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Abstract

Older African Americans tend to perform more poorly on cognitive function tests than older 

Whites. One possible explanation for their poorer performance is that the tests used to assess 

cognition may not reflect the same construct in African Americans and Whites. Therefore, we 

tested measurement invariance, by race and over time, of a structured 18-test cognitive battery 

used in three epidemiologic cohort studies of diverse older adults. Multi-group confirmatory factor 

analyses were carried out with full-information maximum likelihood estimation in all models to 

capture as much information as was present in the observed data. Four different aspects of the data 

were fit to each model: comparative fit index (CFI), standardized root mean square residuals 

(SRMR), root mean square error of approximation (RMSEA), and model χ2. We found that the 

most constrained model fit the data well (CFI = 0.950; SRMR = 0.051; RMSEA = 0.057 (90% 

confidence interval: 0.056, 0.059); the model χ2 = 4600.68 on 862 df), supporting the 

characterization of this model of cognitive test scores as invariant over time and racial group. 

These results support the conclusion that the cognitive test battery used in the three studies is 

invariant across race and time and can be used to assess cognition among African Americans and 

Whites in longitudinal studies. Furthermore, the lower performance of African Americans on these 

tests is not due to bias in the tests themselves but rather likely reflect differences in social and 

environmental experiences over the life course.
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INTRODUCTION

It is well documented that older African Americans tend to perform more poorly on 

cognitive function tests than older Whites, even after adjustment for years of education 

(Manly, 2005). Literacy, a commonly used marker for quality of education typically 

assessed by performance on reading tests, has often been found to attenuate, but not 

completely eliminate, the differences (Manly, Jacobs, Touradji, Small, & Stern, 2002), 

suggesting that other factors may play a role in the poorer performance among African 

Americans (e.g., Barnes, Lewis, et al., 2012). Some investigators have argued that 

neuropsychological tests may be biased against racial/ethnic minority populations because 

they were developed with and standardized on the majority white population (Arnold, 

Montgomery, Castaneda, & Longoria, 1994; Loewenstein, Arguelles, Arguelles, & Linn-

Fuentes, 1994). In fact, there is a growing body of evidence that suggests that background 

variables such as strategies, cognitive styles, and familiarity with testing may vary by race/

ethnicity as well (e.g., Early et al., 2013; Jones, 2003), potentially influencing interpretation 

of performance.

Another potential explanation for the poorer performance of older African Americans on 

neuropsychological tests is that the underlying latent structure of the tests themselves differs 

as a function of race. That is, the tests used to assess cognition may not reflect the same 

underlying construct in different population groups. Although equivalence of latent 

cognitive structure (i.e., measurement invariance) is critical for comparative research with 

neuropsychological testing, relatively few studies test for equivalence in comparative 

studies, whether over age, or time, race, or other groupings. Measurement invariance is 

observed when, “…under different conditions of observing and studying phenomena, 

measurement operations yield measures of the same attribute” (p. 117; Horn & McArdle, 

1992). To interpret differences in mean scores across groups, the mean values over the 

groups must represent the same attribute (Bollen& Curran, 2006). In this case, “different 

conditions” could refer to independent groups or the same group over time. The validity and 

utility of representing a complex measurement process within a single theoretically and 

empirically supported model are critically dependent on the demonstration of invariance of 

that model over time and across groups.

Measurement invariance is a characteristic of any measurement tool, and has its modern 

conceptualization arising originally from concerns regarding performance on admissions 

tests by different populations (Meredith & Teresi, 2006). Since the mid-1980s, measurement 

invariance has been examined more widely, particularly in the cognitive aging literature 

with older populations. For example, some studies have examined the measurement 

invariance of cognitive abilities across age (e.g., Bowden, Weiss, Holdnack, & Lloyd, 2006; 

Hertzog & Schaie, 1986; Schaie, Willis, Jay, & Chipuer, 1989), gender (Maitland, Intrieri, 

Schaie, & Willis, 2000), neurological impairment (Hayden et al., 2011; Siedlecki, Honig, & 

Stern, 2008), and language (Siedlecki et al., 2010; Tuokko et al., 2009). Although several 

studies have examined racial differences in cognitive function and cognitive decline among 

older adults, including change within specific domains of function (e.g., Brewster et al., 

2014; Early et al., 2013; Schwartz et al., 2004; Sloan & Wang, 2005), relatively few have 

examined measurement invariance specifically as a function of race in late-life (e.g., 
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Blankson &McArdle, 2013; Jones, 2003; Mungas, Widaman, Reed, & Tomaszewski, 2011). 

