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Abstract

Advances in molecular and structural and functional neuroimaging are rapidly expanding the
complexity of neurobiological understanding of Parkinson’s disease (PD). This review article
begins with an introduction to PD neurobiology as a foundation for interpreting neuroimaging
findings that may further lead to more integrated and comprehensive understanding of PD.
Diverse areas of PD neuroimaging are then reviewed and summarized, including positron
emission tomography, single photon emission computed tomography, magnetic resonance
spectroscopy and imaging, transcranial sonography, magnetoencephalography, and multimodal
imaging, with focus on human studies published over the last five years. These included studies on
differential diagnosis, co-morbidity, genetic and prodromal PD, and treatments from L-DOPA to
brain stimulation approaches, transplantation and gene therapies. Overall, neuroimaging has
shown that PD is a neurodegenerative disorder involving many neurotransmitters, brain regions,
structural and functional connections, and neurocognitive systems. A broad neurobiological
understanding of PD will be essential for translational efforts to develop better treatments and
preventive strategies. Many questions remain and we conclude with some suggestions for future
directions of neuroimaging of PD.
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1. Introduction

Parkinson’s Disease (PD) is the second most common neurodegenerative disorder and is
increasing in importance as the population ages (Burke & O’Malley, 2013; Schapira, 2013).
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The most well known neurobiological model of PD has provided a simplified schema for
how changes in neurotransmitters and brain regions and networks can be the basis of motor
symptoms in PD. The model is centered on the role of decreased availability of the
neurotransmitter dopamine in regions and pathways of the cortico-basal ganglia-
thalamocortical motor circuit (Delong, 1990; Galvan & Wichmann, 2008). However, it has
long been known that PD also involves cognitive, mood, sleep, olfactory, and autonomic
disorders in addition to motor dysfunction; neurotransmitters and other neurochemicals in
addition to dopamine; and neuropathological findings in widespread regions of the brain,
brainstem, spinal cord, and peripheral nervous system (Goedert et al., 2013; Langston, 2006;
Smith et al., 2012; Sulzer & Surmeir, 2013). Thus it is important to examine a wide range of
factors to better understand the neurobiological mechanisms of PD and its treatments, which
can be accomplished in part through a wide array of neuroimaging techniques applied to the
study of PD. We have reviewed a broad range of these neuroimaging studies of PD.

The first goal of this review was to provide an introduction to the variety and complexity of
PD neurobiology (section 2). This knowledge serves as a foundation for interpreting
neuroimaging findings that may further lead to more integrated and comprehensive
understanding of PD (sections 3 and 4). To facilitate understanding of the diverse
neuroimaging findings and their implications for PD research, the relevant background on
brain regions, circuits, and neurochemistry in PD will be more systematically discussed
(sections 2.2 to 2.4) than in most previous PD neuroimaging reviews.

Our second goal was to broadly review diverse areas of PD neuroimaging (section 3),
including positron emission tomography (PET) (section 3.1), single photon emission
computed tomography (SPECT) (section 3.1), magnetic resonance spectroscopy (MRS)
(section 3.2), magnetic resonance imaging (MRI) (section 3.3), transcranial sonography
(TCS) (section 3.4), magnetoencephalography (MEG) (section 3.5), and multimodal
imaging (section 3.6). These modalities probe different features of the neurobiological
involvement of PD and, collectively, are producing an increasingly complex set of findings
about brain regions, neurochemicals, metabolism, blood flow, functional activation, and
structural and functional connections and networks in PD. This review was performed with a
focus on human studies published over the last five years (section 4), which included studies
on PD molecular neuroimaging (sections 4.2 and 4.3), structural and functional
neuroimaging (sections 4.4 and 4.5), PD differential diagnosis (section 4.6), co-morbid
syndromes (section 4.6), genetic and prodromal PD (section 4.7), and treatments ranging
from L-DOPA (levodopa) to brain stimulation approaches, transplantation and gene
therapies (section 4.8).

A third goal was to systematically discuss the neuroimaging findings of changes in
neurotransmitters and other neurochemicals, structure, function, neuronal circuitry, etc. in
PD from two complementary perspectives: 1) a methodological perspective focused on how
neuroimaging approaches have been used to address various clinical questions (sections 4.2
to 4.5); and 2) a clinical perspective focused on how a clinical topic has been investigated
with various neuroimaging approaches (sections 4.6 to 4.8). Both perspectives are valuable
and provide different insights into the contributions of neuroimaging to neurobiological
understanding of PD.
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Pubmed literature searches were used to identify neuroimaging studies of PD published in
English. The neuroimaging modalities used in each study were identified and representative
examples were selected, with a focus on major publications of human studies over the past
five years. The final list of selected studies represents a wider range of neuroimaging studies
of PD than has appeared in previous reviews.

2. Parkinson’s Disease

We begin with description of motor features of Parkinsonism, other diagnoses that may be
considered in the differential diagnosis of PD, and the importance of nonmotor co-morbid
syndromes (section 2.1). Brain regions, structural pathways, and neurotransmitters of the
most well known model of motor involvement in PD — the cortico-basal ganglia-
thalamocortical motor circuit — will then be presented (section 2.2). Neuropathology of PD
will be discussed centered on Braak’s staging of PD, which describes the progression of
pathological abnormalities in regions throughout the brain (section 2.3). Finally,
biochemistry of neurotransmitter systems involved in PD will be summarized (section 2.4).
These topics are a useful foundation for understanding and interpreting PD neuroimaging
findings (sections 3 and 4).

2.1. Symptoms and diagnosis of PD

Parkinsonism (Parkinson’s syndrome) comprises the motor symptoms of bradykinesia (slow
movements), rigidity, tremor at rest, and postural instability (Hickey & Stacy, 2011). PD or
idiopathic PD is the most common disorder presenting as Parkinsonism. Other diagnoses
presenting with Parkinsonism include atypical parkinsonian syndromes such as corticobasal
degeneration (CBD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA),
and progressive supranuclear palsy (PSP) (Stamelou & Hoeglinger, 2013). Parkinsonism
may also be secondary to genetic mutations (Klein & Westenberger, 2012), side effects of
medications (e.g. antipsychotic medications, amphetamine) (Ham et al., 2015), traumatic
brain injury (Bhidayasiri et al., 2012), and toxins such as Mn (Criswell et al., 2011), etc. (Ali
& Morris, 2014). Current validation of a diagnosis of PD is based on neuropathological
findings. A recent study using post mortem neuropathological confirmation of PD indicated
that clinical diagnostic accuracy was only 53% for patients with < 5 years disease duration,
although 88% accuracy for patients with > 5 years duration (Adler et al., 2014). Thus
development of neuroimaging for diagnosis of PD has been an important line of inquiry in
PD neuroimaging (section 4.6).

There are also many nonmotor symptoms and co-morbid syndromes in PD. These include
cognitive disorders, depression, olfactory dysfunction, sleep disorders, constipation,
genitourinary dysfunction, etc. (Langston, 2006; O’Sullivan et al., 2008; Schapira & Tolosa,
2010). Cognitive dysfunction may appear in 15-20% of even early stage, untreated PD
patients and eventually be found in over 80% of patients during long-term follow-up
(Calabresi et al., 2013; Hely et al., 2008; Lin & Wu, 2015). Depression has been reported in
45 to 75% of PD patients (Jaunarajs et al., 2011; Lemke, 2008). Around 80% of patients
with idiopathic rapid eye movement sleep behavior disorder (RBD) may convert to PD or
atypical parkinsonian syndromes within 10 to 15 years (Mayer et al., 2015). Nonmotor
symptoms, such as RBD, often pre-date motor symptoms - 98% of all de novo PD patients
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report at least one nonmotor symptom at diagnosis (Erro et al., 2013). This suggests that
neurodegeneration starts outside of the motor system, may involve nondopaminergic
neurons, and has implications for diagnosis and development of preventive strategies.

Nonmotor symptoms can sometimes become more distressing to patients than motor
symptoms. For example, depression has been described as “the single most important factor
in PD patients’ reported quality of life, above disease severity and motor complications of L-
DOPA therapy” (Jaunarajs et al., 2011: 2). Thus there is need for more understanding of
both motor and nonmotor aspects of PD, and both have been the focus of many
neuroimaging studies.

2.2. Classic model of cortico-basal ganglia-thalamocortical motor circuit in PD

Figure 1 shows a simplified schema of some key brain regions and pathways involved in the
most well known model of motor dysfunction in PD. These are regions of the cortico-basal
ganglia-thalamocortical circuit and the direct and indirect pathways (Delong, 1990; Honey
et al., 2003; Lanciego et al., 2012). The basal ganglia comprise the dorsal striatum or the
caudate and putamen above the internal capsule, globus pallidus externa, globus pallidus
interna, subthalamic nucleus, substantia nigra pars compacta and substantia nigra pars
reticularis, and the ventral striatum comprising the nucleus accumbens and caudate and
putamen below the internal capsule. The major input to the basal ganglia is from the cortex
to the dorsal striatum in the corticostriate pathway. Projection neurons of the corticostriate
pathway use the excitatory neurotransmitter glutamate. Main outputs from the basal ganglia
are projection neurons from the globus pallidus interna and substantia nigra pars reticularis
to the thalamus. Both are inhibitory pathways employing the inhibitory neurotransmitter -
aminobutyric acid (GABA). Thalamocortical excitatory glutamatergic projection neurons
then complete the circuit back to the cortex.

