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Recent genomic studies challenge the conventional model that each
metastasis must arise from a single tumor cell and instead reveal
that metastases can be composed of multiple genetically distinct
clones. These intriguing observations raise the question: How do
polyclonal metastases emerge from the primary tumor? In this
study, we used multicolor lineage tracing to demonstrate that poly-
clonal seeding by cell clusters is a frequent mechanism in a common
mouse model of breast cancer, accounting for >90% of metastases.
We directly observed multicolored tumor cell clusters across major
stages of metastasis, including collective invasion, local dissemina-
tion, intravascular emboli, circulating tumor cell clusters, and micro-
metastases. Experimentally aggregating tumor cells into clusters
induced a >15-fold increase in colony formation ex vivo and
a >100-fold increase in metastasis formation in vivo. Intriguingly,
locally disseminated clusters, circulating tumor cell clusters, and lung
micrometastases frequently expressed the epithelial cytoskeletal
protein, keratin 14 (K14). RNA-seq analysis revealed that K14+ cells
were enriched for desmosome and hemidesmosome adhesion complex
genes, and were depleted for MHC class II genes. Depletion of K14
expression abrogated distant metastases and disrupted expression of
multiplemetastasis effectors, including Tenascin C (Tnc), Jagged1 (Jag1),
and Epiregulin (Ereg). Taken together, our findings reveal K14 as a key
regulator of metastasis and establish the concept that K14+ epithelial
tumor cell clusters disseminate collectively to colonize distant organs.
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During metastasis, cancer cells escape the primary tumor,
travel through the circulation, and colonize distant organs.

Conventional models of cancer progression propose that each
metastasis arises from the clonal outgrowth of a single tumor cell
and this conceptual framework is a foundation for models, such
as epithelial-mesenchymal transition (EMT) and migratory cancer
stem cells (1).
Challenging the generality of the single-cell/single-metastasis

model are long-standing clinical observations that tumor cell clusters
(also termed “tumor clumps”) are also observed across the stages of
metastasis. Tumor cell clusters are detected in the bloodstream
of cancer patients (2), clusters can efficiently seed metastases (3),
and though rare, circulating tumor cell (CTC) clusters have
prognostic significance (4, 5). Furthermore, metastases are com-
posed of multiple genetically distinct tumor cell clones, in mouse
models of breast, pancreas, and small cell carcinoma (5–7), and in
human metastatic prostate cancer patients (8). Taken together,
these observations provide accumulating evidence that tumor cell
clusters contribute to metastasis. However, they leave unresolved
two important questions: how do tumor cell clusters emerge from
the primary tumor, and which molecular features identify cell
clusters that metastasize?

An important clinical observation is that cancer cells invade
the surrounding stroma as cohesive clusters in the majority of
epithelial tumors, a process termed “collective invasion” (9, 10).
In breast cancer, collective invasion is facilitated by invasive
leader cells, a subpopulation of tumor cells that highly express
keratin 14 (K14) and other basal epithelial markers (11). K14+

cells are migratory, protrusive, and lead trailing K14− cells, while
maintaining cell–cell cohesion and E-cadherin–based cell contacts.
In this study, we sought to understand how these K14+ cells

exit collective invasion strands in the primary tumor and travel to
distant organs (12). One hypothesis is that collective invasion is
an intermediate step toward eventual single-cell dissemination
and monoclonal metastasis. However, tumor cell clusters are
detected in circulation (5) and primary human breast tumors can
disseminate collectively into the surrounding extracellular matrix
in ex vivo assays (13–15). These data prompted an alternative
hypothesis, that collectively invading K14+ cancer cells could
initiate and complete the metastatic process as a cohesive mul-
ticellular unit. Here we define the clonal nature of metastases in
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a spontaneous mouse model of metastasis to the lungs (16, 17),
in which the predominant invasive form in the primary tumor is
collective invasion strands led by K14+ cells (11). We establish
that the majority of metastases arise from polyclonal seeds, and
show that disseminated tumor cell clusters are predominantly
composed of K14+ cells. We propose a mechanism for polyclonal
metastasis via the collective invasion, dissemination, and colo-
nization of clusters of K14+ cancer cells.

