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Abstract

Purpose of review—In this review of the literature from 2014 through mid-2015, we examine 

new data that sheds light on how macrophages and other innate immune cells and signals 

contribute to inflammation, vascular dysfunction and fibrosis in scleroderma.

Recent findings—Recent human studies have focused on changes early in scleroderma, and 

linked macrophages to inflammation in skin and progression of lung disease. Plasmacytoid DCs 

have been implicated in vascular dysfunction. In mice, several factors have been identified that 

influence macrophage activation and experimental fibrosis. However, emerging data also suggests 

that myeloid cells can have differential effects in fibrosis. Sustained signaling through different 

TLRs can lead to inflammation or fibrosis, and these signals can influence both immune and non-

immune cells.

Summary—There are many types of innate immune cells that can potentially contribute to 

scleroderma and will be worth exploring in detail. Experimentally dissecting the roles of 

macrophages based on ontogeny and activation state, and the innate signaling pathways in the 

tissue microenvironment, may also lead to better understanding of scleroderma pathogenesis.
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Introduction

Immune dysfunction of many kinds has been identified in scleroderma, with the innate 

immune system of significant interest.[1–4] Macrophages in particular have been implicated, 

and a variety of other innate immune cells including dendritic cells, monocyte-derived cells, 

innate lymphocytes, natural killer cells, and mast cells, may also be of interest.[5–9*] In 

addition, innate immune signaling involving chemokines, interferons (IFN), interleukins, 

pattern recognition receptors and others may contribute to the pathogenesis of 

scleroderma.[10–12] In this review of the literature from 2014 through mid-2015, we examine 

new data that sheds light on how macrophages and other innate immune cells and signals 

contribute to inflammation, vascular dysfunction and fibrosis in scleroderma.

Macrophage ontogeny and activation nomenclature

Macrophages have been studied in scleroderma and tissue fibrosis, and understanding of this 

complex cell type is rapidly evolving.[1,5,13–15] There has been a recent burgeoning of the 

understanding of macrophage ontogeny. Tissue resident macrophages are now known to 

originate from progenitors in the yolk sac and fetal liver; additionally, they self renew in situ 

independently of hematopoiesis in most tissues examined, even under certain inflammatory 

conditions.[9*,15–20] Murine dermis is an important exception, with a significant proportion 

of macrophages arising from circulating progenitors.[16**] In contrast, other myeloid cells 

are derived from hematopoietic stem cells via a well-characterized differentiation 

program.[9*,17,18,21] Thus, each tissue has a unique and complex composition of 

macrophages of embryonic and adult origin, and studies that examine how ontogenic origin 

impacts macrophage function may be useful in understanding scleroderma pathogenesis.

In addition to advances in understanding macrophage ontogeny, the biology of macrophage 

activation is also progressing. Macrophage activation is now thought to be a continuous 

spectrum of activation states, rather than two opposing phenotypes: M1 (classically 

activated) versus M2 (alternatively activated).[22] To effectively communicate this 

complexity, new nomenclature has been proposed for describing macrophage activation 

based on reference to known phenotypes along the spectrum: at one end, macrophages 

activated with IFNγ (prototypical M1) would be now be termed M(IFNγ), while 

macrophages activated with IL-4 (prototypical M2) at the other end of the spectrum would 

be M(IL-4). In vivo, macrophage activation state may be evaluated with markers that are 

already widely used in the study of macrophages and in scleroderma, and compared to 

reference points.[22] One such marker is Arginase 1 (Arg1), which is commonly used as a 

marker of M(IL-4)-type macrophage activation; however, it may be expressed by 

macrophages throughout the activation spectrum.[22] Similarly, CD163 is a scavenger 

receptor associated with scleroderma and M(IL-4)-like activation, though it is also 

upregulated upon IL-10 or glucocorticoid stimulation.[22–24] Thus, describing several 

features of a particular population may be needed to fully phenotype macrophages in vivo.
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Macrophage association with inflammation and early fibrosis

Recent studies of human scleroderma patients early in disease course have demonstrated an 

association between macrophages, inflammation and fibrosis in lung and skin. In lung tissue 

obtained via open biopsy, Christmann and colleagues identified genes that distinguished SSc 

from normal control, then correlated expression changes with progression of lung disease as 

determined by high-resolution computed tomography and pulmonary function tests.[25**] In 

SSc patients with non-specific interstitial pneumonia, collagen, IFN-regulated and 

macrophage-associated gene clusters were positively correlated with progressive lung 

disease.[25**] The macrophage-associated gene cluster included transcripts associated with 

M(IL-4) activation.[22,25**] Notably, this study evaluated lung tissue before end-stage 

fibrosis, and thus may implicate macrophages and IFN in development or progression of 

SSc lung fibrosis.