This is essential, as the model and test scores must accurately reflect the particular latent 

traits measured by the test across different populations and/or time to make valid 

interpretations of differences or apparent changes in performance (Horn & McArdle, 1992).

Invariance is not an all-or-none characteristic; it falls on a continuum. A “hierarchy” of 

invariance moves from strict invariance, which involves the same model form, factor 

loadings, residual variances for items and factors, and intercepts for all models under 

consideration; to strong invariance, relating to equivalence in model form and intercepts (not 

loadings); to weak (metric or pattern) invariance, which requires the same model form and 

factor loadings for all models (Meredith & Teresi, 2006). Invariance in model form means 

that the same (multiple) observed variables represent the same latent construct at each 

timepoint (Bollen & Curran, 2006). Invariant factor loadings means that, given the same 

model form and scaling, the observed variables relate to (load on) the latent variable(s) the 

same way over time. Invariance in intercepts of the observed items or variables/indicators 

means that the items or indicators are functioning in the same way to represent the latent 

variable invariantly over time. These invariance characteristics pertain to the fit features of 

the model either to the same group over time or to independent samples at a single time 

point. Models that can be replicated across independent samples and over time improve 

science (Mulaik, 2010), making invariance an early, important, step in modeling and 

measurement. Invariance of the residual variances, which is a defining characteristic of 

“strict” invariance, is often difficult to obtain (Chen, 2007). Invariance up to the level of 

intercepts (“strong-plus”) permits interpretable comparisons of latent mean differences 

across groups, whereas invariance up to the level of residual variances means that group 

differences on the indicators of the factors are comparable (Chen, Sousa, & West, 2005). A 

focus on the latent means (“strong-plus”), rather than on the individual observed test scores 

(“strict”), means that potential sources of bias in the observed test scores (e.g., age, 

education), which are the indicators or items of the latent factors in our model, are de-

emphasized.

The purpose of the current analysis, therefore, was to examine the degree to which the latent 

factor structure of a well-established cognitive battery (Wilson et al., 2002) is invariant 

across race (African American vs. White) and over time. Data come from three longitudinal 

community-based cohort studies:the Minority Aging Research Study (MARS), the Rush 

Memory and Aging Project (MAP), and the Religious Orders Study (ROS). The studies have 

similar recruitment strategies and operational components, and use the same cognitive 

battery, which facilitates merging the data. This project tested the hypothesis that the 18 

cognitive tests that are common to all three longitudinal studies, which have been reported 

elsewhere to define five cognitive domains (Wilson et al., 2002) within a single structural 

equation (latent measurement) model of “cognition,” are invariant over race and over time.

METHOD

Participants

Data for this project were obtained from participants enrolled in one of three community-

based cohort studies of aging and cognition:MARS, MAP, or ROS. The Institutional Review 
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Board of Rush University Medical Center approved all studies and all participants signed 

written informed consent. Given essentially identical recruitment techniques and a large 

overlap of identical data collection (including cognitive testing) across all three studies, data 

were merged to examine measurement invariance across race. In the current analyses, all 

self-reported African Americans (from all three cohorts) were grouped together, and 

compared to Whites (from MAP and ROS).

MARS enrolls older African Americans without known dementia living in the community, 

who agree to annual clinical evaluations (Barnes, Shah, Aggarwal, Bennett, & Schneider, 

2012). From the start of enrollment in August 2004, 477 persons enrolled in the study, of 

whom 466 completed a baseline clinical evaluation. Of these, 13 met criteria for dementia at 

baseline (see Clinical Evaluation, below) and were excluded from the current study. MAP 

enrolls older persons of all races without known dementia from retirement communities and 

senior subsidized housing facilities across the Chicago metropolitan area (Bennett, 

Schneider, Buchman, et al., 2012). Participants agree to annual clinical evaluations and 

donation of their brain, spinal cord, and selected nerves and muscles at time of death. From 

the start of enrollment in 1998, 1459 persons enrolled and 1450 completed a baseline 

clinical evaluation. Of these, 79 met criteria for dementia and were excluded from the 

current study. ROS enrolls older Catholic nuns, priests, and brothers, from more than 40 

groups across the United States (Bennett, Schneider, Arvanitakis, &Wilson, 2012). 

Participants are without known dementia and agree to annual evaluation and brain donation. 

From the start of enrollment in January 1994, 1108 persons enrolled in the study, of whom 

1106 completed a baseline clinical evaluation. Of these, 76 met criteria for dementia at 

baseline and were excluded from the current study.