Within the basal ganglia there are important pathways between the dorsal striatum and
globus pallidus interna: (i) direct pathway, which is a monosynaptic connection from the
dorsal striatum to globus pallidus interna; and (ii) indirect pathway, which is a polysynaptic
connection from the dorsal striatum to globus pallidus externa to subthalamic nucleus to
globus pallidus interna. Output from globus pallidus interna to thalamus is via inhibitory
GABAergic pathways, i.e. the globus pallidus interna inhibits thalamic activity. Because
thalamic output to the cortex excites the motor cortex, inhibition of thalamic activity leads to
decreased motor activation.

Nigrostriatal connections lead from the substantia nigra pars compacta to the dorsal striatum,
while striatonigral connections lead from the dorsal striatum to the substantia nigra pars
reticularis. The neurotransmitter dopamine is synthesized in dopaminergic neurons whose
cell bodies are located in substantia nigra pars compacta. The nigral dopaminergic projection
neurons synapse with two kinds of dopamine receptors in the dorsal striatum, D1 and D2.
D1 receptors modulate activity of medium spiny neurons that project to globus pallidus
interna in the direct pathway, while D2 receptors modulate activity of medium spiny
neurons that project to globus pallidus externa in the indirect pathway.
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Dopaminergic input into the direct pathway via D1 receptors activates medium spiny
neurons and leads to inhibition of globus pallidus interna. Inhibition of globus pallidus
interna then diminishes its inhibition of the thalamus. This in turn leads to increased
excitatory output from the thalamus to the cortex, i.e. activation of motor regions of the
cortex. On the other hand, dopaminergic input into the indirect pathway via D2 receptors
leads to inhibition of medium spiny neurons whose output normally inhibits globus pallidus
externa. Thus the activity of globus pallidus externa is increased, which inhibits the
subthalamic nucleus. When subthalamic nucleus activity is inhibited there is decreased
activation of globus pallidus interna. From here the consequences follow the schema of the
direct pathway described above: globus pallidus interna’s inhibition of the thalamus is
diminished; the thalamus activates the cortex; and motor regions are activated.

Degeneration of the substantia nigra pars compacta and, therefore, decreased dopaminergic
output from substantia nigra pars compacta to the dorsal striatum has been the most
highlighted neurobiological alteration in PD. According to the model in Figure 1, given that
nigral dopaminergic output to the dorsal striatum promotes activation of the motor cortex,
then loss of nigral dopaminergic output will lead to decreased motor activation. Thus this
model explains cardinal motor features of PD as a hypokinetic disorder, e.g. bradykinesia
and rigidity. Because it depends on alterations in the activity or firing rates of neurons it is
known as the ““rate model” of movement disorders” (Wichmann & Dostrovsky, 2011:235).

This cortico-basal ganglia-thalamocortical circuit model defines a core set of brain regions,
neurotransmitters, and structural connections that may be altered in PD. Many neuroimaging
studies of neurotransmitters, brain regions, and connectivity networks in PD have drawn
from this model and provided evidence for validity of many of its components.

However, the model also has inconsistencies with empirical evidence. For example,
increased globus pallidus interna or decreased globus pallidus externa or thalamic activity
does not always lead to parkinsonian motor dysfunction predicted by the model (Galvan &
Wichmann, 2008). Importantly, “thalamotomy procedures did not result in worsening of
parkinsonism” (Wichmann & Dostrovsky, 2011: 235). Further, although deep brain
stimulation (DBS) of the subthalamic nucleus can be an effective PD treatment, subthalamic
nucleus stimulation is “thought to increase GPi (globus pallidus interna) output to the
thalamus,” and according to the model this stimulation “should worsen rather than
ameliorate parkinsonism” (Galvan & Wichmann 2008: 1463). The model ignores many
brain regions, connections, and neurotransmitter systems known to be important in PD.

It also does not explain a key finding in the Parkinsonian state: abnormal beta oscillations in
the brain’s electrophysiological activity, such as local field potentials, in the beta range
around 12-30 Hz (Galvan &Wichmann, 2008; Little & Brown, 2014; McCarthy et al.,
2011). In PD, beta oscillations appear in regions of the cortico-basal ganglia-thalamocortical
circuit, for example, frontal cortex, subthalamic nucleus, globus pallidus externa, and globus
pallidus interna. Beta oscillations decrease after treatment with L-DOPA or subthalamic
DBS, as well as after movement, and the decreases can correlate with improvement in
bradykinesia and rigidity.
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One model of beta oscillations in PD was based on a dynamic causal model (DCM) of the
cortico-basal ganglia-thalamocortical circuit with direct and indirect pathways, along with
the hyperdirect pathway and reciprocal pathways between globus pallidus externa and
subthalamic nucleus (Figure 2a) (Moran et al., 2011). The hyperdirect pathway is a direct
pathway between the subthalamic nucleus and the cortex. Studies of PD patients using DBS
electrode electrophysiological measures have indicated that effective connectivity between
the subthalamic nucleus and globus pallidus externa, globus pallidus interna, and cortex
(hyperdirect pathway) may promote beta oscillations in the L-DOPA OFF state (Figure 2b)
(Marreiros et al., 2013). Although beta oscillations are important in PD they have been
difficult to study using neuroimaging. However, neuroimaging studies are now able to
examine connectivities of some key pathways in models of beta oscillations, such as the
hyperdirect pathway (section 4).

2.3. PD neuropathology: beyond the cortico-basal ganglia-thalamocortical motor circuit

There are numerous other brain regions beyond the classic cortico-basal ganglia-
thalamocortical circuit that have been implicated in PD, particularly for non-motor
symptoms. Table 1 lists some brain regions that have been highlighted in neuropathological
studies of Lewy bodies and neurites in PD (Braak et al., 2004; Goedert et al., 2013). Lewy
bodies and neurites are cellular inclusions that are aggregates of the protein a-synuclein and
appear in neuron cell bodies or neuron cell processes (e.g. axons) respectively. Post mortem
neuropathological investigations conducted by Braak and colleagues have described six
stages of PD pathology in the brain. These describe spread of inclusion bodies from early
(Stage 1) to late (Stage 6) stages in PD. Some brain regions involved in these stages are
noted in Table 1. Note that the substantia nigra pars compacta in the midbrain, usually
highlighted as the basis of dopaminergic and motor dysfunction in PD (e.g. Figure 1), is
only one of many involved brainstem regions. The substantia nigra is also not the earliest
region involved. Indeed, inclusion bodies appear first in the medulla in the dorsal motor
nucleus of the vagus and in the olfactory cortex. Eventually “inclusion body pathology
gradually overruns the entire neocortex” (Braak et al., 2004: 131). Some regions in Braak
staging are the locations of cell bodies of projection neurons of major neurotransmitters in
the brain, such as acetylcholine, dopamine, norepinephrine, and serotonin (Table 1). Note
that some regions involved with nondopaminergic neurotransmitters show neuropathological
involvement before nigral involvement.

Although it is outside the scope of this review, it is apparent that a-synuclein deposition
extends outside the brain to involve the peripheral nervous system, including the spinal cord,
enteric nervous system, adrenal medulla, and cardiac conduction system (Goedert et al.,
2013; Sulzer & Surmeier, 2013). Indeed, the model of Braak and colleagues suggests that in
the central nervous system, a-synuclein pathology starts from the dorsal motor nucleus of
the vagus and spreads to rostral structures. This suggests that the gut could be a nidus, and
the dorsal motor nucleus of the vagus a portal, for a-synuclein entrance to the CNS.
Furthermore, there is increasing evidence that this spread then proceeds in a prion-like
fashion throughout the brain (Goedert et al., 2013). Although these proposals are
speculative, they may have important implications for the development of neuroprotective
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strategies, as well as imaging of neural function outside the CNS in PD (Gjerlgff et al.,
2015; Stoessl, 2015).

PD becomes clinically manifest when neuropathological findings reach Braak Stages 3—4
and a-synuclein inclusions have reached the substantia nigra pars compacta. Some
investigations have indicated that motor symptoms appear when there has been loss of
approximately 30% of substantia nigra dopamine neurons or 50 to 70% of nigrostriatal
dopaminergic axonal terminals in the striatum, although other studies have suggested that
motor symptoms may appear with more preservation of dopamine neurons and striatal
dopamine terminals than previously understood (Burke & O’Malley, 2013; Tabbal et al.,
2012). Further, although Braak staging has drawn attention to a-synuclein inclusions in the
substantia nigra and, therefore, degeneration of neuron cell bodies (soma) in the substantia
nigra, it is possible that degeneration of neuron axon terminals in the striatum may progress
more rapidly than degeneration of nigral cell bodies. Indeed, attention is now being given to
the importance of axonal degeneration in the neuropathophysiology of PD. For example,
Lewy neurites in axonal processes appear before Lewy bodies in neuron cell bodies. In
particular, it has been proposed that axonopathy precedes cell body death of nigral
dopaminergic projection neurons. This is referred to as “dying-back degeneration” (Burke &
O’Malley, 2013: 73). Note that axons in the brain, both myelinated and unmyelinated,
traverse the brain in white matter. Some implications of this axonal degeneration are that
neuroimaging of white matter and white matter tracts, as well as functional connectivity
networks, would be expected to show changes in PD, including in early stages. Many
examples of such changes have been observed (Tables 3 and 5) and will be discussed in
section 4.