In a microarray study designed to identify chemokine changes in scleroderma skin, Mathes 

and colleagues identified CCL19 as the only one of 6 chemokines upregulated in dsSSC skin 

that is positively correlated with perivascular inflammation, as well as with markers of 

vascular injury.[26*] CD163+ macrophages, but not fibroblasts, co-localized with CCL19 in 

dsSSC skin.[26*] CCL19 along with CCL21 interacts with receptor CCR7 on antigen 

presenting cells, and is known to play a key role in recruitment of immune cells to lymph 

node and inflamed non-lymphoid tissues.[26*–31] Together, this suggests that CD163+ 

macrophages were key expressers of CCL19, and implicates them in the recruitment of 

inflammatory cells to the perivascular environment in skin fibrosis.

Intriguingly, the chemokines found to be upregulated in this study are associated with a 

range of macrophage activation states.[22,26*] Novel upregulated chemokines identified by 

the study were CCL18, CCL19 and CXCL13, while the upregulation of CCL2, CCL5 and 

CXCL9 noted in previous studies was confirmed.[26*,32–36] CCL18 and CXCL13 are 

associated with M(IL-4) activation, while CCL5 and CXCL9 expression are more typical of 

M(LPS + IFNγ) inflammatory macrophages towards the other end of the activation 

spectrum.[22] While these chemokines may be expressed by many cell types, this pattern of 

expression could potentially reflect the involvement of multiple differentially activated 

myeloid populations in modulating the local immune environment in scleroderma skin.

Macrophage activation and function in fibrosis

Identification of macrophages resembling an M(IL-4) phenotype has been recognized in 

scleroderma, and several recent studies delineate upstream changes affecting macrophage 

activation that could contribute to fibrosis.[5,14,23,37,38] Wu and colleagues found a role for 

Cadherin11, which has been implicated in both skin and pulmonary fibrosis, in TGFβ1 

production by M(IL-4) macrophages.[39*–42] Cadherin11 mRNA positively correlated with 

MRSS in patients with disease duration <4 years, and with TGFβ-induced genes in early 

diffuse SSc.[39*] Data from individual cultures of macrophages or fibroblasts showed that 

Cadherin11 is important for macrophage secretion of TGFβ1 upon IL-4 stimulation, but not 

for TGFβ1 signaling in fibroblasts.[39*] As anti-Cadherin11 blockade led to decreased 

dermal thickness and fewer myofibroblasts in established fibrosis, further study is warranted 
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to determine if Cadherin11 blockade may be therapeutically useful, and to understand how 

Cadherin11 expression in macrophages affects TGFβ1 secretion.[39*]

The enzyme N-acetylglucosaminyltransferase-V (GnT-V) that forms β1,6 GlcNAc-bearing 

oligosaccharides is important for negative regulation of T cells and suppressing 

autoimmunity.[43,44] In a small group of lcSSc skin biopsies, GnT-V was partially co-

expressed with CD163+ macrophages.[43] Experiments in the bleomycin model suggest a 

role for GnT-V in promoting CD163+ macrophage accumulation in murine skin, while in 

vitro data points to a possible role for GnT-V in establishing an M(IL-4) phenotype.[43] It 

may be useful to understand how oligosaccharides influence macrophage phenotype, 

perhaps by interaction with galectin-3, a known binding partner of glycosphingolipids that is 

implicated in macrophage activation.[45,46] Alternatively, oligosaccharide structures may 

influence macrophage phenotype by altering integrin-mediated cell adhesion. GnT-V-driven 

β1,6 GlcNAc branching is known to influence integrin-mediated cell adhesion, which in turn 

affects macrophage phenotype.[47–51]