Materials and Procedure

Clinical evaluation—Participants underwent uniform, structured, clinical evaluations 

annually, which included a detailed medical history, neurologic examination, and 

neuropsychological testing, as previously described (Barnes, Shah, et al., 2012; Bennett, 

Schneider, Arvanitakis, et al., 2012; Bennett, Schneider, Buchman, et al., 2012). On the 

basis of this evaluation, an experienced clinician classified subjects with respect to 

Alzheimer’s disease and other neurologic conditions following criteria set forth by the 

National Institute of Neurological and Communicative Disorders and Stroke and the 

Alzheimer’s Disease and Related Disorders Association (McKhann et al., 1984).

Other variables—Each participant was asked to self-report their racial category, based on 

questions used by the U.S. Census Bureau (1990).

Cognitive tests—A battery of 19 cognitive function tests was administered in a 1-hr 

session. The Mini-Mental State Examination (MMSE) was used to describe the overall 

cognitive functioning of the cohorts, but not in analyses. The remaining 18 performance-

based tests assess the levels of episodic memory, semantic memory, working memory, 

perceptual speed, and visuospatial abilities. Details of the cognitive function tests have been 

reported previously (Wilson et al., 2002, 2005). There were seven tests of episodic memory: 

immediate and delayed story recall of story A from the Logical Memory subtest of the 
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WMS-R (Wechsler, 1987) and of the East Boston Story (Albert et al., 1991), and Word List 

Memory, Word List Recall, and Word List Recognition from the procedures established by 

CERAD (Morris et al., 1989); two tests of semantic memory: a 15-item version of the 

Boston Naming Test (Wilson et al., 2005; Kaplan, Goodglass, & Weintraub, 1983) and 

semantic Verbal Fluency from CERAD (Wilson et al., 2005; Morris et al., 1989); three tests 

of working memory: Digit Span Forward and Digit Span Backward from the Weschler 

Memory Test-R (Wechsler, 1987) and Digit Ordering (Cooper & Sagar, 1993); four 

measures of perceptual speed: Symbol Digit Modalities Test (Smith, 1982), Number 

Comparison (Ekstrom, French, Harman, & Kermen, 1976), and two indices from a modified 

version of the Stroop Neuropsychological Screening Test: the number of color names 

correctly read aloud in 30 s minus the number of errors, and the number of colors correctly 

named in 30 s minus the number of errors (Trenerry, Crosson, DeBoe, & Leber, 1989); and 

two tests of visuospatial ability: a 15-item version of Judgment of Line Orientation (Benton, 

Sivan, Hamsher, Varney, & Spreen, 1994) and a 16-item version of Standard Progressive 

Matrices (Raven, Court, & Raven, 1992). We created a global composite with all tests, and 

composite measures of episodic memory, semantic memory, working memory, perceptual 

speed, and visuospatial ability, by converting raw scores on each component to z scores, 

using the baseline mean and SD in the entire cohort, and then averaging the Z scores, as 

previously described (Wilson et al., 2002, 2005).

Data analysis—Multi-group confirmatory factor analyses (CFA) were carried out using 

MPlus 6.12 (Muthén & Muthén, 1998) with full-information maximum likelihood (FIML) 

estimation in all models (Allison, 2003) to capture as much information as is present in the 

observed data. In all cases, we sought to test the hypothesis that the model was invariant 

over time and race via CFA, and so we fit a fully constrained model first, relaxing 

constraints iteratively from fully constrained (“strong-plus,” which includes factor structure, 

indicator loadings, and indicator intercepts each constrained to be equal), to measurement 

constrained (“strong,” i.e., releasing constraints on the intercepts, but not loadings or factor 

structure), to structural (“weak,” i.e., same items loading on same factors without the values 

of the loadings or intercepts constrained), to fully unconstrained (all factors, loadings, and 

parameters in the set of models estimated separately). We did not constrain factor or 

indicator residual variances to be equal in any model. We did not plan to release any specific 

constraints but to move from level to level of invariance by releasing all constraints 

consistent with the next level when a more-constrained version failed to fit. Residuals and 

modification indices were never used to identify constraints to release, because our focus 

was on testing the hypothesis that the model was invariant, and determining the extent to 

which this invariance could be said to exist for this model. Instead, the analysis plan was to 

examine residuals to identify how or where the hypothesis that the model is invariant was 

not supported. We did not plan to change features of the model based on residuals or 

modification indices, but to characterize failures of invariance according to these residuals in 

case any were informative about lack of fit.

We used a factor-analytically derived model that was described in a previous publication 

(Wilson et al., 2002), but which has never been tested for its invariance over time or race. 