2.4. Neurotransmitters in PD

Six small molecule neurotransmitters are the most important neurotransmitters in PD:
acetylcholine, y-aminobutyric acid, glutamate, dopamine, norepinephrine, and serotonin (5-
hydroxytryptamine or 5-HT). All have been investigated in PD neuroimaging studies.

2.4.1. Glutamate and y-aminobutyric acid—As described above, corticostriate and
thalamocortical pathways are excitatory glutamatergic projections (Figure 1). Within the
basal ganglia, projections from the subthalamic nucleus to globus pallidus externa or interna
are also glutamatergic. However, GABA is the most common neurotransmitter of the basal
ganglia nuclei; neuronal output from caudate, putamen, globus pallidus, and substantia nigra
pars reticularis all comprise inhibitory GABAergic projections. These GABAergic outputs
include the main output regions of the basal ganglia, which are the globus pallidus interna
and substantia nigra pars reticulata. Glutamatergic and GABAergic pathways play central
roles in the cortico-basal ganglia-thalamocortical circuit and the rate model of PD described
in section 2.2 (Figure 1).

GABAergic neurons of the striatum are the subject of intensive study (Lanciego et al., 2012;
Rice et al., 2011). There are two types of neurons in the striatum, with approximately 90%
as projection neurons and 10% interneurons. The projection neurons (striatofugal) are
medium spiny neurons and they are all GABAergic and, therefore, inhibitory. Medium spiny
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neurons are differentiated by several characteristics including two different types of
dopamine receptors, dopamine receptor subtype D1 or subtype D,. Dopaminergic
projections from the substantia nigra pars compacta that synapse with D4 or D, receptors
lead to excitation or inhibition respectively of medium spiny neurons. Medium spiny
neurons with D1 receptors project to globus pallidus interna (direct pathway) and substantia
nigra pars reticulata and co-express the large molecule neurotransmitters substance P and
dynorphin, while medium spiny neurons with D, receptors project to the globus pallidus
externa (indirect pathway) and release or co-express the large molecule neurotransmitter
enkephalin (Levesque & Parent, 2005).

With respect to the other 10% of striatal neurons, these are mainly two types of interneurons.
There are cholinergic interneurons that synthesize the neurotransmitter acetylcholine. There
are also GABAergic interneurons. Although cholinergic and GABAergic interneurons may
comprise only small percentages of striatal neurons they may have important roles in PD
(Calabresi et al., 2006; Dehorter et al., 2009).

Recent MRI neuroimaging studies have indicated the importance of glutamate and GABA in
predicting the strength of functional connectivity networks in normal persons (Kapogiannis
et al., 2013) or resting motor network (Stagg et al., 2014). GABA may also play a special
role in neurobiological mechanisms of negative functional connectivity and anticorrelated
functional connectivity networks, such as those observed in some neuroimaging studies of
PD (e.g. Di Martino et al., 2008; Hacker et al., 2012; Kelly et al., 2009; Liang et al., 2011;
Liu, H. etal., 2013; Yu et al., 2013).

2.4.2. Dopamine—Dopamine is synthesized in neurons projecting from several regions of
the brain including the substantia nigra pars compacta and ventral tegmental area (Diizel et
al., 2009; Kwon & Jang, 2014). It is the neurodegeneration of the substantia nigra pars
compacta and loss of dopaminergic input to the striatum that has been central to the classic
model of PD and its treatment. Thus the production of dopamine and the integrity of these
dopaminergic inputs to the striatum are critically relevant to studies of PD.

Dopamine is synthesized from the amino acid tyrosine (hydroxyphenylalanine) in
dopaminergic neurons (Hammoud et al., 2007) (Figure 3). The first step takes place in the
cytoplasm as tyrosine is converted to dihydroxyphenylalanine (DOPA) using the enzyme
tyrosine hydroxylase. DOPA is then converted to dopamine using the enzyme aromatic |-
amino acid decarboxylase (AAAD), also known as DOPA decarboxylase. Dopamine is then
stored in cytoplasmic vesicles employing a vesicular monoamine transporter (VMAT).
During neurotransmission dopamine is released from the vesicles into the synaptic cleft or
extrasynaptic space. Though there are 5 types of dopamine receptors to which the released
dopamine can bind, D1 and D2 are of primary importance in PD. Dopamine action ends in
several ways. There is reuptake back into the neuron by way of a dopamine transporter
(DAT) and then transport into vesicles for reuse. Alternatively, dopamine is catabolized with
the enzymes monoamine oxidase (MAO) or catechol-O-methyltransferase (COMT).

The most important treatment approach for PD has been the pharmacotherapeutic agent
L-3,4-dihydroxyphenylalanine or L-DOPA, a precursor of dopamine (Hickey & Stacy,
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2011; Smith et al., 2012). Dopamine cannot cross the blood-brain barrier while L-DOPA
can. Thus L-DOPA can be taken up by cells in the brain and then converted to dopamine by
AAAD. L-DOPA is also converted to dopamine in the peripheral nervous system, which can
lead to significant side effects. To counteract the peripheral conversion of L-DOPA to
dopamine, a DOPA decarboxylase inhibitor such as carbidopa is given along with L-DOPA.
Another approach to reverse the decrease in dopaminergic function in PD is use of
dopamine agonists, such as ropinirole, rotigotine, and pramipexole. Inhibition of the
catabolism of dopamine in the CNS is also possible using MAO inhibitors (e.g. selegiline
and rasagiline) or COMT inhibitors (e.g. entacapone).

The main model of PD has been based on alterations in dopaminergic projections from the
substantia nigra to the dorsal striatum in the motor loop. However, there is increasing
attention to other dopaminergic projections to the striatum, especially for understanding
nonmotor symptoms and side effects of treatments. The striatum is divided into the dorsal
striatum and ventral striatum. The dorsal striatum and ventral striatum have been thought to
receive dopaminergic afferents from the substantia nigra pars compacta and ventral
tegmental area respectively. (However, see section 4.1 and Kwon & Jang (2014) for another
view.) The pathway between the ventral tegmental area and nucleus accumbens is the center
of the reward circuit and the mesolimbic system, which also includes dopaminergic
projections from ventral tegmentum to the olfactory tubercle, hippocampus, amygdala, etc.
This circuit is involved in reward-related perceptions, learning, memory, motivation,
synaptic plasticity, attachment (social bonds), and mood disorders.

Figure 4 describes four pathways between the frontal cortex and striatum and a fifth direct
connection between the frontal cortex and ventral tegmentum (Calabresi et al., 2013;
Fuente-Fernandez, 2012; O’Callaghan et al., 2014). The motor loop - involving mainly the
putamen that is also the first area of the striatum to lose dopamine in PD - has already been
described above (Figure 1). Dysfunction of the motor loop has been used to explain the
hypokinetic motor symptoms of PD of bradykinesia and rigidity. The other loops are
especially helpful for explaining PD nonmotor symptoms and some treatment side effects.
These other loops also feed into the globus pallidus, substantia nigra pars reticularis, and
thalamus as described for the motor loop. However, this is a simplified schema and the
mesolimbic and mesocortical loops have additional complex anatomical and functional
features.

The hallmark of PD cognitive decline is in executive function, in contrast to Alzheimer’s
Disease (AD) for which memory decline is the hallmark (Narayanan et al., 2013). As PD
progresses, dopamine depletion expands from the putamen to the dorsal caudate, which is
connected to the dorsolateral prefrontal cortex and a key region in executive function.
Executive function includes planning, attention, working memory, and task set-shifting.
Involvement of the cortico-basal ganglia-thalamocortical dorsolateral prefrontal cortex loop
can be a mechanism for important aspects of decline in executive function. It may also
contribute to difficulties in motoric behaviors dependent on habit formation (O’Callaghan et
al., 2014).
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Additionally, it is notable that the hippocampus, a node in mesolimbic loops, has complex
dopamine interactions (Calabresi et al., 2013; Russo and Nestler, 2013). The hippocampus
degenerates in later stages of PD and leads to memory impairment and other cognitive
dysfunction. There may also be hippocampal dysfunction from degeneration of cholinergic
nuclei. All of these mechanisms may contribute to why cognitive dysfunction and dementia
become increasingly important in later stages of PD.