Results
Multicolor Fluorescent Lineage Tracing Identifies Frequent Polyclonal
Metastasis in a Mouse Model of Breast Cancer. To define the clonal
origin of metastasis in a model of collective invasion, we de-
veloped a multicolor lineage-tracing strategy in a commonly used
mouse model of breast cancer, MMTV-PyMT, which has pro-
vided fundamental insights into diverse aspects of metastatic
progression (16, 17). In this model, the MMTV promoter drives
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Fig. 1. Multicellular seeding is a frequent mechanism for distant metastasis. (A) Schema of multicolor lineage tracing assay. ROSAmT/mG;MMTV-PyMT tumor organoids
were treated with adenoviral Cre to induce recombination from membrane tdTomato (mTomato) to membrane eGFP (mGFP). Mosaic tumor organoids were then
transplanted into nonfluorescent NSG host mice. After 6–8 wk, lungs of these mice were harvested. If metastases arise exclusively from single-cell seeding, there should
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tastases of different sizes. n = 355 polyclonal metastases, across 16 mice and 4 independent experiments. (C) Representative micrograph of a mosaic tumor organoid
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mammary epithelial expression of the polyoma virus middle T
antigen (PyMT), a potent activator of PI3K signaling, a hallmark
of human breast cancer. The mammary tumors formed in this
model show gene expression most similar to luminal B, an aggres-
sive subtype of human breast cancer prone to metastasis (18).
We generated a convertible double-fluorescent mammary tu-

mor model, ROSAmT/mG;MMTV-PyMT, in which tumor cells
express membrane-localized tdTomato (mTomato) and, upon
treatment with adenoviral Cre recombinase (adeno-Cre), switch
heritably to expression of membrane-localized enhanced GFP.
ROSAmT/mG;MMTV-PyMT tumor organoids were treated with
adeno-Cre to generate a mixture of red and green cells. Mosaic
organoids were then injected orthotopically into the cleared
mammary fat pad of nonfluorescent host mice. Because the host
is nonfluorescent, this experimental system enabled us to unam-
biguously identify tumor metastases and their clonal origin (Fig.
1A). The principle of this strategy is that if there is an obligate
single-cell intermediate during the metastatic process, we would
expect to see a transition from a multicolored primary tumor (red
and green) to singly red or green metastases.
In the lungs of these mice, we detected single disseminated

tumor cells, micrometastases (2–50 cells), and macrometastases
(>50 cells). Single disseminated tumor cells were 47-fold more
frequent than metastases (range 10- to 150-fold, n = 10 mice).
We reasoned that if lung metastases arose exclusively from
seeding of single disseminated tumor cells, then each lung me-
tastasis should express only one color. In contrast, multicellular
seeding should be able to produce metastases with both colors.
Interestingly, we observed lung metastases composed of both
red and green tumor cells across a range of sizes, from 2 cells
to >1,000 cells per metastasis (Fig. 1B) (n = 375 multicolored
metastases). Multicolored metastases demonstrated significant
intermixing of red and green tumor cells. Transplanted mice
showed wide variation in the percentage of multicolored me-
tastases from a minimum of 0% to a maximum of 61% (n = 158
multicolored out of 257 metastases). Taken together, our data
show that multicolored metastases can occur frequently in the
MMTV-PyMT model.
To understand our variable frequency of detection of multi-

colored metastases, we analyzed the degree of mixing of red and
green tumor cell clones at each step in our experiments. Whereas
red and green tumor cells were well mixed in the recombined
tumor organoids used as input (Fig. 1C), the tumors that resulted
from transplanting these organoids showed surprisingly wide
variation in the mixing of red and green tumor cells. We ob-
served tumors composed almost entirely of a single color to tu-
mors with significant intermixing of red and green zones (Fig.
1D). To analyze this variation further, we quantified the local
mixing of red and green cells within each tumor. Local mixing
was assessed in 100 × 100-pixel (1.3 mm × 1.3 mm) regions tiled
across the tumor by calculating the probability of selecting two
colors when pixel values were chosen at random within each
region. We observed a strong linear correlation between the
extent of local mixing and the percentage of detected multicol-
ored metastases (Fig. 1E). Thus, local proximity between clones
of different colors in the primary tumor determines our ability to
detect multicolored metastases. Based on our analysis of the
relationship between local mixing and the detection of multi-
colored metastases (Fig. 1E), we estimate that >97% of metas-
tases were formed from multicellular seeds (95% confidence
interval 74–100%).
We also determined the frequency of multicolored metastases

in two additional transplant models. In MMTV-PyMT tumors
expressing the Confetti lineage reporter (Fig. S1A), tumor cells
are induced by adeno-Cre to one of five distinct possible colors:
cytoplasmic red fluorescent protein (RFP), cytoplasmic yellow
fluorescent protein (YFP), nuclear GFP (nGFP), membrane cyan
fluorescent protein (mCFP), or an unrecombined no-color (19).
We observed zonal patches of a single color in the primary tumor,
with a clear preference for the unrecombined no-color (Fig. S1B).
Even with this limitation, we observed lung metastases composed

of both no-color and RFP+ tumor cells (Fig. S1C). In MMTV-
PyMT tumors expressing the Rainbow reporter (Fig. S1D), adeno-
Cre induces recombination to one of 21 different color values
(20). Despite the increased color diversity, we similarly observed
zonal patches of a single color in the primary tumor, with pref-
erence for a no-color tumor cell (Fig. S1E). In the lungs of these
mice, we observed multiple metastases composed of one to four
different colors (Fig. S1F). Taken together, data from three
distinct lineage analyses reveal polyclonal metastases in this ge-
netically engineered mouse model of breast cancer metastasis.