Model fitting specifics are provided below. We first fit this model to the data all together at 
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baseline to ensure that the tests of measurement invariance over race and time would 

proceed using a well-fitting model. Fit statistics (described below) were used to study this 

model as well; residuals and modification indices were also used at this step only to better 

understand any sources of misfit in this overall measurement model. For the invariance 

modeling, we fit the most-constrained version of this structural equation model for cognitive 

measurement first (releasing constraints as described above) within racial groups (White and 

African American), separately over time. We proceeded to the point where a well-fitting 

model (representing the supported level of invariance) over time was identified for each 

racial group. Once we had iterated the CFA within racial group over time, we then started 

again with samples together (i.e., testing invariance across racial groups) at baseline, at year 

1, and at year 2. Finally, we planned to follow the same iterative process to fit a single CFA 

for invariance over both time and across racial group, moving from the most- to the least-

constrained version.

Four different aspects of fit to the data were assessed for each model: model χ2, a general 

data-model fit statistic; comparative fit index (CFI), representing incremental model fit 

relative to independence—the closer to 1.0 the better, with acceptable models having CFI > .

96; standardized root mean square residuals (SRMR) summarizing mean absolute value of 

the covariance residuals—the smaller (and <0.09) the better; and root mean square error of 

approximation (RMSEA) representing the error in the approximation of the data by the 

model—acceptable models have an upper bound on the 90% RMSEA confidence interval 

(CI) <0.06 (Hu & Bentler, 1999). Hu and Bentler (1999) propose that an acceptable model 

has all of the following fit characteristics: CFI > 0.96; and SRMR < 0.09; and RMSEA < 

0.06. When we were comparing more- to less-constrained models, in addition to observing 

that all fit indices were in the required ranges, we also required that the CFI values change 

less than 0.01 (Byrne, 2006, 2011) between more- and less-constrained models. This way, 

we could be confident of both the fit of the model to the data and also that the incremental 

model fit was not changing in practically important but possibly not statistically significant 

ways.

Once we had our base model, the invariance testing began with the most constrained model, 

and as soon as a model fit the data well according to all fit indices and (if applicable) the 

CFI values having changed by less than 0.01, the modeling procedure stopped and the level 

of constraints in this model was taken as the level of invariance. In the event that a more-and 

a less-constrained model seemed to fit comparably, we planned to use a likelihood ratio test, 

using the difference in numbers of parameter estimates as the degrees of freedom, to 

determine if the less-constrained model was a significantly better fit than the more 

constrained model. If it was not, then the more-constrained model was retained. In every 

case, we planned to release all constraints consistent with the next level of invariance, that 

is, we did not plan to release constraints on any specific path but rather, planned to move 

from strong-plus to strong; from strong to weak; and from weak to no invariance—stopping 

as soon as a good fitting model was identified.

In addition to examining and comparing fit indices outlined above, we planned to examine 

the residuals (comparing the observed and model-implied variance-covariance matrices) and 

modification indices for two competing levels of invariance to identify, where relevant, 

Barnes et al. Page 6

J Int Neuropsychol Soc. Author manuscript; available in PMC 2016 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



those indicators for which the models did not fit well over time, across cohorts, or both 

(Tractenberg, Aisen, Weiner, Cummings, & Hancock, 2006).

RESULTS

Table 1 lists demographic characteristics across the three study cohorts; other than racial 

composition, characteristics were similar across cohort. Within the combined sample, 

African Americans were slightly younger [73.0 (SD = 6.8) vs. 78.4 (SD = 7.4] years) and 

had fewer years of education [14.9 (SD = 3.5) vs. 16.3 (SD = 3.5)] compared with Whites. 

However, baseline MMSE score 27.8 (SD = 2.4) for African Americans versus 28.2 (SD = 

1.9) for Whites and distribution of women (76.6% in African Americans vs. 71.4% in 

Whites) were similar across the two groups.

All data at the baseline visit were used to estimate the “base” model to be tested for 

invariance within groups over time and across groups at each visit. Table 2 shows the 

sample sizes that were used in the modeling. Because the sample size for the African 

Americans dropped off significantly after the 2nd year of follow-up, our analyses focused on 

the three annual evaluations in the baseline–2nd year time frame.

The five-factor model that has been reported previously (Wilson et al., 2002) was fit to the 

data to ensure that our conceptual model would be an appropriate starting point. This pre-

specified model fit the baseline data from all participants together well [CFI = 0.961; SRMR 

= 0.037; RMSEA = 0.052 (90% CI [0.049, 0.055]) with model χ2 = 1129.467 on 122 df], 

once covariances were added (based on modification indices) among the errors associated 

with 3 of the 18 cognitive tests (Story A from the Logical Memory subtest; East Boston 

Story recall; and Word List Recall). This was the model (see Figure 1) we used for the 

invariance analyses.