Although the ventral striatum/nucleus accumbens and ventral tegmental area are spared in
early PD, they, too, are eventually affected, with 60% loss of dopamine in the ventral
striatum (Fuente-Fernandez, 2012). The orbitofrontal cortex and anterior cingulate cortex
loops may be considered together as limbic loops. They are involved in apathy, anxiety,
pain, and depression. Such psychiatric symptoms may be experienced by 75% of patients.
One important feature of the limbic loops is that in earlier stages of PD they may be
overstimulated by dopaminergic therapies given to treat motor symptoms. Recall that striatal
dysfunction begins with dopamine depletion in the putamen while ventral striatal
dopaminergic function remains intact. Thus dopaminergic treatments given to treat motor
dysfunction and putaminal depletion in earlier stages may overdose the ventral striatal
pathways. This can lead to impairments of the limbic loops, including impaired reversal-
learning and reward-based cognitive functioning. It can also lead to emergence of impulse
control disorders (ICD) (pathological gambling, hypersexuality, etc.) as a distressing
behavioral side effect of treatment of motor dysfunction; ICDs may appear in 14% or more
of PD patients on dopaminergic treatments (Weintraub et al., 2013).

Finally, the direct connection between the ventral tegmental area and frontal cortex also
becomes impaired later than the motor loop, again suggesting that this pathway may be
overstimulated from dopaminergic treatments in earlier stages. One consequence of
hyperstimulation of this and limbic loops may be the prevalence of visual hallucinations and
psychosis during dopaminergic treatments. Note that increased dopamine function has been
implicated in schizophrenia and psychosis (Carlsson et al., 2000).

2.4.3. Norepinephrine—Norepinephrine in the brain is mainly synthesized in projection
neurons of the locus coeruleus region of the pons. Locus coeruleus noradrenergic neurons
project to the spinal cord, cerebellum, diencephalon (thalamus, hypothalamus), hippocampus
and amygdala, and the entire neocortex (Figure 5). Norepinephrine is synthesized from
dopamine, within cytoplasmic vesicles (see above), by the enzyme dopamine pB-hydroxylase.
Thus both dopamine and norepinephrine synthesis depend on activity of aromatic acid
decarboxylase. Norepinephrine is released from the vesicles into the synaptic cleft where it
binds to noradrenergic receptors. There are multiple types of noradrenergic receptors with
the two main subtypes as a and 8 noradrenergic receptors. Norepinephrine action is
terminated with reuptake into neurons via a norepinephrine transporter (NET) or catabolism
using MAO or COMT. In PD, there is neurodegeneration of the locus coeruleus and
decreased norepinephrine output.

Norepinephrine and serotonin have been central to many theories and treatments of affective
disorders. This includes depression in PD (Bomasang-layno et al., 2015; Jaunarajs et al.,
2011; Lewitt, 2012; Troeung et al., 2013). Degeneration of the locus coeruleus, the source of
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noradrenergic projection neurons in the brain, occurs in PD relatively early in Braak Stage 2
(Table 1) (Goedert et al., 2013).

2.4.4. Serotonin—Serotonin synthesis also depends on aromatic acid decarboxylase and
several steps similar to dopamine and norepinephrine. Serotonin is synthesized from the
essential amino acid tryptophan in the raphe nuclei of the medulla and pons. The first step is
conversion to 5-hydroxytryptophan using tryptophan hydroxylase. This is then converted to
5-hydroxytryptamine (5-HT) - serotonin - using aromatic acid decarboxylase. Serotonin is
transported into vesicles using VMAT and then released from the vesicles into the synaptic
cleft where it can bind with at least seven types of serotonin receptors. Reuptake into the
neuron is conducted using a serotonin transporter (SERT), and serotonin is catabolized by
MAQ. Serotonergic projection neurons project to multiple regions in the brain, including the
entire neocortex, substantia nigra, dorsal striatum, globus pallidus, thalamus, hippocampus,
amygdala, and nucleus accumbens, and cerebellum (Figure 5). In PD there is
neurodegeneration of the raphe nuclei and decreased serotonin output.

Along with norepinephrine, serotonin has been central to many theories and treatments of
affective disorders including depression in PD. And similar to pathology of the
noradrenergic locus coeruleus, degeneration of the raphe nuclei, the source of serotonergic
projection neurons in the brain, begins in PD relatively early in Braak Stage 2 (Table 1)
(Goedert et al., 2013).

Dyskinesias are abnormal, involuntary, distressing muscle movements that appear after
long-term treatment of PD using L-DOPA or dopamine neural transplantations (Politis et al.,
2012). Dyskinesias are also side effects of some antipsychotic pharmacotherapies (Tinazzi et
al., 2014). The cause of dyskinesias in PD is not well understood. Increased activity of
striatal glutamatergic systems has been implicated (Ahmed et al., 2011; Dupre et al., 2008),
as well as nitric oxide activity, glial activation, and neuroinflammation (Bortolanza et al.,
2015).

However, there is also evidence that serotonin function is involved in emergence of
dyskinesias from treatment of PD. Aromatic acid decarboxylase, which is a key enzyme for
synthesis of serotonin, norepinephrine, and dopamine, also catalyzes the conversion of L-
DOPA to dopamine. The rationale of L-DOPA treatment in PD is to increase dopamine
function in dopaminergic pathways to the striatum. However, L-DOPA can also be taken up
by serotonergic projection neurons, including from SERT transporters, and converted to
dopamine in serotonergic pathways. Some serotonergic projection neurons innervate the
striatum. Thus it has been proposed that uptake of L-DOPA and conversion to dopamine in
serotonergic projection neurons may lead to “aberrant” release of dopamine by serotonergic
neurons in striatal pathways, i.e. as a “false neurotransmitter” (Politis et al., 2014: 1340).
The aberrant release of dopamine in the striatum may then lead to dysfunction in the motor
loop that appears as dyskinesia.

2.4.5. Acetylcholine—The final small molecule neurotransmitter is acetylcholine. In the
central nervous system, acetylcholine is synthesized by projection neurons of the nucleus
basalis of Meynert and septal nuclei that innervate the cerebral cortex, amygdala,
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hippocampus, and thalamus; and pedunculopontine nucleus that innervate the substantia
nigra pars compacta, thalamus, hypothalamus, and cerebellar nuclei (Figure 5) (Calabresi et
al., 2006; Pahapill & Lozano, 2000). Acetylcholine is also synthesized by striatal
interneurons in caudate, putamen, and nucleus accumbens. Acetylcholine is synthesized in
the cytoplasm from choline and acetyl-CoA by choline acetyltransferase. Acetylcholine is
then transported into vesicles by vesicle-associated transporter (VAT). Acetylcholine is
released into the synaptic cleft and can bind to two main types of receptors, nicotinic
(nAchR) or muscarininc (mAchR) receptors. Acetylcholine is inactivated in the synaptic
cleft by acetylcholinesterase. In PD there is neurodegeneration of nucleus basalis of
Meynert, septal nuclei, and pedunculopontine nucleus leading to decreased cholinergic
output.

Dopamine and acetylcholine balance is an important factor in PD. When dopaminergic
function declines in the striatum, a relative hyperactivity of cholinergic versus dopaminergic
function develops in the striatum due to sparing of striatal cholinergic interneuron function,
which is not affected in PD (Figure 5). This striatal interneuron cholinergic imbalance may
play a role in the generation of abnormal beta oscillations in PD according to some models
(McCarthy et al., 2011). Imbalance between dopamine and acetylcholine in the striatum can
affect all the loops in the cortico-basal ganglia-thalamocortical circuits (Figure 4). In the
motor loop this can increase motor dysfunction that may be ameliorated by anticholinergic
treatments that block effects of the relative excess of cholinergic activity in the striatum.
When dopaminergic depletion progresses from the dorsal to ventral regions there can also be
cholinergic dependent dysfunction in executive function and limbic loops (Figure 4).

Finally, degeneration of the nucleus basalis of Meynert and pedunculopontine nucleus lead
to depletion of cortical acetylcholine, which can also contribute to cognitive decline.
(Mesulam, 2004). Also note that in the cerebral cortex, which is innervated by cholinergic
projection neurons from the nucleus basalis of Meynert and dopaminergic projections from
the ventral tegmental area (Figure 5), a relative hypoactivity of cholinergic versus
dopaminergic function may further develop in some stages of PD since the nucleus basalis
of Meynert cholinergic projection neurons degenerate before ventral tegmental area
dopaminergic projection neurons to the cerebral cortex (Calabresi et al., 2006). This relative
cholinergic hypoactivity in the cortex may be exacerbated by anticholinergic treatments
given to ameliorate the relative cholinergic hyperactivity in the striatum involving
cholinergic interneurons described above.