Polyclonal Lung Metastases Arise from Multicellular Seeds and Not by
Serial Seeding of Single Tumor Cells. The multicolored metastases
that we observed could arise via the serial seeding of single tu-
mor cells or via colonization by a multicellular cluster of tumor
cells. We sought to distinguish these mechanisms in two different
ways. To model stochastic serial seeding events integrated over
time, we first isolated organoids from different MMTV-PyMT
tumors that constitutively expressed either mTomato or CFP.
We then transplanted mTomato+ tumor organoids to the right
flank and CFP+ tumor organoids to the left flank of a nonfluo-
rescent host (Fig. S2 A and B). Interestingly, we observed a small
degree of colonization of CFP+ primary tumors by mTomato+
cancer cells, accounting for 1–5% of the total tumor area, de-
termined macroscopically in 5 of 11 mice (Fig. S2B, Lower, and
Fig. S2 C and C′). These data are consistent with the reported
ability of metastases to reseed primary tumors, termed “tumor
self-seeding” (21). Importantly, when we examined the clonal
composition in the lungs, we only observed single-colored me-
tastases (Fig. S2D). Taken together, these data establish that
polyclonal metastases do not efficiently arise from serial seeding.
To extend this finding, we modeled serial seeding by waves of

disseminated tumor cells in the bloodstream. In this second ex-
perimental approach, we transplanted mTomato+ and CFP+
tumor cells serially via tail-vein injection (Fig. S2E). mTomato+
tumor cells were isolated by FACS and then injected as a single-
cell suspension into a nonfluorescent host. Two days later, CFP+

tumor cells were isolated by FACS and injected as a single-cell
suspension into the same mice. Three weeks later, lungs were
collected and analyzed. In the lung, we observed exclusively
single-colored metastases (Fig. S2E). Therefore, serial delivery
of cancer cells to the lungs was not an efficient mechanism for
generation of polyclonal metastases. In agreement with a recent
study revealing metastases from oligoclonal clusters in breast
cancer cell lines (5), our data are most consistent with a model in
which polyclonal metastases occur via colonization by multicel-
lular seeds rather than serial arrival and aggregation of single
tumor cells.

Direct Observation of Polyclonal Collective Invasion, Polyclonal
Disseminated Tumor Emboli, and Polyclonal CTC Clusters. Having
shown that polyclonal metastases arise from multicellular seed-
ing, we next asked how multicellular seeds emerge from the
primary tumor. To answer this question, we identified tumor cell
clusters across stages of metastasis, starting from collective in-
vasion at the primary tumor stromal interface. Consistent with
our local mixing analysis (Fig. 1 D and E), when we imaged at
single-cell resolution, transplanted tumors were composed of
zonal patches and collective invasion strands were typically
composed of a single color. Despite this technical barrier to
detection of polyclonal groups, we observed multicolored col-
lective invasion at interfaces between regions of red and green
cancer cells (Fig. 2A). In these regions, we reasoned that there
were two outcomes at the tumor–stromal interface correspond-
ing to two distinct models for the collective invasive-dissem-
inative transition (Fig. 2B). One possibility is that tumor cells
invade collectively but that dissemination occurs obligately through
single cells. In this case, because disseminated clusters should arise
only from focal proliferation of single cells, disseminated clusters
should be exclusively composed of singly red or green tumor
cells. Alternatively, cancer cells could both invade and disseminate
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collectively as multicellular units. In this case, we would expect to
identify multicolored disseminated clusters.
To distinguish these possibilities, we analyzed disseminated

tumor cell clusters at three different stages of the metastatic
sequence. First, we observed multicolored disseminated tumor
cell clusters ≤200-μm away from the tumor–stromal interface,
which we confirmed were fully disconnected from the primary
tumor by 3D reconstruction (Fig. 2C). Next, we examined the
adjacent vasculature at the tumor–stromal interface (Fig. S3 A–C).
We observed both multicolored tumor microemboli and tumor
macroemboli composed of >100 tumor cells within vessels (Fig.
2D and Fig. S3D). Consistent with their collective organization,
we observed membrane-localized E-cadherin in collectively in-
vading cancer cells, locally disseminated clusters, and tumor em-
boli (Fig. 2E). As a proof of concept, we next isolated CTCs from
the systemic circulation of a mouse bearing fluorescently labeled
tumors. Although this tumor had quite limited local mixing of blue
and red clones, we identified both a multicolored and multiple
singly colored CTC clusters (Fig. 2F). We analyzed CTC cluster
size in three mice and found that they ranged from 2 to 66 cells
per cluster, with a median of 6 cells (Fig. 2G). Taking these data
together, our lineage-tracing studies enabled us to observe
multicolored tumor cell clusters at five different stages of me-
tastasis: collective invasion, locally disseminated clusters in the
adjacent stroma, intravasated tumor emboli, CTC clusters, and
distant micro- and macrometastases.