Invariance over Time

Table 3 shows the fits of the most-constrained model within each group separately to test 

invariance of the model over time. Because this most-constrained model fit within required 

ranges of all fit indices, we stopped at this level and did not fit less-constrained versions.

Our methods specified that we would stop releasing constraints as soon as we hit the model 

that met fit index criteria and where the CFI value did not change from the previous model 

(where possible) by 0.01 or more. The model fit information shown in Table 3 shows that 

the most-constrained model, where factor loadings, indicator intercepts and factor structure 

were all fixed to be equal within one race group at each of three annual assessments, fit the 

data well in both groups. As was specified earlier, covariances among the latent factors and 

between errors on any test score; the residual variances on the 18 tests; latent variable 

means; and latent variable variances were not constrained to be equal within a group over 

time. The most constrained model generally fit well over time within each group. The fit is 

marginally better for the larger sample (Whites) than for the smaller, African American 

sample, and examination of the modification indices and the residual matrices suggested no 

specific areas of misfit to address in the model for either group. The most constrained model 

that was fit was a good fit by all our fit indices within each group, so less-constrained 
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versions of this model were not attempted. These results support the characterization of 

invariance of the measurement model over time within each group.

Invariance across Groups

Table 4 shows the fits of the most constrained model (equivalent factor loadings, indicator 

intercepts and factor structure for each racial group) to the data from African American and 

White participants at each visit (baseline, year 1, year 2).

The model fit results in Table 4 show that, when analyzed with our five-factor model 

constrained to be equivalent across racial group, the most constrained model was a good fit 

to the data at each of the three visits. The upper bound on the 90% CI around the RMSEA 

value exceeded the recommended limit [0.06] (Hu & Bentler, 1999) in years 1 and 2, so we 

examined the modification indices and residuals matrices. There was no evidence of specific 

contributions to misfit in the residuals matrices. Modification indices suggested that the 

most theoretically and clinically plausible sources of this specific aspect of misfit involved 

three of the test scores (indicators) for the episodic memory (EP) factor. Given the critical 

contribution of episodic memory assessment in the definition and detection of cognitive 

aging, we re-fit this most-constrained model with all of the EP indicators’ loadings 

unconstrained. That is, to determine if the equivalence constraint on loadings for the 

indicators on the EP factor was driving the too-wide range in the RMSEA 90% CI, we fit the 

same model, but without the constraints of equivalence on the EP factors. The fit was 

marginally statistically significantly better by likelihood ratio test (χ2
30 = 44.48; p = .043), 

but Akaike’s Information Criterion (AIC) favored the most-constrained model over the one 

without equivalent loadings on the EP factor indicators. Since AIC is not sensitive to sample 

size (and this likelihood ratio test is well known to be so), we conclude that overall, these 

results generally support the characterization of the measurement model as invariant across 

these two racial groups at each of the three annual assessments.

Given the results in Tables 3 and 4 that the model with the same (highest) level of 

constraints fit within group over time (Table 3), and across groups at each time point (Table 

4), we proceeded to test the fit of the model to the two groups over time. This multigroup 

CFA tested the theoretical - general - invariance (“strong-plus”: equivalent factor loadings, 

indicator intercepts and factor structure) of this five factor model of cognitive functioning 

based on these 18 tests over time and racial group.

The most constrained model, with factor structure, indicator loadings, and indicator 

intercepts each constrained to be equal across racial groups and over time, was a good fit to 

the data (CFI = 0.950; SRMR = 0.051; RMSEA = 0.057 (90% CI [0.056, 0.059]; the model 

= 4600.68 on 862 df). All fit indices were within recommended range, suggesting that the 

measurement model, shown in Figure 1, is invariant across these racial groups and over 

time.

The final model is shown in Figure 1; the final standardized parameter estimates are 

included in the Figure. Table 5 presents the latent factor means.
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The observation of good fit of this model to the data enables us to estimate “true” group 

means and explore their differences across cohorts over time. Table 5 shows the 

standardized mean factor scores from our final model (shown in Figure 1), estimated for 

racial group and time. These factor score means are standardized, so that the overall average 

is zero, and standard deviations are equal to one. The values in Table 5 show that, while the 

estimated group means for African Americans are lower in nearly every case than they are 

for Whites, all group values are well within one standard deviation of the mean (zero). That 

is, even if these particular groups differ in their means at any timepoint, relying on an 

invariant model from which factor scores can be reliably derived (as in Table 5) permits us 

to discern that the groups are not “significantly different” in their mean levels of any 

cognitive factor at any of the three annual exams. With a factor score that has been shown to 

be invariant to time and racial group, the observed differences—whether or not they are 

statistically significant—can be interpreted with confidence. Now that we have 

demonstrated the time and group invariance of the measurement models, these models may 

be used in future studies in the analysis of other outcomes like neuropathology, MRI 

volumetrics, or the evaluation of intra-individual variability.

