interaction between glia and neurons in small 
networks efficiently regulates synaptic strength.33,34 The local 
use dependent model nicely explains the accumulation of sleep 

Table 1—Summary of changes in neuronal activity and neurotransmitters in wake, BSWS, USWS, and REM sleep. 

Neurotransmitters
Neuronal Discharge a

Release (Cx-CSF) b

Terrestrial Mammals 
(primates, cats, rats)

Bilateral Release
Fur Seals (on land)

Unihemisphere
Fur Seals

References
Bilateral SWS Unihemisphere Sleep

W S RS W S RS W S RS BW UW USWS
Wake promoting

Acetylcholine +++ + +++ +++ + +++ +++ + +++ +++ +++ + 12, 38, 39
Histamine +++ + 0 +++ + +++ + + +++ + + 13, 40
Norepinephrine +++ + 0 +++ + +++ + + +++ + + 13, 41, 42
Orexin +++ + 0 +++ + 14, 15, 18, 43
Serotonin +++ + 0 +++ + ++ + + +++ + + 11, 44, 45

Sleep promoting
GABA / Galanin (PO) 0 ++ +++ c 46–50
MCH 0 ++ +++ + +++ 14, 17, 18

Desynchronized EEG is produced both in wake and REM sleep. Blank boxes indicate work that needs to be done. a Neuronal discharge represents activity 
relative to wake. 0 = little or no neuronal activity. b Neurotransmitter levels are relative to wake. c GABA has been measured in the posterior hypothalamus and 
pons but needs to be measured in cortex in association with USWS. W, wake; S, slow-wave sleep; RS, REM sleep; BW, bilateral wake; UW, unilateral wake; 
USWS, unihemispheric slow-wave sleep; MCH, melanin concentrating hormone; PO, preoptic area; Cx, cortex; CSF, cerebrospinal fluid; SWS, slow-wave sleep.

Figure 1—(A) Horizontal view of the rat brain depicts the regional location of neurons implicated in regulating wake and slow wave sleep (SWS). Neurons 
regulating REM sleep are located in the brainstem and not depicted here since REM sleep only occurs in both hemispheres. All of these neurons innervate 
cortical and subcortical regions and release their respective neurotransmitters onto downstream targets. The serotonin neurons are located in the midline, 
while the other neurotransmitter/peptide containing neurons are located laterally. The extent to which these neurons crossover to the contralateral hemisphere 
in animals with USWS is not known, and analysis of the decussation pathways (corpus callosum, anterior commissure, and posterior commissure) are 
inconclusive.36,37 (B) Schematic illustration that local interactions between glia and neurons change local excitability. Wake-induced adenosine released 
from glia dampens excitability of the wake-active neurons (orexin), which diminishes local wake drive. This small network is affected by local levels of 
glucose. This network is based upon the local use dependent model.32 Abbreviations: ventrolateral preoptic nucleus (VLPO); median preoptic nucleus (MnPO); 
basal forebrain (BF); dorsal raphe nucleus (DRN); laterodorsal tegmental nucleus (LDT); posterior pretectal nucleus (PPT); Locus ceruleus (LC); Melanin 
concentrating hormone (MCH) γ-aminobutyric acid (GABA); norepinephrine (NE); serotonin (5-HT); acetylcholine (Ach); dopamine (DA); neuropeptide Y (NPY); 
corticotropin releasing factor (CRF); cocaine-amphetamine-regulated transcript (CART); neuronal activity regulated pentraxin (Narp).
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in one hemisphere and not in the other in response to USWS 
deprivation.

We are grateful to Lyamin and colleagues for pursuing very 
difficult studies to identify the cellular correlates of USWS 
and BSWS in Otariidae. We recognize that research in other 
animal models will expedite discovery. We suggest harnessing 
the power of genetics to identify unihemispheric sleep in 
roundworms (C. elegans), fruit flies (D. melanogoster), and ze-
brafish (D. danio). For instance, in these model systems devel-
opmental cell fate mapping approach could target cells in one 
hemisphere and not the other.35 We also suggest the use of new 
methods such as optogenetics and pharmacogenetics in birds. 
Because the size of the bird brain is small, it could be probed 
by new tissue clearing methods such as CLARITY to identify 
difference in connectivity between hemispheres and compari-
sons can be made with the mouse brain. We believe that a col-
lective effort is necessary to identify the cellular basis of sleep.
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