Aggregating Tumor Cells into Clusters Promotes Colony Formation ex
Vivo and Lung Metastatic Colonization in Vivo. An important
question raised by these experiments is: Why are multicellular
seeds advantageous for metastatic colonization? This question is
interesting because tumor cells typically maintain extensive cell–
cell contacts in vivo, and the organization of epithelial cells into
cohesive clusters promotes tissue growth in a variety of normal
and tumor contexts. For example, doublets of Paneth and Lgr5+

stem cells enhance the organoid-forming potential of single Lgr5+

stem cells (19), whereas the survival of colonic tumor orga-
noids is dependent on retaining E-cadherin contacts (22).
To model the colonization efficiency of multicellular seeding,

we developed an experimental system to aggregate single tumor
cells into cell clusters. Briefly, we isolated FACs-sorted single
mTomato+ MMTV-PyMT tumor cells and incubated them
overnight in a nonadherent dish to form cell clusters (Fig. 3A).
Overnight incubation increased the median number of cell clusters
by >15-fold relative to the input single cells (Fig. S4 A and B). The
tumor cell clusters that resulted had a median size of 2 cells, and
ranged from 2 to 60 cells in size (Fig. S4B′). Importantly, coin-
cubation of red and green tumor cells confirmed that clusters
were generated by aggregation rather than by clonal expansion of
single tumor cells (Fig. S4C). Furthermore, the experimentally
determined percentages of multicolored clusters as a function of
cluster size matched the predicted percentages, assuming ran-
dom assortment of red and green tumor cells into clusters (Fig.
S4C′). Incubation in a nonadherent dish therefore induces the
efficient aggregation of single cancer cells into clusters. We next
used this approach to compare the efficiency of colony formation
by single cells or aggregated clusters, while holding the total cell
number constant in each condition at 10,000 cells per well. Be-
cause each cluster is formed from multiple cells, the total number
of starting seeds is lower in the aggregated condition compared
with the single cell condition. Despite this disadvantage, when
cultured in 3D Matrigel, we observed that clusters were >15-fold
more efficient at forming colonies compared with single tumor
cells (Fig. 3 A and B). Thus, in an ex vivo setting, cluster orga-
nization strongly enhances colony formation.
To assess metastatic efficiency in vivo, we next injected into

the tail veins of nonfluorescent host mice either a single-cell
suspension of mTomato+ tumor cells or an equal number of
mTomato+ tumor cells that had been aggregated into clusters in
vitro. We assessed lung metastatic burden at 3 wk (Fig. 3C).
Single-cell suspensions generated zero to one metastases per
mouse (Fig. 3 D and E). In contrast, aggregated clusters generated
many large macroscopic mTomato+ metastases with >100-fold
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gregated cell suspension, n = 13 mice). **P < 0.001.
(Scale bars, 20 μm in A and 500 μm in D.)
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increase in metastatic efficiency relative to single cells (Fig. 3 D
and E). Taken together, these data indicate that cluster organi-
zation is sufficient to significantly enhance tumor cell survival
and promote metastasis formation.

Locally Disseminated Tumor Cell Clusters, CTC Clusters, and
Micrometastases Are Enriched for K14+ Cells, Relative to
Macrometastases. Given the frequency of polyclonal metastases
and the efficiency of metastasis formation by multicellular
seeding, we next sought to determine the molecular character-
istics of the multicellular seed. In MMTV-PyMT tumors, K14+

cells account for ∼2% of the total tumor cell population (11).
These K14+ tumor cells lead >88% of collective invasion strands
extending into the surrounding stroma (11). Consistent with the
pioneer function of K14+ cells during metastasis, we observed
K14+ cells in polyclonal collective invasion, disseminated tumor
cell clusters, and intravascular emboli (Fig. S5A). We also ob-
served significant differences in K14 expression between single
cells and disseminated clusters, with 2% and 59% expressing
K14, respectively (Fig. S5B). In addition, we observed that 94%
of CTC clusters contained K14+ cells (n = 15 of 16 CTC clusters)
(Fig. 2H). The fraction of cells within the cluster that were K14+
decreased as the size of the cluster increased (Fig. 2H). Our data
therefore show that K14+ cells are enriched in the dissemination
stages of metastasis.
In lung metastases, the proportion of K14+ cells relative to the

total cell number varied systematically with the size of the me-
tastasis (Fig. 4 A and B). In the primary tumor, micrometastases,
and macrometastases, K14+ cells accounted for 0.9%, >50%,
and 2.5% of cells, respectively (Fig. 4C). Thus, K14+ cells are
highly enriched in locally disseminated clusters, CTC clusters,
and micrometastases relative to their frequency in the primary
tumor, and the proportion of K14+ cells reverts to baseline
in macrometastases.
To model these transitions in 3D culture, we next isolated