DISCUSSION

The present study examined the measurement invariance of a performance-based 

neuropsychological test battery, used in three ongoing longitudinal epidemiologic cohort 

studies, across race and time. Starting with the published measurement model for cognitive 

functioning (Wilson et al., 2002), we iteratively tested the hypothesis that this model was 

invariant over time within racial group, across racial group by visit, and finally, for both 

racial group and time within a single multi-group confirmatory analysis. In each case, we 

found that the most-constrained (“strong-plus”) model fit the data well, supporting the 

characterization of this model of cognitive test scores as invariant over time and racial 

group. These results support the conclusion that the cognitive test battery used in MARS, 

MAP, and ROS is invariant across race and time and can be used to assess cognition among 

African Americans and Whites in our longitudinal studies. As noted, invariance up to the 

level of intercepts (“strong-plus”) permits interpretable comparisons of latent mean 

differences across groups (Chen et al., 2005).

We focused our analyses on invariance at the level of latent factor means (“strong plus), 

rather than on the individual observed test scores (“strict”), for two reasons. First, cognition 

is a complex construct, requiring assessment of many complementary domains (i.e., the full 

18-test battery). Thus, invariance on the individual test scores is not of interest in our 

longitudinal work, whereas the latent factors represent cognition at a sufficiently 

comprehensive level. Second, emphasis on the factor, rather than the individual, scores 

attenuates the likelihood of bias in the observed test scores (e.g., possibly arising from age, 

education, or other factors that we could and did not test) in group comparisons. This study 

of measurement invariance tested the hypothesis that the model was invariant and was, 

therefore, more confirmatory in nature than many other examples in the literature. We took 

the modeling approach articulated by Burnham and Anderson (2002), treating the effects of 

time and race as potential sources of bias (as described by Millsap, 2011).
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In all cases, we fit a more-fully constrained model first, planning to relax constraints 

iteratively from this level of constraint (“strong-plus”: factor structure, indicator loadings, 

and indicator intercepts each constrained to be equal), to measurement constrained 

(“strong,” i.e., releasing constraints on the intercepts, but not loadings or factor structure), to 

structural (“weak,” i.e., same items loading on same factors without the values of the 

loadings or intercepts constrained), to fully unconstrained (“none,” all factors, loadings, and 

parameters in the set of models estimated separately). Because this type of modeling 

specifically sought to test the hypothesis of measurement invariance, releasing constraints 

stopped as soon as a model fit the data well. In the cases where a less-constrained model was 

also attempted, likelihood ratio testing of these nested models showed the less-constrained 

model did not fit the data statistically significantly better than the more-constrained version 

did, so the more constrained models were retained in all cases.

Previous studies have examined measurement invariance of cognitive abilities across age 

(Bowden et al., 2006; Hertzog & Schaie, 1986; Schaie et al., 1989), gender (Maitland et al., 

2000), neurological impairment (Hayden et al., 2011; Siedlecki et al., 2008), and language 

(Siedlecki et al., 2010; Tuokko et al., 2009). Relatively few studies, however, have 

examined measurement invariance as a function of race (Blankson & McArdle, 2013; Jones, 

2003; Mungas et al., 2011). Measurement invariance as a function of race is important 

because it is well established that older African Americans consistently perform at lower 

levels on cognitive function tasks compared to older Whites, and these differences often 

persist despite adjustments for education (e.g., Jones, 2003; Manly, 2005; Manly et al., 

2002). While biological and social factors such as, physical illness or vascular disease 

(Crowe et al., 2010), educational quality (Crowe et al., 2013), and psychosocial constructs 

like perceived discrimination and stereotype threat (Barnes, Lewis, et al., 2012; Thames et 

al., 2013) are most commonly proposed as factors underlying differences in test 

performance, measurement variance is often offered as a possible explanation for the 

discrepancy in performance across race (Brickman, Cabo, & Manly, 2006; Jones, 2003; 

Manly, 2005). Our results demonstrate that measurement variance is not a reason for lower 

cognitive performance among the African Americans in this study. However, we did not test 

for other sources of bias (e.g., education or age); our focus on “strong-plus” rather than 