Enhanced M(IL-4)-type macrophage activation was also found in Fli1 haploinsufficient 

mice, with more Arg1+ macrophages present in bleomycin treated skin and cultured 

peritoneal macrophages upregulating Arg1, Relma (Fizz1) and Chi3l3 (YM1) after IL-4 or 

IL-13 stimulation.[52] Fli1 is a transcription factor that is down-regulated in SSc skin, and 

insufficiency of Fli1 has been linked to SSc-related changes in fibroblasts and endothelial 

cells.[53–57] Fli1 may have a broader role in skin than previously hypothesized, influencing 

macrophage activation in addition to effecting pro-fibrotic changes in stromal cells.

Differential roles for myeloid subpopulations in fibrosis

In recent years there has been a growing appreciation of the diversity of macrophages in 

peripheral tissues, and the pleiotropic effects of macrophages and dendritic cells on tissue 

fibrosis have been reviewed.[3,9*,14–20,22,58–62] New data from the study of heart and liver 

further support the hypothesis that separate myeloid lineages play differing roles in fibrosis. 

In schistsomiasis-associated liver fibrosis, there are two populations of macrophages that 

express the M(IL-4)-like transcripts Arg1, Relma, Chi3l3 and Mrc1.[63*] These populations 

consist of immature macrophages (either proliferating from resident macrophages or 

monocyte-derived) that slow the progression of liver fibrosis, whereas a mature and perhaps 

resident macrophage population limits inflammation.[63*] Similarly, monocytes can also 

have multiple functions in fibrosis. In a study of hypertensive myocardial fibrosis induced 

with angiotensin II, depletion of all monocytes using clodronate liposomes was protective, 

while Cx3cr1−/− mice, in which CX3CR1hi but not CX3 CR1lo monocytes are reduced, 

developed more severe disease.[64,65] While the interpretation of this study is complicated 

by the possibility that CD11b+ CX3CR1+ dendritic cells may also be functionally altered in 

Cx3cr1−/− mice, the data nonetheless suggest that at least 2 populations of myeloid cells are 

exerting opposing actions in hypertensive myocardial fibrosis.[9*,66]

These studies add to the accumulating literature that describes pleiotropic functions of 

myeloid cells in fibrosis. Studying individual populations of monocytes, macrophages and 

dendritic cells may lead to disambiguation of their roles in this complex disease process.

Chia and Lu Page 4

Curr Opin Rheumatol. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Plasmacytoid DC as mediators of inflammation and endothelial damage

Plasmacyotid dendritic cells (pDC) have been implicated in the tight skin genetic model of 

skin fibrosis, and VanBon and colleagues recently delineated a role for these cells in human 

scleroderma.[67,68**] The investigators found that the chemokine CXCL4 is highly secreted 

by circulating pDC of SSc patients, but not healthy donors.[68**] CXCL4 levels in plasma 

were especially high in early diffuse SSc, and correlated with the extent of skin fibrosis in 

both limited and diffuse SSc.[68**] In SSc lesional skin, CXCL4 co-localized with pDC; 

Mathes and colleagues identified the CXCL4 receptor CXCR3 as upregulated >1.5-fold in 

dsSSc skin.[26*,68**–70] CXCL4 in SSc plasma was sufficient to induce endothelin-1 and 

decrease Fli1 in cultured endothelial cells, both associated with endothelial damage in 

fibrosis.[57,68**,71–73] CXCL4 has already been described as having angiostatic properties 

and this study reports that CXCL4 inhibited endothelial cell proliferation in vitro.[68**,74] 

CXCL4 drove hyper-secretion of type I IFN by SSc pDC, and as type I IFN is known to be 

angiostatic, these findings imply both direct and indirect mechanisms for CXCL4-induced 

vascular dysfunction.[68**] Interestingly, elevated CXCL4 was also identified in patients 

with Raynaud’s Syndrome, most of whom do not develop SSc despite the vascular 

dysfunction underlying Raynaud’s.[1,68**,75] In healthy mice, CXCL4 administration 

increased mRNA of the anti-angiogenic molecule thrombospondin-1.[68**] Together, these 

data suggest a potential novel role for pDC and pDC-derived CXCL4 in vascular 

dysfunction in SSc.