single K14− and K14+ cells by FACS from MMTV-PyMT tumors
that genetically encode for a fluorescent biosensor for K14 ex-
pression (Fig. 4D and Fig. S5C) (11, 23). Accordingly, we observed
that for individually purified K14− and K14+ populations, colony
formation was >16-fold higher in aggregated clusters relative to
single tumor cells (Fig. 4E). In contrast, colony formation was not
significantly different for K14− single cells versus K14+ single cells,
or for K14− aggregated cells versus K14+ aggregated clusters (Fig.
4E). Taken together, our data reveal that the difference in colony
formation between K14− and K14+ cells is small relative to the
difference between multicellular clusters and single cells.
One interpretation of these data could be that the interaction

of K14− and K14+ tumor cells may synergistically enhance the
efficiency of colony formation. Motivating this hypothesis, Wnt-
driven murine mammary tumors contain two subclones that show
interclonal cooperation during tumor progression (24). To test
the synergy hypothesis, we used our aggregation assay to test the
effect of aggregating equal mixtures of K14− and K14+ cells (Fig.
4D). However, mixing K14− and K14+ cells in aggregating clusters
did not significantly enhance colony formation relative to either
pure K14− or K14+ cell clusters (Fig. 4E).
Alternatively, phenotypic transitions between differentiation

states could blunt our ability to detect differences in colony
formation (25). We therefore examined K14 expression in ag-
gregated tumor cells at day 0, day 1 postaggregation (Fig. S5D),
and at day 8 (Fig. S5E). Interestingly, cell clusters at day 1 al-
ready contained mixtures of K14− and K14+ cells regardless of
whether isolated K14− cells, K14+ cells, or mixtures of both cell
types were used as input (Fig. S5D). Similarly, at day 8, >80% of
colonies were composed of mixtures of K14− and K14+ cells in
each condition (Fig. S5E). Morphologically, small colonies were
primarily composed of K14+ cells and larger colonies were
composed of an inner core of K14− cells and an outer layer of
K14+ cells (Fig. 4F). Concordant with our observations of me-
tastases in vivo, the proportion of K14+ cells varied with the size
of clusters grown in 3D Matrigel. In small clusters, two to five

cells in size, 100% of cells were K14+, and in larger clusters with
≥20 cells, all clusters contained multiple K14− cells (Fig. 4G).
Thus, isolated K14− and K14+ cells converge toward cell colonies
composed of both cell states, with K14+ cells predominant in
small colonies in culture and in micrometastases. Conversely, K14−
cells are predominant in large colonies and in macrometastases.

The Transcriptional Program of K14+ Tumor Cells Is Enriched for
Desmosome and Hemidesmosome Adhesion Complex Genes, and
Depleted for Genes Involved in MHC Class II Immunosurveillance.
Given the enrichment for K14+ cells in disseminated tumor
cell clusters and micrometastases, we next asked how the tran-
scriptional profiles of K14+ and K14− cells differed. To answer
this question, we compared the transcriptomes of K14+ and
K14− cells from primary MMTV-PyMT tumors. To focus our
attention on changes in gene expression between cancer cell
subpopulations, we first isolated epithelial organoids from the
tumor and then used differential centrifugation to deplete im-
mune and fibroblastic stromal cells. We then processed these
organoids to single cells and FACS-sorted them based on K14
status. As expected, quantitative RT-PCR revealed that the
K14+ cell fraction exhibited >12-fold higher levels of K14 RNA
expression (Fig. 5A). Our RNA-seq analysis revealed 239 genes
differentially expressed between K14− and K14+ cells at a genome-
wide significance level of P < 10−6 (mean-variance normalized
heatmap in Fig. 5B). By DAVID gene ontology (GO) analysis
(26), we identified significantly enriched GO categories in each
cell subpopulation (Table S1). This analysis revealed significant
enrichment for genes involved in extracellular matrix proteins,
intermediate filament organization, and epithelial differentiation
in K14+ cells. Interestingly, K14+ cells were enriched for tran-
scripts encoding TNC, POSTN, and CTGF, proteins required
in the metastatic niche (27–29). In addition, DAVID analysis
revealed a number of genes involved in the regulation of the
immune system that were significantly depleted in K14+ cells
(Table S1). These GO categories included immune response,
MHC class II antigen presentation, T-cell activation, and genes
involved in chemotaxis. Genes involved in MHC class II pre-
sentation were among the most depleted in K14+ cells (Fig. 5C′′).
Our data reveal that K14+ cells differ across multiple molecular
programs that could be advantageous across distinct steps in
metastasis, including immune evasion. Furthermore, two key
features distinguishing K14+ cells from the bulk tumor cells
are their increased expression of both cell–cell and cell–matrix
adhesion genes.
We also tested the extent to which the K14+ cell transcriptome