“strict” invariance as our highest level was in part an effort to minimize contributions from 

these sources, including any inherent test bias associated with the cognitive measures used 

in our battery. The findings that the group mean factor scores were lower, albeit not 

significantly so, for African Americans relative to Whites are consistent with the idea that 

differences in test performance between African Americans and Whites likely reflect a 

combination of multiple social and environmental experiences over the life course (e.g., 

Jones, 2003). For example, differences in literacy between older African Americans and 

Whites born before the historic Brown versus Board of Education decision are well 

established, and have been shown to not only attenuate racial differences in cognitive test 

performance (Manly et al., 2002), but also to be an important construct to account for 

differences compared to years of education or race-stratified normative data (Silverberg, 

Hanks, & Tompkins, 2013). Other race-relevant variables such as perceived discrimination 

(Barnes, Lewis, et al., 2012) and segregation (Aiken-Morgan, Gamaldo, Sims, Allaire, & 

Whitfield, 2014) have been shown to be important covariates of cognitive performance in 
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African Americans as well. Older African Americans and Whites in the United States differ 

with respect to social environment, history, experience, cultural norms, beliefs, and attitudes. 

Future studies are needed to determine whether these differences may influence cognitive 

test performance, and whether these factors can account for the lower performance observed 

in this and other studies. Importantly, given that the underlying latent construct of our 

cognitive battery was found to be invariant across race, we are now free to investigate 

lifestyle factors and other racial experiences that may explain the lower performance.

The study has some limitations. First, all models considered in these analyses were linear. 

This does not preclude future tests of hypothesized nonlinear relationships among these 

cognitive test scores or among the factors conceptualized as representing “cognitive 

function.” However, our linear modeling is consistent with current models of Alzheimer’s 

disease and change in symptoms or biomarkers, which are typically derived as simple 

differences over time, that is, focused on linear change. While not necessarily ideal, linear 

models are simple to interpret and can bring statistical models closer to clinical applications, 

supporting this common modeling stance. Our model involves 18 tests and specialized 

estimation, and while a less complex conceptualization of “cognitive function” might be 

simpler to interpret, reducing the complexity of the cognitive battery might very well reduce 

the validity of the assessment overall—and might not be invariant as ours appears to be. 

Along this line, this study focused specifically on the level of invariance, and not on the 

model itself (which has been validated elsewhere; Wilson et al., 2004). Therefore, overlap in 

factor constructs or factor makeup was not studied and was instead treated as “given.”

Second, our methodology was to start with the most constrained (“strong-plus”) invariance 

and proceed through “strong” to “weak” invariance by iteratively releasing constraints for 

the models consistent with each level of invariance. An alternative approach is to begin with 

a freely estimated model and add constraints (moving from “none” to “weak” to “strong” to 

“strict” invariance) instead. This is more common and is advisable in projects where the 

measurement model is not well established, especially if the model fit has never been 

replicated in an independent sample. However, there might be highly localized invariant 

parameters within this model that were missed in our approach. Our argument is that, since 

cognition is so complex that the particular components of the model are unlikely to be 

meaningful measurement models on their own, this overall model fits the construct 

(cognitive function) sufficiently well and invariantly over time and race to yield useful and 

clinically meaningful assessments and—most importantly—comparisons over time. Because 

the measurement model we tested here has been used/fit in independent samples, we 

believed that the assumption that meeting our identified model fit criteria at any of the three 

levels would be sufficient to rule out any non-invariance that has practical or clinical 

significance.

Third, because MARS (from which the African American sample we analyzed was derived) 

started approximately 6 years after ROS and MAP, we were only able to model 2 years of 

follow-up data. Future studies with these cohorts will be able to include more years of 

longitudinal data collection. These analyses establish the invariance of our measurement 

model, so we are now more confident about pursuing structural models of cognitive change, 

and over longer time periods.
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A final consideration is the variation in the strengths of associations of each test with its 

factor (factor loadings). Some factors have many fewer indicator tests than others, which is 

more of a function of the availability of valid cognitive tests than it is of our modeling or 

results. Although the results support the use and interpretability of factor scores that are 

derived from this model and its constituent tests, these results do not suggest that these 

assessments are “ideal” for capturing these cognitive domains. If other tests are preferred or 

used, these results suggest that establishing measurement invariance over time and race is 

achievable; best practices in the assessment and measurement fields dictate that they are also 

necessary.

This study also has strengths. First, our data come from three well-characterized 

epidemiologic cohorts with large sample sizes for both African Americans and Whites. 