2.4.6. Other neurotransmitters—There are many other important neurotransmitters/
neuromodulators in the neuropathophysiology of PD (see Rice et al. (2011) for a review).
Large molecule neuroactive peptides include substance P and the endogenous opioid
peptides dynorphin and encephalin. These help modulate basal ganglia neurotransmission.
For example, as described above, medium spiny neurons of the dorsal striatum use GABA
as their neurotransmitter. However, medium spiny neurons can also release substance P,
dynorphin, or enkephalin (Lanciego et al., 2012). As another example, dopamine release in
the nucleus accumbens (ventral striatum) from neurons from the ventral tegmental area may
be modulated by dynorphins and enkephalins. Other neurotransmitters important in
understanding PD include the endocannabinoids, adenosine, nitric oxide, and hydrogen
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peroxide (H,05,). Cannabinoid receptors are found in the basal ganglia. There is some
evidence that presynaptic cannabinoid receptors can modulate GABA release and medium
spiny neuron activity. Adenosine is a neuromodulator with at least four subtypes of
receptors Aq, Aga Agp Asz. Ay, receptors are found in the basal ganglia and interact with the
dopamine receptor D, (Mishina et al., 2011). Ay, receptors are a major target of research
into nondopaminergic compounds that affect basal ganglia function (Hickey & Stacy, 2011).
H,0, produced by dopamine neurons in the substantia nigra pars compacta may modulate
somatodendritic release of dopamine in the substantia nigra pars compacta but not in the
ventral tegmental area; this may be a factor in the greater involvement and degeneration of
neurons in the substantia nigra versus ventral tegmental area in PD. NO produced by striatal
interneurons may also modulate axonal release of dopamine.

3. Neuroimaging methods

This section will introduce neuroimaging methods that have been applied to PD. It begins
with the molecular imaging modalities PET, SPECT, and MRS. These will be followed by
MRI, TCS, MEG, and multimodal approaches.

3.1. Positron emission tomography and single photon emission computed tomography

PET and SPECT are molecular imaging methods that employ exogenous, radiolabeled
agents (Hammoud et al., 2007; Niethammer et al., 2012; Price, 2012). In general, PET
methods have better spatial resolution and sensitivity than SPECT. PET employs
radioisotopes such as 11C, 18F, and 150 that have relatively short half-lives and require a
nearby cyclotron to provide the necessary radioisotopes. On the other hand, SPECT employs
radioisotopes such as 1231 or 99MT¢ that have longer half-lives and do not require an on-site
cyclotron. SPECT is less expensive and more widely available than PET and is a valuable
imaging modality for many PD applications.

Tables 2 and 5 provide examples of radioligands that have been used to study PD. Politis
(2014) has listed over 100 possibly useful radioligands and more are in development (Appel
et al., 2015; Bagchi et al., 2013; Boassa et al., 2013; Bu et al., 2014; Coakeley & Strafella,
2015; Kiessling, 2014). Many radioligands probe neurotransmitter systems and depend on
sophisticated application of the biochemistry of neurotransmitters (Brooks, 2005; Brooks &
Pavese, 2011; Hammoud et al., 2007). Neurotransmitters (or neuromodulators) that have
been investigated in PD include acetylcholine, adenosine, cannabinoid, dopamine, GABA,
glutamate, norepinephrine, and serotonin.

One common approach to the study of neurotransmitters uses 18F-FDOPA (fluoro-
dihydroxyphenylalanine) PET imaging to target activity of aromatic acid decarboxylase, the
enzyme that catalyzes the last step in synthesis of the monoamines dopamine,
norepinephrine, and serotonin (see section 2). 18F-FDOPA is a substrate for aromatic acid
decarboxylase. Thus the uptake of 18F-FDOPA can reflect the activity of aromatic acid
decarboxylase, as well as transport and vesicular storage of synthesized dopamine,
norepinephrine, and serotonin. Because the three monoamines are synthesized in different
brain regions, and their projection neurons are also unique, the pattern of 18F-FDOPA
findings can be used to understand the three monoamines:18F-FDOPA findings in the dorsal
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and ventral striatum can be used for dopamine function; locus coeruleus for norepinephrine
function; and raphe nuclei for serotonin function (e.g. Pavese et al., 2010).

Other aspects of neurotransmitter function investigated using PET or SPECT radioligands
include vesicular transporters, reuptake transporters, neurotransmitter receptors, and
enzymes that catabolize neurotransmitters such as acetylcholinesterase (Table 2) (section 2).
For example, transport of dopamine into vesicles can be probed using radioligands such

as 18F-DTBZ and 18F-F-AV to target vesicular monoaminergic transporter VMAT. Both D1
and D2/D3 receptor functions can be targeted using radioligands such as 11C-NNC, 123]-
IBZM, and 11C-RAC. The transporter that mediates reuptake of dopamine back into the
neuron after dopamine has been released, i.e. dopamine transporter DAT, can be
investigated using several radioligands including SPECT or PET imaging of versions of
ioflupane or 123]-FP-CIT, 18F-FP-CIT, 99MTc-TRODAT, etc.

There are neurochemicals other than neurotransmitters/neuromodulators that can also be
imaged using PET/SPECT (Tables 2, 5). These often target neurodegenerative processes in
the brain. The radioligand 11C-PIB has been used to image p-amyloid plaques, which are
found in Alzheimer’s disease and also approximately 40% of PD patients with dementia
(Edison et al., 2013). Several radioligands have been used to image tau protein aggregates,
which appear in disorders such as Alzheimer’s disease, chronic traumatic encephalopathy,
and PD and some atypical parkinsonian disorders (Coakeley et al., 2015; Villemagne et al.,
2015). Another valuable PET radioligand is 11C-(R)PK 11195, which has been used as a
marker for mitochondrial translocator protein (TSPO, tryptophan-rich sensory protein)
found in microglia (lannaccone et al., 2013). Microglia are activated in the brain’s
inflammatory response, which can include upregulation of TSPO and then increased binding
of 11C-(R)PK11195.

Note that although a-synuclein deposits (Lewy bodies) are the neuropathological hallmark
of PD, there is no current method for human in vivo neuroimaging of a-synuclein (Vernon
et al., 2010).

Finally, PET/SPECT is used for functional imaging of the brain (Tables 2, 5). Physiological
cerebral glucose metabolism can be measured with 18F-FDG (fluorodeoxyglucose) PET, and
cerebral blood flow (CBF) or perfusion measured using 1°0-H,0 PET. Perfusion studies
have also been performed using SPECT with the radiotracer °™Tc-ECD (ethylene cysteine
dimer). PET/SPECT measures of cerebral metabolism or CBF have been employed for
functional imaging of brain activity during motor and other tasks (section 4.5). These
approaches have also been used to assess several types of spatial covariance patterns in the
resting-state in PD (Ma et al., 2007; Eidelberg, 2009) (e.g. sections 4.6 and 4.8).

Use of PET/SPECT includes invasive administration of radioactive compounds, which can
limit some applications especially for repeated or longitudinal studies or study of younger
populations. Nonetheless, current PET/SPECT methods can be conducted safely and these
modalities have been widely used for study of patients and normal subjects. The capabilities
of PET/SPECT imaging to investigate the brain at molecular levels through use of numerous
biochemical probes is currently unmatched by other neuroimaging modalities. Although the
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temporal resolution of PET/SPECT (minutes) is lower than fMRI (seconds), PET/SPECT
functional imaging provides relatively direct measures of metabolism and CBF in
comparison with functional MRI (fMRI), which is based on a more indirect measure of brain
function. Thus PET/SPECT functional imaging of glucose or oxygen metabolism or CBF in
resting-state or task-based studies is very valuable. PET/SPECT approaches can also be less
sensitive to motion artifacts than MRI, an important consideration in the study of movement
disorders.

3.2. Magnetic resonance spectroscopy

Magnetic resonance spectroscopy is a magnetic resonance modality (see MRI below) that
allows for relatively direct imaging of many biochemical compounds (Dager et al., 2009;
Posse et al., 2013; Sharma et al., 2013; Tuite et al., 2013) (Table 2). These methods include
single voxel MRS as well as MRS imaging (MRSI). Proton 1H-MRS and MRSI have been
used to investigate a wide range of endogenous neurochemicals in PD, such as the
neurotransmitters dopamine, GABA, and glutamate (Emir et al., 2012; Grdger et al., 2014).
Additional neurochemicals are investigated as markers of neurodegeneration in PD, such as
N-acetylaspartate as a marker of healthy neurons, creatine moieties as a marker of energy
metabolism, and glutathione as a marker of oxidative stress. MRS of a different

nucleus, 31P, can be used to investigate energy metabolism by imaging high energy
phosphate (phosphocreatine, adenosine triphosphate) and low energy free phosphate (free
phosphate) moieties in the brain (Weiduschat et al., 2014). MRS can also be used to assess
glycerophosphocholine and glycerophosphoethanolamine as markers of membrane
catabolism, or myoinositol as a marker of glial activity or osmotic status.

The spatial and temporal resolution of MRS is less than PET/SPECT and other MRI
methods. However, MRS can image important biochemicals relatively directly,
noninvasively, without radiation exposure, and probe some biochemical systems that cannot
be investigated using other (PET/SPECT) molecular imaging approaches.

3.3. Magnetic resonance imaging

MRI uses magnetic fields to create images of the body by detecting spin properties of nuclei.
Most MRI studies are based on H nuclei of hydrogen atoms — protons — found
endogenously throughout the body. Structural MRI, perfusion MRI, diffusion weighted
imaging (DWI) or diffusion tensor imaging (DTI), and functional MRI have been used in
PD neuroimaging (Pyatigorskaya et al., 2013; Tuite et al., 2013; Zhang & Liu, 2013). Many
applications of these MRI approaches to PD can be found in studies listed in Tables 3 and 5
and discussions in section 4 below.