correlated with “stemness” in three ways (30, 31). First, we looked
at the expression of putative stem cell markers in K14− and K14+

cells. We observed that CD44 was differentially expressed between
these cell populations, but CD49f, CD24a, CD133, and CD29 were
not (Fig. S6A). Next, we tested for gene set enrichment in K14−
and K14+ cells with published mouse mammary stem cell gene sets
(Fig. S6B). Our gene set tests revealed that K14− cells were
enriched for fetal mammary stem cell and luminal epithelial gene
signatures. In contrast, K14+ cells were enriched for mammary
stem cell, adult mammary stem cell, and myoepithelial gene sig-
natures. A third approach we took to test stemness was to assay
the ability of isolated single K14− and K14+ cells to form mam-
mospheres, as in Spike et al. (31) (Fig. S6C). Our data show that
both K14− and K14+ cells form mammospheres and that the
mammosphere-forming efficiency was not significantly different
between K14− and K14+ cells (Fig. S6D). Taken together, our
findings are consistent with a model in which stemness features
are observed in both K14− and K14+ cells, and that both cell
types are capable of colony formation.

K14 Expression Is Required for Distant Metastasis and Regulates Gene
Expression of Multiple Metastasis Effectors. Our gene-expression
study revealed that K14+ cells displayed coordinated up-regulation
of most desmosome (10 of 11) and hemidesmosome (10 of 12)
complex genes (Fig. 5 C and C′) (32). These observations were
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Fig. 4. Micrometastases are enriched for K14+ cells relative to macrometastases. (A–C) The percentage of cells that are K14+ varies inversely with the size of
the metastasis. Representative micrographs of lung micrometastases of different sizes (A) and a lung macrometastasis (B) stained for K14 and DAPI. (C) The
median percentage of cells that are K14+ at each stage of metastasis presented as a boxplot (n = 9 primary tumors, n = 49 micrometastases, n = 18 mac-
rometastases). The median percentages for each condition are denoted in red. *P < 0.05, **P < 0.01, ***P < 0.001. (D) Schema of in vitro model of colo-
nization. K14+ and K14− single-cell suspensions were isolated by FACS from K14-actin-GFP;MMTV-PyMT tumors. In addition, single-cell suspensions were
aggregated into clusters, using as input either (i) K14+ cells, (ii) K14− cells, or (iii) a 50:50 ratio of both K14+ and K14− cells (both). (E) The median number of
colonies formed at day 8 is presented as boxplots (n = the number of independent experiments. K14− single cells: n = 8, K14+ single cells: n = 8, K14− clusters:
n = 3, K14+ clusters: n = 3, mixtures of both cell types: n = 3). ***P < 0.005. (F) K14+ and K14− cells and clusters generate colonies that are morphologically
similar. Representative images of colonies of different sizes formed at day 8, stained for K14 and F-actin. (G) The median percentage of cells that are K14+ in
different dissociated tumor cell clusters grown in Matrigel presented as a boxplot (n = 4,547 cells in 103 colonies). The median percentages for each condition
are denoted in red. *P < 0.001. **P < 10−7. (Scale bars, 10 μm in A, 100 μm in B, and 20 μm in F.)
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intriguing to us because: (i) K14 is the major intermediate fila-
ment in hemidesmosomes; (ii) leader cells require expression of
basal epithelial genes, including K14, for their collective invasive
behavior (11); and (iii) a recent study has implicated desmo-
somal function in CTC clusters from human cancer patients (5).
To test the hypothesis that K14 expression is required for

distant metastasis, we transplanted mTomato+ tumor organoids,
either expressing control Luciferase or K14 shRNA, into host
mice (Fig. 6A). Primary tumors derived from Luciferase control
knockdown organoids did not show statistically significant dif-
ferences in size compared with primary tumors derived from K14
knockdown tumor organoids (Fig. 6B). In contrast, K14 knock-
down tumors had a sevenfold reduction in the mean number of
metastases relative to control knockdown tumors (Fig. 6C).
Having shown that K14 expression is required for distant

metastasis, we next asked whether knockdown of K14 altered
gene transcription. We determined the transcriptomes of lucifer-
ase control knockdown and K14 knockdown tumor organoids by
RNA-Seq and identified 1,584 genes differentially expressed be-
tween conditions (mean-variance normalized heatmap in Fig. 6D).
To dissect this list further, we next ranked genes by their associ-
ation with Krt14 transcript levels [487 genes at a false-discovery
rate (FDR) < 0.05]. The top four genes most correlated with Krt14
transcript expression were enriched for multiple major metastasis
effector genes that promote metastatic niche remodeling (Tnc,
AdamTs1, Jag1) and metastasis survival (AdamTs1, Birc5) (Fig. 6D′)
(27, 29, 33, 34). Thus, disruption of K14 expression abrogates the
expression of multiple metastasis effectors.
To identify the core molecular program expressed in K14+