Second, the five-factor cognitive model used in this study is fairly complex and factor 

analytic support for the five domains has been previously reported (Wilson et al., 2002). 

Third, the modeling approach that we used is consistent with best practices for studying and 

establishing measurement invariance (see e.g., Bollen & Curran, 2006; Horn & McArdle, 

1992; Meredith & Teresi, 2006). Finally, our three cohorts were recruited with similar 

strategies, and cognitive function was assessed using a uniform and fairly elaborate 

collection of assessments. The cohorts do not represent a random sample from the general 

population of Whites or African Americans of this age range, and the assessments—while 

standard neuropsychological instruments—are not typically all assessed in the same 

individuals. Therefore, our cohorts all have similar years of education, and possibly other 

social similarities that we did not assess, and our model—and its invariance—could have 

been affected by these factors. As stated previously, most racial differences stem from 

multiple cultural and social attributes often associated with race including, but not limited to, 

socioeconomic status, low literacy and education, racial discrimination, residential and 

school segregation, and lack of access to quality healthcare. Future studies will need to 

examine these and other factors in studies that compare cognitive performance between 

African Americans and Whites. However, it is important to note that the purpose of a 

measurement model is to represent whatever is being measured for anyone in whom it 

would be measured, and these results suggest that our complex model (Figure 1) for 

cognitive assessment functions as intended over time and across race (White and African 

American). Although there is clearly room for improvements, including stronger 

associations between indicators and factors, more indicators for some factors (e.g., semantic 

and working memories) and fewer for others (episodic memory), this validated 

measurement-invariant model of cognitive function in older African Americans and Whites 

can now be confidently used in other studies, including exploration of cognitive effects of 

neuropathology and studies of neuroimaging and other biomarkers.
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Fig. 1. 
Model used for the invariance analyses. Abbreviations: DF = Digits forward; DB = Digits 

backward; DOPerf = Digits Ordering; Bname = Boston Naming Test; Catflu = Category 

Fluency; LoPair = Line orientation; Pmat = Progressive Matrices; Story = Story A 

Immediate Recall; Delay = Story A Delayed Recall; EBMT = East Boston Memory Test; 

EBDR = East Boston Delayed Recall; WLI = Word List Learning; WLII = Word List 

Recall; WLIII = Word List Recognition; SDMT = Symbol Digits Modality Test; NCCRTD 

= Number Comparisons Test; Cname = Stroop, color naming test; WREAD = Stroop, word 

reading test. SE = Semantic Memory; PO = Visuospatial Abilities; PS = Perceptual Speed; 

EP = Episodic Memory; WO = Working Memory.
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Table 1

Demographic characteristics by study cohort

MARS
n = 453

MAP
n = 1,371

ROS
n = 1,030

Mean age (SD) 73.6 (6.3) 80.1 (7.2) 75.1 (7.2)

Mean education (SD) 14.8 (3.4) 14.7 (2.9) 18.3 (3.2)

% female 74 74.5 69.3

% African American 100 6.9 7.1

Mean MMSEa (SD) 27.8 (2.4) 27.9 (2.1) 28.5 (1.6)

a
Mini-Mental State Examination.

MARS, Minority Aging Research Study; MAP, Rush Memory and Aging Project; ROS, Religious Orders Study.
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Table 2

Sample sizes, across racial groups, over time

Baseline Year 1 Year 2

White 2392 2120 1898

African Americana 652 479 426

Total 1520 1303 1151

a
African American participants in Religious Orders Study (ROS) and Rush Memory and Aging Project (MAP) were combined with those in the 

MARS cohort; ROS and MAP Whites were combined for the other group.
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Table 3

Fit of most-constrained invariance in the five factor model over time (baseline, 1 year, 2 year) within racial 

group

Fit index: how did most
constrained model fit? White African American

Model χ2 (418 df) 2944.295 1022.370

CFI 0.959 0.952

SRMR 0.039 0.049

RMSEA .053 (.051, .055) .053 (.049, .057)

CFI: comparative fit index; SRMR: standardized root mean square residuals. RMSEA: root mean square error of approximation.
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Table 4

Fit of most-constrained invariance in the five factor model for racial group: participants in the two racial 

groups from all three cohorts were all modeled together, separately by year

Fit index: how did most
constrained model fit? Baseline Year 1 Year 2

Model χ2 (270 df) 1490.4 1452.36 1408.74

CFI 0.953 0.953 0.952

SRMR 0.051 0.050 0.046

RMSEA .054 .058 .060

(.052, .057) (.055, .061) (.057, .063)

CFI: comparative fit index; SRMR: standardized root mean square residuals. RMSEA: root mean square error of approximation.
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