Toll-like Receptor signaling as a driver of inflammation and fibrosis in 

scleroderma

Toll-like Receptors (TLRs) are a family of pattern recognition receptors that relay 

exogenous and endogenous danger signals, and have become a topic of significant interest in 

scleroderma.[12,76,77] Several recent studies place TLR signaling upstream of inflammatory 

and pro-fibrotic changes in skin.

TLRs 3,7,8 and 9 are localized to intracellular organelles where they recognize nucleic 

acids; recent findings have implicated this group of TLRs in driving inflammation 

associated with scleroderma.[68**,76,78] The TLR9 agonist CpGB DNA delivered via 

osmotic pump led to inflammation but not fibrosis.[78] Consistent with this, in their study of 

pDC in scleroderma, vanBon et al demonstrated that stimulation of TLR7/8 or TLR9 led to 

CXCL4 expression upstream of type I IFN release.[68**] In mice, delivery of CXCL4 led to 

increased inflammation and IFN-inducible genes, but was not sufficient to induce 

fibrosis.[68**] Thus, stimulation of nucleic acid-responsive TLRs in isolation induced 

inflammation, but were not sufficient to drive fibrosis. Interestingly, CXCL4 has been 

shown to be protective in HIV-1 infection.[79] High CXCL4 in scleroderma may therefore 

be a host protective mechanism, and the triggers for CXCL4 secretion from pDC, whether 

endogenous or exogenous, may be a significant topic for future study.

In contrast, TLR4, which is expressed on the cell surface and may bind bacterial, viral and 

host proteins and lipoproteins, has been implicated as a driver of fibrosis.[76] Stifano and 

colleagues observed increased mRNA for TLR4 and its co-receptors MD2 and CD14 in 
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lesional SSc skin, the latter correlated with worsening Modified Rodnan Skin Score (MRSS) 

over 6 months.[80*] This is echoed by Mathes and colleagues data suggesting that TLR4 

stimulation may be a potential inducer of CCL19 expression in human CD14+ 

monocytes.[26*] In mice, LPS stimulation and signaling through the TLR signal transducing 

protein MyD88 was sufficient to upregulate TGFβ1-induced and fibrosis-related genes in 

skin.[80*] Using CD11b+ cell depletion and TGFβ1 blockade, the authors delineated a 

pathway in which CD11b+ cells were necessary for LPS-induced fibrotic change upstream 

of TGFβ1.[80*] CD11b, which in conjunction with CD18 forms complement receptor 3, is 

expressed on the surface of neutrophils, monocytes, macrophages and dendritic cells, and it 

will be interesting to dissect the contributions of these populations.[16**,81]

LPS is a canonical TLR4 ligand, thus it was surprising that constitutive TLR4 knockout was 

only partially protective from LPS-induced gene expression changes in the study by Stifano 

et al, suggesting a TLR4-independent action for LPS in this model.[80*] TLR4-independent 

LPS signaling has been described in macrophages, and demonstrates the complexity of 

innate immune signaling.[82] Consistent with these findings, constitutive loss of TLR4 was 

partially protective from bleomycin-induced inflammation and fibrosis murine in skin and 

lung.[83,84]

TLR4 may also respond to endogenous signals, such as the fibronectin splice variant 

fibronectin extra domain A (FnEDA) that is associated with tissue remodeling and 

inflammation.[85,86**] Bhattacharyya and colleagues demonstrated that FnEDA is an 

abundant endogenous TLR4 ligand in scleroderma and is capable of driving fibrotic changes 

that characterize skin fibrosis in vitro and in vivo, while antagonism of TLR4 signaling in 

vivo led to attenuated experimental fibrosis.[86**] In contrast to Stifano and colleagues, this 

study identified fibroblast-intrinsic TLR4 signaling in vitro, as previously described in skin 

and other tissues.[83,87–90] Future studies to discriminate between the effects of TLRs on 

immune cells versus stromal cells in scleroderma will be of interest.