Morphometric studies of sizes and shapes of brain regions in PD have been performed using
anatomical T1-weighted imaging (T1 is the spin-lattice relaxation time). Recently, a
neuromelanin sensitive T1-weighted imaging method has been developed for improved
imaging of substantia nigra pars compacta and locus coeruleus based on presence of
neuromelanin in dopaminergic neurons (Garcia-Lorenzo et al., 2013). T2- or T2*-weighted
imaging can also be used for structural imaging of PD (T2 is the spin-spin relaxation time
and T2* is a function of T2 and also magnetic field inhomogeneities). Note that T2- and
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T2*- [or the transverse relaxation rate R2* where R2*= (1/T2*)] weighted MRI are sensitive
to the presence of paramagnetic iron, which is found in the substantia nigra. Because of this
sensitivity to iron, T2 and T2* weighted imaging of the substantia nigra were among the
earliest MRI studies of PD (Tuite et al., 2013). Another MRI method that is sensitive to the
presence of iron is susceptibility weighted imaging. These studies have shown refined
imaging of the substantia nigra, including the nigrosomes (e.g. Schwarz et al., 2014).
Quantitative susceptibility mapping (QSM) has also shown improved imaging of the
subthalamic nucleus and globus pallidus interna (Liu, T. et al., 2013).

Although hydrogen protons are found in biochemical molecules throughout the body, most
MRI methods are primarily sensitive to hydrogen belonging to freely mobile water
molecules rather than hydrogen associated with biochemical macromolecules and tissue
microstructural elements such as myelin, membranes, or proteins, which have highly
restricted and slow motions. However, two MRI methods have sensitivity to protons with
characteristics of the macromolecular pool: magnetization transfer (MT) (Henkelman et al.,
2001; Tambasco et al., 2015), and rotating frame adiabatic Ryp relaxation (Andronesi et al.,
2014). Because of their sensitivity to the macromolecular pool of protons, these methods
may be useful for assessment of alterations in tissue microstructure and integrity in PD.

Arterial spin labeling (ASL) is based on magnetic labeling of water molecules in blood,
which can then be imaged as a tracer for blood flow (Detre et al., 2012). ASL can be used to
assess cerebral perfusion and may be useful as an MRI alternative to PET/SPECT
measurements of cerebral perfusion in PD (Ma et al., 2010a; Melzer et al., 2011). ASL
neuroimaging results have compared favorably with 1°0-H,0 PET perfusion and also 18F-
FDG PET glucose metabolic patterns in PD (Ma et al., 2010a).

Diffusion weighted MRI is based on effects of diffusion of water molecules on MRI images
(Alexander et al., 2007; Hagmann et al., 2006; Le Bihan, 2003). Diffusion of water
molecules depends, in turn, on microstructural characteristics of the tissues through which
the water molecules diffuse. For example, water molecules can diffuse more rapidly in the
cerebrospinal fluid (CSF) of the ventricles than in gray matter regions of the brain. One
measure of diffusion is the diffusion coefficient, which in tissues is approximated by the
apparent diffusion coefficient (ADC). Diffusion weighted MR imaging can be used to map
ADCs in different regions of the brain. Another characteristic of diffusion is whether
molecules move isotropically, i.e. equally in all directions, or anisotropically, i.e. unequally
in different directions. Water molecules in a compartment like a neuron’s soma (body) may
be able to move relatively equally in all directions, but in a neuron’s axon may have
hindered motion in the direction perpendicular to the long axis of the axon and myelin
fibers. Diffusion tensor imaging is sensitive to the anisotropy of diffusion. DTI measures
include fractional anisotropy (FA), a measure of the anisotropy of diffusion, and also mean
diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) (Alexander et al., 2007;
Le Bihan, 2003; Madden et al., 2012). Both white matter and gray matter can be assessed
using DTI measures (Table 3). Of special note is that DTI can be used to reconstruct white
matter axonal tracts, including the large-scale structural connections of the brain (Abhinav et
al., 2014; Bach et al., 2014; Farquharson et al., 2013; Wakana et al., 2004).
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Functional MRI was developed to study brain activations associated with specific tasks. It is
based on the blood oxygenation-level dependent (BOLD) MRI method, which is sensitive to
localized changes in levels of blood oxygenation in brain regions that are activated. The
relationship between neural activation or inhibition and BOLD MRI signals is complex and
continues to be investigated (Logothetis, 2008). The current standard model for BOLD
signals is that neural activation involves a local neurovascular response that leads to
localized increase of blood flow and oxygenated hemoglobin levels, which then leads to a
localized increase in fMRI BOLD signal.

Although fMRI signals typically increase during task performance in activated regions of
the brain, fMRI signals also show spontaneous fluctuations or oscillations at approximately
0.01 to 0.1 Hz. These low frequency signal fluctuations, in different regions of the brain, can
be synchronized or temporally correlated (Biswal et al., 2010; Di et al., 2013; Du et al.,
2014). This synchronized activity reflects functionally connected brain regions or networks.
Functional connectivity can be assessed during tasks or in the resting state. Current interest
is especially focused on resting-state studies (Tables 3, 5). Resting-state functional
connectivity (rsfc) may be referred to as intrinsic functional connectivity, and functional
connectivity networks as intrinsic connectivity networks. Many intrinsic connectivity
networks have been described, such as the default mode, executive, sensorimotor, salience,
dorsal attention, visual, and auditory networks (Fox et al., 2005; Raichle, 2011; Shine et al.,
2014; Van den Heuvel et al., 2010). The spontaneous fluctuations in fMRI BOLD signals
can also be characterized by their regional homogeneity (ReHo) in a cluster of voxels, which
may reflect how well neural function is synchronized in the region (Wu et al., 2009).
Another important measure of these fluctuations is their amplitude, as amplitude of low
frequency fluctuations (ALFF) or fractional ALFF (FALFF) (Aiello et al., 2015; Biswal et
al., 2010).

Graph theoretical analyses of connectivity networks describe the organization of
connectivity networks as nodes joined by edges. Baggio et al.’s (2014) graph theoretical
analysis of functional connectivity networks in PD patients includes helpful introductions to
common terms used in graph theory analyses: nodes, edges, betweenness, characteristic path
length, clustering coefficient, degree, global efficiency, hubs, local efficiency, modularity,
small world topology, etc.

MRI in PD investigations is a noninvasive approach and does not expose subjects to
radiation. This safety profile, along with excellent spatial and temporal resolution and wide
availability, has led to widespread applications of MRI for structural and functional
neuroimaging investigations of PD.

3.4. Transcranial sonography

TCS is a noninvasive ultrasound imaging method that is being developed for structural
imaging of some brain regions in PD and has potential use in the clinical diagnosis of PD
(Alonso-Canovas et al., 2014; Bouwmans et al., 2013; Mehnert et al., 2010; Politis, 2014;
Sahuquillo et al., 2013; Stenc et al., 2015). Most TCS studies of PD have focused on
echogenicity of the substantia nigra, but other brain regions have also been assessed, such as
the lenticular nucleus, raphe nuclei, and ventricles.
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So far TCS has been applicable for study of only a few brain regions in PD. TCS also
depends on an adequate acoustic window through the skull: some patients lack this window
and are, therefore, unsuitable for examination using TCS. Further, TCS is very dependent on
operator skill and can be difficult to employ reliably (Alonso-Canovas et al., 2014; Miller &
O’Callaghan, 2015). Nonetheless, TCS is much less expensive than MEG, MRI, PET, and
SPECT modalities. This could be an important advantage for clinical applications of TCS if
adequate clinical validity and reliability are demonstrated.

3.5. Magnetoencephalography

MEG is a functional neuroimaging technology that detects electromagnetic fields primarily
associated with neuronal currents of pyramidal cells of the cerebral cortex (Stam, 2010).
MEG has overlap with electroencephalography applications. Oscillations in different
frequency bands (e.g. alpha, beta, etc.) and synchronization of oscillations between different
brain regions can be assessed. MEG has been used to study cortico-muscular coherence
(Airaksinen et al., 2015) and predict dementia in PD (Olde Dubbelink et al., 2014b). MEG
has also been used to study functional connectivity alterations in PD (Olde Dubbelink et al.,
2013, 2014a; Ponsen et al., 2013).

MEG is noninvasive and can more directly measure neural function than PET/SPECT or
MRI. It also has superior temporal resolution (milliseconds) compared with other
neuroimaging modalities used to study PD such as PET/SPECT or MRI, while having useful
spatial resolution (Meyer-Lindenberg, 2010). However, MEG is more costly than other
methods in several ways, which has so far resulted in less availability for investigational
purposes or clinical utility.