cells and regulated by K14 expression, we then integrated this
transcriptome data with our RNA-seq enrichment data for K14+
cells. We identified 14 genes with twofold or greater significant
enrichment in K14+ cells and whose gene expression was sig-
nificantly associated with Krt14 transcript levels (Fig. 6E). Con-
sistent with our observations in the K14 knockdown dataset, we
observed that nine of these genes were previously reported in
metastasis regulation, including in metastatic niche, vascular
remodeling, and immunosurveillance, including Tnc, AdamTs1,
Jag1, as well as Card10, Cav1, Ereg, Lgr5, Slpi, and Ptgs2 (29, 35–
38). Core genes showed evidence of multiple physical and genetic
interactions and occurrence along common pathways (Fig. S7).
Interestingly, the gene most highly enriched in K14+ cells and
positively regulated by Krt14 transcript levels was Dsg3, which
encodes for the major desmoglein in desmosomes. Thus, K14

expression also regulates the expression of a major desmosome
component. Taken together, our data establish that K14 ex-
pression is required for distant metastasis and that K14 is a
regulator of multiple genes that function at distinct steps of the
metastatic cascade (Fig. 6F).

Discussion
A major goal of our study was to determine how breast cancer
cells seed distant metastases. Our lineage analysis enabled us to
identify polyclonal collective invasion strands, polyclonal dis-
seminated tumor cell clusters in the stroma, polyclonal CTC
clusters, and polyclonal micro- and macrometastases. Our findings,
in conjunction with recent reports in CTC clusters (5), and genomic
sequencing of metastases (7, 8), provide strong evidence for
polyclonal seeding as a major mechanism for metastatic spread.
We next focused on the molecular features of the tumor cell

clusters that give rise to polyclonal metastases. We have pre-
viously established that the cells leading collective invasion near
uniformly express K14 (11). We reveal profound and systematic
changes in the relative proportions of K14+ and K14− cells from
micrometastatic to macrometastatic stages. We detect K14+ cells
in disseminated tumor cell clusters, in intravascular tumor emboli,
CTC clusters, and in micro- and macrometastases. Importantly,
both CTC clusters and micrometastases are >20-fold enriched for
K14+ cells relative to primary tumors or macrometastases. Thus,
K14+ cells are significantly enriched in breast cancer cells during
the phases of metastasis most associated with systemic spread.
Conversely, K14− cells are significantly enriched in the phases of
metastasis most associated with proliferation. Our in vivo data
cannot distinguish between conversion of cells from a K14+ to a
K14− state after arrival in the lung versus expansion of K14−
cancer cells that arrived as a component of a mixed K14+/K14−
cluster. However, our ex vivo assays provide clear evidence for
interconversion between epithelial states in both directions. The
molecular mechanisms that drive transitions between K14+ and
K14− states are an important area for further study.
In our study, we also revealed transcriptomic differences be-

tween K14− and K14+ tumor cells and identified genes coding
for protein complexes distinct to each compartment. Concordant
with a recent report on plakoglobin, our data implicate the
desmosome in polyclonal seeding (5). Intriguingly, K14+ cells are
also enriched for hemidesmosome complex genes and genes
encoding for proteinaceous extracellular matrix, and K14 ex-
pression is required for gene expression of multiple metastasis

A

C Cʹ Cʹʹ

B

Fig. 5. The transcriptional program of K14+ tumor
cells is enriched for desmosome and hemidesmosome
adhesion complex genes, and depleted for genes in-
volved in MHC class II immunosurveillance. (A) K14−

and K14+ cells were isolated by FACS from K14-actin-
GFP;MMTV-PyMT tumors and the relative mRNA
expression of K14 relative to GAPDH was determined
by quantitative RT-PCR. The relative mRNA expression
is presented as a boxplot (n = 4 independent ex-
periments). (B) Heatmap of the most differentially
expressed genes determined by RNA sequencing of
K14− and K14+ cells at a genome-wide significance
of P < 10−6. (C–C′′) Genes that encode for desmo-
some, hemidesmosome, and MHC class II antigen
presentation protein complexes are differentially
expressed and coregulated in K14+ cells.
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effectors involved in niche remodeling (29, 37). It is likely that
polyclonal tumor cell clusters provide an efficient nidus for in-
teractions with collagen I, fibroblasts, macrophages, endothelial
cells, and other tumor microenvironmental components in the
multicellular seeding process (39–44).
Our data do not exclude the possibility of single-cell seeding