O’Reilly and colleagues identified TLR2 overexpression on SSc fibroblasts, and 

demonstrated in vitro that the acute phase reactant serum amyloid A is capable of 

stimulating IL-6 from fibroblasts in a TLR2-dependent manner.[91] IL-6 has been implicated 

in SSc, and this study provides another example of how endogenous signals may drive TLR 

signaling and fibrosis-associated responses.[92]

Other innate signals and cells in skin fibrosis

Type I and II IFN have been studied in the pathogenesis of SSc, while little data has 

emerged regarding the role of type III IFN in scleroderma.[10] This year Dantas and 

colleagues published a brief report describing a two-fold increase in circulating type III IFN 

in SSc.[10,93] Type III IFN (also called IFN-λ or IL-28A, IL-28B and IL-29) is involved in 

antiviral immunity, similar to type I IFN.[94,95] However, type III IFN signals through a 

distinct receptor, which, unlike IFNAR, is largely restricted to the epithelium.[94] Further 

investigation may elucidate a role for type III IFN in scleroderma, as the epithelial tissues 

skin and lung are particularly affected.
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IL-17C is another cytokine known to regulate the innate immune function of epithelial cells, 

and was recently identified by Lonati and colleagues to be decreased in both lesional SSc 

and morphea compared to healthy skin.[96–98] Consistent with previous reports, the authors 

found more IL-17A+ cells in SSc skin; along with fewer IL-17F+ cells, this feature 

distinguished SSc lesional skin from morphea and healthy donors.[96,99–101] Interestingly, 

mast cells were a more abundant source of IL-17A than T cells.[96,99–101] A similar finding 

has been reported in psoriatic skin, and underscores the importance of examining cellular 

sources of signaling molecules.[96,102]

Mast cells are pivotal for innate defenses against pathogens and are key players in allergy, 

while a role for these cells in scleroderma tissue fibrosis has been debated.[103,104] Two 

groups have used mice congenitally lacking mast cells with a mast cell replacement strategy 

to show that mast cells are required for induction of bleomycin lung fibrosis.[105,106] In 

contrast, a 1999 study by Yamamoto and colleagues suggested that mast cells are not 

necessary for induction of bleomycin skin fibrosis, but may hasten progression of 

disease.[107] Recently, a model of inducible mast cell depletion from connective tissues has 

confirmed that mast cells are not required for the development of bleomycin skin 

fibrosis.[108] Thus, mast cells may play a redundant role in fibrosis induction in skin, 

whereas they appear to be indispensible for the development of bleomycin lung fibrosis.

Conclusions

Recent human studies have focused on changes early in scleroderma, and linked innate 

immunity to vascular dysfunction and disease progression, perhaps suggesting a pathogenic 

role. However, different myeloid cell populations have separate, and sometimes opposing, 

actions in murine fibrosis. Similarly, nucleic acid-responsive TLRs may drive inflammation, 

while TLR4 responses to endogenous or exogenous signals drive fibrosis. Other innate cells 

such as conventional dendritic cells, natural killer cells and innate lymphoid cells have not 

been fully explored in scleroderma, though their biology is being rapidly elucidated in 

normal tissue, and they are implicated in other forms of fibrosis.
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Cad11 cadherin 11
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dcSSc diffuse cutaneous systemic sclerosis

Chi3l3 chitinase 3 like 3

Fli1 Fli-1 proto-oncogene, ETS transcription factor

FnEDA fibronectin extra domain A

GlcNAc N-acetylglucosamine

GnT-V N-acetylglucosaminyltransferase-V

IFN interferon

IFNAR interferon α/β receptor

lcSSc localized cutaneous systemic sclerosis

LPS lipopolysaccharide

Mrc1 mannose receptor, C type 1

pDC plasmacytoid dendritic cell

Relma resistin-like molecule α

SSc systemic sclerosis

TGFβ1 transforming growth factor β1

TLR toll like receptor
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Key Points

1. New nomenclature to describe the state of macrophage activation will be useful 

in understanding and communicating about these complex populations in 

scleroderma.

2. Macrophages and pDC have been implicated in vascular dysfunction and in 

sustaining inflammation in early disease.

3. Multiple subpopulations or activation states of macrophages and other myeloid 

cells can have differential effects in fibrosis.

4. Sustained signaling through different TLRs can lead to inflammation or fibrosis.

5. There are many types of innate immune cells that can potentially contribute to 

scleroderma and will be worth exploring in detail.
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