3.6. Multimodal neuroimaging

Any single imaging modality will have benefits and limitations in comparison with other
imaging modalities. Multimodal imaging combines imaging from complementary modalities
to enhance the benefits of imaging. Multimodal imaging can refer to imaging platforms that
allow for acquisition of imaging data from more than one modality sequentially or
simultaneously (Price, 2012). Hybrid SPECT/CT and PET/CT platforms were the earliest
examples of these platforms and allowed for improved integration of structural (CT) and
metabolic (PET/SPECT) imaging data (Basu & Alavi, 2008). Some PD studies have
employed hybrid 18F-FP-CIT or 18F-FDOPA PET/CT (Bhidayasiri et al., 2012; Park et al.,
2014; Song et al., 2014) or 123|-FP-CIT SPECT/CT (Sydoff et al., 2013)

Technological advancements with more complex PET/MRI platforms are beginning to make
it possible for simultaneous MRI structural or functional and PET molecular imaging
(Jadvar & Colletti, 2014; Riedl et al., 2014). Hybrid PET/MRI has been used to

compare 18F-FDG PET and fMRI ALFF, ReHo, and functional connectivity degree of
centrality measures in normal subjects (Aiello et al., 2015). Applications to the study of PD
are still in developmental stages, although use of PET/MRI with 18F-Florbetan amyloid PET
and structural MRI to diagnose a Lewy body dementia has been reported (Werner et al.,
2015).

Neurosci Biobehav Rev. Author manuscript; available in PMC 2016 December 01.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Weingarten et al.

Page 19

Multimodal imaging may also refer to methods that utilize data acquired separately from
different modalities. Several combinations of PET and MRI results have been applied to PD:
dopaminergic PET imaging and fMRI to understand striatal dopamine modulation of
functional connectivity networks (Baik et al., 2014; Lebedev et al., 2014); 18F-FDG PET
and structural MRI to assess metabolic and morphometric changes in the brain after
mesenchymal stem cell treatment for MSA (Lee et al., 2012); 18F-FDOPA PET, TCS of the
substantia nigra, and DTI of the olfactory tract and hyposmia in PD (Scherfler et al., 2013);
and 11C-PiB PET, 18F-FDG PET, and structural MRI for differential diagnosis of DLB from
Alzheimer’s disease (Kantarci et al., 2012). The term multimodal has also been used for
MRI studies that combine structural, functional connectivity, and diffusion weighted
imaging in a single study (e.g. Aquino et al., 2014; Garcia-Lorenzo et al., 2013; Long et al.,
2012; Yao et al., 2014). These studies demonstrate the potential value of integration of
different neuroimaging approaches to improve neurobiological understanding of PD.

4. Neuroimaging of PD

To help illustrate the variety and complexity of PD neuroimaging studies we will now focus
on several topics for more detailed discussions. We begin with some recent neuroimaging
studies that have probed PD relevant neural systems in healthy participants (section 4.1).
These studies are making important contributions to understanding of the normal state of
brain regions, connections, and neurotransmitter functions that may be altered in PD and its
treatments. This will be followed by several topics from neuroimaging of PD patients. These
topics were chosen from two complementary perspectives: 1) a methodological perspective
focused on how neuroimaging approaches have been used to address various clinical
questions (sections 4.2 to 4.5), followed by 2) a clinical perspective focused on how a
clinical topic has been investigated with various neuroimaging approaches (sections 4.6 to
4.8). The methodological perspective includes discussions of molecular neuroimaging of
neurotransmitter systems and other neurochemicals; structural, perfusion, and diffusion
weighted MRI; and functional imaging of PD. These discussions will primarily draw from
comparisons of PD patients with healthy controls. We will then take up clinical perspectives
on neuroimaging of differential diagnosis of PD and co-morbid syndromes; genetic PD and
prodromal syndromes; and treatment effects. Some studies will be described in more depth
to provide examples of more detailed illustration of these complex investigations.
Summaries of some key results from neuroimaging studies of PD are provided in Tables 2,
3, and 5.

Note that the focus of our review was human studies. Thus all studies in discussions that
follow were human studies unless identified as an animal study; also, all studies in Tables 2
to 5 were human studies. The majority of PD neuroimaging studies have been conducted in
the resting-state. Thus neuroimaging studies in discussions that follow or are listed in Tables
2 to 5 were resting-state studies unless noted to be task-based. Finally, results from
neuroimaging studies of PD treatments presented in our discussions or Table 5 were focused
on longitudinal studies.
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4.1. PD relevant normal brain structure and function

Much of our understanding of brain structure and function relevant to PD was derived from
animal studies or human lesion or post mortem studies rather than observations in vivo in
humans. Figure 6 shows white matter pathways that have been imaged only recently for the
first time in vivo in humans using DTI. These include the nigrostriatal, nigrothalamic,
pallidothalamic, subthalamopallidal, striatopallidal (Lenglet et al., 2012), and hyperdirect
pathways (Brunenberg et al., 2012) in normal subjects; and cerebellar
subthalamopontocerebellar and dentatothalamic tracts in PD patients (Sweet et al., 2014).

Our understanding of how midbrain dopaminergic neurons project to the striatum, with
dopaminergic neurons from substantia nigra pars compacta mainly projecting to dorsal
striatum while those from the ventral tegmental area project to ventral striatum and frontal
cortex (Figures 4 and 5), was also derived primarily from animal studies (Diizel et al., 2009).
However, DTI studies have now indicated that the substantia nigra pars compacta in humans
actually has more structural connectivity with the ventral striatum and frontal cortex than
does the ventral tegmental area (Kwon & Jang, 2014). If valid these findings will alter
understanding of key regions and connectivity networks involved in PD.

Another aspect of the normal brain that is important in PD is organization of the basal
ganglia. Recent neuroimaging studies of structural and functional connectivity of the basal
ganglia (Barnes et al., 2010; Di Martino et al., 2008; Draganski et al., 2008; Kim, D. et al.,
2013; Lenglet et al., 2012; Postuma et al., 2006; Tziortzi et al., 2014) have been largely
consistent with earlier models of segregated parallel loops between the basal ganglia and
cortex (Fuente-Fernandez, 2012; O’Callaghan et al., 2014) (Figure 4). Refinements to these
models include some overlap between loops and information about smaller subregions.

An understanding of the role of dopamine in the normal brain is also critical to
understanding PD and its treatment with dopaminergic agents. For example, Kelly et al.
(2009) administered L-DOPA to healthy subjects and observed that functional connectivity
increased between putamen and cerebellum and midbrain ventral brainstem, but decreased
between right dorsal caudate and default mode network. Further, functional connectivity
between the inferior ventral striatum and ventrolateral prefrontal cortex (task-positive
network) or posterior cingulate cortex (default mode network) was increased or decreased
by L-DOPA respectively. L-DOPA also decreased functional connectivity within the default
mode network. In another study, Cole et al. (2013) compared administration of L-DOPA, the
dopamine antagonist haloperidol, and placebo in normal subjects. Results included that
functional connectivity between a basal ganglia limbic network (BGLN) and precentral and
postcentral gyri (motor cortex) was increased by dopamine but decreased by haloperidol
relative to placebo (L-DOPA > placebo > haloperidol). However, BGLN functional
connectivity with anterior/mid cingulate region was higher in placebo than either L-DOPA
or haloperidol. Default mode network functional connectivity with several cortical regions
showed variable results for the three agents. Results indicated complex linear and nonlinear
dopaminergic modulation of different functional connectivity networks.

Because dopamine is synthesized in humans from the amino acid tyrosine (Figure 3), it is
possible to manipulate dietary sources of tyrosine to deplete dopamine within a few hours.
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Carbonell et al. (2014) used this approach to assess resting-state functional connectivity in
normal subjects in a dopaminergic depleted state. Observations included that the normal
segregation of task positive and default mode networks, as well as functional connectivity
within the task positive network, were impaired in the lowered dopamine state; these may be
factors for cognitive impairment in PD.

Finally, Tzioritzi et al. (2014) conducted a multimodal study that combined PET imaging of
D2/D3 receptors with diffusion weighted MRI to investigate amphetamine induced
dopamine release in the striatum in normal subjects. They concluded that approximately
80% of cortical connections to the striatum were from the frontal lobe, followed by the
parietal lobe, then temporal lobe, and only 2% from the occipital lobe. With respect to
frontal cortical connections with the striatum, approximately 50% of connections were from
executive frontal regions (e.g. dorsolateral prefrontal cortex), 20% from limbic regions, and
rostral and caudal motor regions comprised only approximately 9+/— 5 and 4 +/- 3%
respectively. Thus: “executive projections occupy a large portion of the striatum, and this
finding contradicts the concept that striatum is primarily a motor functional region” (Tziortzi
et al., 2014: 1173). Advances are also being made regarding the normal role of GABA in
motor networks. For example, Stagg et al. (2014) conducted a multimodal study that
combined MRS and fMRI to show that GABA levels in the primary motor cortex were
negatively correlated with resting-state functional connectivity in the motor network. In
addition, transcranial direct current stimulation to the primary motor cortex, which is known
to decrease GABA levels, resulted in increased functional connectivity in the motor
network.

Overall, these studies of normal brain structure and function show that much remains to be
known about the normal state of the brain that may be altered by PD and its treatments.
They also point to experimental approaches that could be applied to PD patients.