events by either EMT or migratory stem cells. However, our
lineage analysis does put an upper limit on the relative contri-
bution of these events to metastasis in the MMTV-PyMT model.
In agreement with our data, a recent study used lineage analysis
in spontaneous mouse models of breast cancer to reveal that
EMT does not significantly contribute to the formation of lung
metastases in MMTV-PyMT mice, and that inhibition of EMT
through miR-200 overexpression does not impair the ability of
MMTV-PyMT tumor cells to form metastases (45). However, it
remains technically prohibitive to image the transit of a cancer
cell continuously from escape out of the primary tumor through
to establishment of a distant site, and so some inference remains
necessary to construct models of the process. Accordingly, it is
important to acknowledge contrary observations. We observe
K14− single cells in the mammary stroma and real-time intravital
imaging was recently used to observe single MMTV-PyMT cancer
cells intravasating at sites of macrophage–endothelial cell connec-
tions (44). Our data are compatible with a model in which K14 is
required for collective invasion and dissemination, but not single-
cell dissemination. Furthermore, our data do not exclude the
possibility of transitions between single cell and multicellular
organization in the mammary stroma before intravasation. Future
studies are needed to map the relative frequency of different
single-cell and multicellular configurations and their molecular
features across the entire mammary fat pad and in different
cancer models.
The simplest interpretation of our data is that breast cancer

metastases form via the local dissemination, entry into circula-

tion, and distal seeding of a multicellular cluster containing K14+

cancer cells (Fig. S8). Within this framework, the survival ad-
vantage of multicellular organization provides a mechanism by
which genetically distinct clones can jointly found a micrometa-
stasis. Eradicating polyclonal micrometastases in the adjuvant
setting will be particularly challenging when these founders have
intrinsic differences in treatment sensitivity. Our findings also
support the concept that micrometastatic and macrometastatic
disease may require distinct therapeutic strategies (46). Finally, it
will be important in future studies to determine how tumor cell
clusters gain access to the lymphatic and venous circulation.

Materials and Methods
Mouse Lines and Breeding. Animal protocols were approved by The Johns
Hopkins University Institutional Animal Care and Use Committee. FVB/N-
Tg(MMTV-PyVT)634Mul/J (MMTV-PyMT) (17), B6(D2)-Tg(CAG-Brainbow1.0)2Eggn/J
(Rainbow) (20), Gt(ROSA)26Sortm1(CAG-Brainbow2.1)Cle/J (Confetti) (19),
B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J (ROSAmT/mG) (47),
and NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice were obtained from the
Jackson Lab. K14-actin-GFP mice (23) were a gift from Elaine Fuchs (Rock-
efeller University, New York, NY). B6.129(ICR)-Tg(CAG-ECFP)CK6Nagy/J (β-actin-
CFP) mice (48) were a gift fromMikala Egeblad (Cold Spring Harbor Laboratory,
Cold Spring Harbor, NY). For lineage-tracing experiments, MMTV-PyMT mice
were crossed with ROSA mT/mG mice, Confetti mice, Rainbow mice, or β-actin–
CFP mice and transplanted into NSG host mice. For sorting of K14+ cells, MMTV-
PyMT mice were crossed with K14-GFP-actin mice.

Statistics. All analyses were conducted using the program R or Graphpad
Prism. For all boxplots, the whiskers represent the 5th and 95th percentiles. P
value determined by Mann–Whitney test unless otherwise noted. P < 0.05
was considered significant.

See SI Materials and Methods for a complete description of protocols for
organoid isolation, orthotopic transplantation, lentiviral transduction, tail-vein
assays, FACs sorting of K14+ cells, RNA-seq, colony-forming assays, mammo-
sphere assays, determination of local mixing, and isolation of CTCs.
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Fig. 6. K14 is required for distant metastasis and regulates the expression of multiple metastasis effectors. (A) Schema to test the in vivo requirement for K14 in
metastasis. Fluorescent mTomato+ tumor organoids were transduced with either lentiviral Luc-shRNA or K14-shRNA, selected with puromycin, and transplanted
into the cleared mammary fat pads of nonfluorescent congenic hosts. Mice were harvested from 6 to 8 wk and lungs were sectioned and counted for mTomato+

lung metastases. (B and C) Median tumor size in cubic millimeters and number of lung metastases for Luc-shRNA and K14-shRNA tumors, with data presented as
boxplots (n = 11 mice for Luc-shRNA, n = 10 mice for K14-shRNA). *P < 0.05. (D) Heatmap of the most differentially expressed genes determined by RNA se-
quencing of luciferase control knockdown and K14 knockdown tumor organoids at an FDR < 0.05. (D′) Scatterplot of correlation of transcript expression of top
ranked genes versus Krt14. (E) Scatterplot of the most differentially expressed genes with twofold or greater significant enrichment in K14+ cells or K14− cells and
whose gene expression was significantly associated with K14 transcript levels (FDR < 0.05 for both datasets). Krt14 is highlighted in green. Published metastasis
genes reported in red. (F) Schema of metastasis genes enriched in K14+ cells and regulated by Krt14 expression.
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