4.2. Molecular neuroimaging of neurotransmitter function

The most frequently investigated neurotransmitter system in PD has been dopamine. One of
the most repeated observations is that PD patients compared with healthy controls show
decreased dopamine function in the striatum (caudate and putamen) (Bajaj et al., 2013;
Brooks & Pavese, 2011; Suwijn et al., 2015). This has been observed in PET/SPECT studies
of aromatic acid decarboxylase activity, dopamine receptors, and dopamine and vesicular
monoamine transporters (Table 2). Further, there is a gradient of dopaminergic dysfunction
with earliest and greatest decrease in function occurring in the posterior putamen, followed
by the anterior putamen, and then the caudate (Brooks and Pavese, 2011; Groger et al.,
2014; Hacker et al., 2012; Zhang & Liu, 2013). Dopaminergic dysfunction in the striatum,
especially in the posterior putamen which is the striatal region with more connectivity with
motor cortical region, is consistent with the clinical importance of motor impairment.

Although most dopaminergic studies have assessed striatal dopaminergic function,
alterations in other regions of the brain have also been observed. For example, PD patients
compared with controls have shown increased dopamine transporter function in the
extrastriatal region of the ventromedial prefrontal cortex (Lee, J.-Y. et al., 2014). This is part
of the mesolimbic dopaminergic system, which has implications for dopaminergic treatment
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side effects such as impulse control disorders in PD. Another example is from Groger et al.
(2014), who recently used MRSI to make the first direct in vivo observations of dopamine
depletion in the substantia nigra in PD. Rostral and caudal portions of the substantia nigra,
approximating the substantia nigra pars reticulata and compacta respectively, showed
decreased dopamine levels in PD, with lower levels in caudal than rostral substantia nigra.
This is consistent with pathological observations of nigral degeneration in PD (Braak et al.,
2004).

There have been multimodal studies of PET imaging of dopaminergic function combined
with fMRI for functional connectivity networks in PD. For example, Baik et al. (2014)
observed positive correlations between posterior putamen dopaminergic function and
functional connectivity of the caudate with postcentral/precentral regions, anterior putamen
with dorsolateral frontal regions, and posterior putamen with cerebellar cortices or
dorsolateral frontal regions. Negative correlations were observed between posterior putamen
dopaminergic function and connectivity of anterior putamen with mesiofrontal regions, and
connectivity of posterior cingulate cortex with anterior prefrontal or parietal regions. Results
indicated a variety of associations between putaminal dopaminergic function and
connectivity networks with implications for PD symptoms and dopaminergic treatment
effects.

There are also molecular neuroimaging studies of all the other major neurotransmitters. For
example, with respect to cholinergic function, Meyer et al. (2009) observed that patients
with PD compared with healthy controls showed decreased nicotinic receptor binding in the
midbrain, pons, anterior cingulate cortex, frontoparietal cortex, and cerebellum. Suggested
mechanisms for the decline of cholinergic receptor binding included degeneration of
nigrostriatal dopaminergic neurons that also have cholinergic receptors, mesocorticolimbic
dopaminergic neurons, cholinergic projection neurons from the basal nucleus of Meynert,
pedunculopontine nucleus, or striatal cholinergic interneurons. However, a more recent
study of nicotinic receptor function in early stage PD showed nicotinic receptor density that
was “higher in the putamen, the insular cortex, and the supplementary motor area and lower
in the caudate nucleus, the orbitofrontal cortex, and the middle temporal gyrus” (Isaias et al.,
2014: 1). Increased receptor density indicated compensatory upregulation of cholinergic
function in some regions. The investigators remarked that their study was the first to
observed increased nicotinic receptor binding in PD and suggested that the discrepancy
could be due to differences in patient characteristics or, that in their study, patients had been
off dopaminergic pharmacotherapy for a much longer (72 hours) period at the time of
scanning than in other studies. Although neuroimaging of the peripheral nervous system is
outside the scope of this review, we note that a recent study of PD by Gjerlgff et al. (2015)
applied PET imaging of cholinergic function to the study of organs other than the brain.
They observed decreased 11C-donepezil binding as a measure of acetylcholinesterase
function that indicated parasympathetic denervation of the small intestine and pancreas in
PD patients.

18F_.FDOPA PET imaging has been used to study norepinephrine and serotonin function in
addition to dopaminergic function (Pavese et al., 2010, 2011, 2012). Advanced stage PD
compared with healthy controls showed decreased norepinephrine and serotonin function in
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locus coeruleus and midbrain raphe respectively (Pavese et al., 2010). However, a
longitudinal study of early stage PD indicated that, at baseline, serotonin function in the
midbrain raphe was significantly increased while norepinephrine function in the locus
coeruleus was insignificantly increased (Pavese et al., 2011). After three years there were
decreases in both norepinephrine and serotonin function. Results suggested possible
compensatory mechanisms for serotonin and norepinephrine. Another study of serotonergic
and dopaminergic function in PD used 123]-FP-CIT SPECT imaging (Joutsa et al., 2015).
Results indicated that the striatum and ventral midbrain had decreased dopaminergic
function but the thalamus and raphe nuclei had increased serotonergic function indicating
compensatory upregulation.

With respect to glutamatergic and GABAergic function in PD, IH-MRS studies have
observed increased glutamate in the substantia nigra in PD by Gréger et al. (2014), but not
Emir et al. (2012). Increased GABA has been observed in pons and putamen (Emir et al.,
2012) or substantia nigra in PD (Grdger et al., 2014). The GABA increases are consistent
with some human and animal studies of PD, such as Mn toxicity induced parkinsonian
syndromes that showed increased GABA levels in striatum in 1H MRS studies in men
exposed to Mn (Dydak et al., 2011). Note that GABAergic neurons in the striatum include
medium spiny neurons that are the source of GABA striatofugal pathways in the classic
cortico-basal ganglia-thalamocortical model of PD (Figure 1), as well as a small population
(< 5%) of GABAergic interneurons (Lanciego et al., 2012). Animal studies have suggested
that both populations of GABAergic neurons could be altered under conditions of dopamine
depletion such as occurred in PD (Dehorter et al., 2009).

With respect to neuromodulators, PET imaging of adenosine A receptor binding in PD
patients (without levodopa induced dyskinesias) did not show differences with healthy
controls (Mishina et al., 2011; Ramlacksingh et al., 2011). However, PET imaging of
cannabinoid receptors in PD has shown several significant differences with controls:
cannabinoid receptor availability was decreased in midbrain region of the substantia nigra,
but increased in putamen, prefrontal cortex, midcingulate, anterior insula, and hippocampus
(Laere et al., 2012). Increased cannabinoid receptor availability suggested compensatory
mechanisms in basal ganglia, mesocortical, and mesolimbic function.

4.3. Molecular neuroimaging of other neurochemicals

Several other neurochemicals that can be markers of neurodegenerative processes have been
investigated with PET or MRS imaging in PD (Table 2).

PET studies of 11C-PIB for presence of amyloid observed no significant differences between
PD and controls (Campbell et al., 2013) or only minor findings (Edison et al., 2013).
However, PET studies of 11C-PK 11195 for neuroglial activation found significantly
increased 11C-PK11195 binding in temporo-parietal and occipital regions (Edison et al.,
2013), or in the putamen and substantia nigra (lannaccone et al., 2013) in PD patients
compared with healthy controls. PET studies of 18F-FDDNP as a marker for tau have
observed increased binding in midbrain, thalamic, and cerebellar regions that distinguished
PSP compared with PD (Kepe et al., 2013).
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1H-MRS studies have found differences between PD (or DLB) patients and controls in
levels of N-acetylaspartate, glutathione, myo-inositol, and creatine moieties indicating
alterations in neuronal health, oxidative stress, gliosis, and energy metabolism respectively
(Graff-Radford et al., 2014; Groger et al., 2014; Levin et al., 2012).

Finally, alterations in energy metabolites in men and women in PD have been studied

using 31P-MRS. Evidence has suggested that men are more prone to experience non-motor
symptoms related to dopaminergic therapy and carry a greater disease burden and suffer
lower quality of life (Lubomski et al., 2014; Picillo et al., 2014). Also, lifelong exposure to
estrogen may be protective against PD (Gatto et al., 2014). Weiduschat et al. (2014) (Table
2) observed that in the striatum and temporo-parietal gray matter, men with PD had lower
amounts of high energy phosphate compounds than women with PD, while normal men and
women did not show these differences. Because energy metabolism takes place in the
mitochondria, this suggested that men with PD may have greater mitochondrial dysfunction,
perhaps due to estrogen’s ability to increase oxidative phosphorylation and decrease
adenosine triphosphatase.

4.4. Structural, perfusion, and diffusion MRI

Many structural MRI investigations of PD have been conducted in conjunction with DTI or
fMRI studies listed in Table 3 (e.g. Cherubini et al., 2014; Luo et al., 2014b; Shine et al.,
2014). Other investigations have focused on structural MRI per se (e.g. Biundo et al., 2015;
Fioravanti et al., 2015; Hoglinger et al., 2014; Lee, E. et al., 2014; Lee, J.E. et al., 2014;
Morelli et al., 2014; Salvatore et al, 2014). Most of these studies reported atrophy in some
cortical, basal ganglia, or brainstem regions in PD compared with healthy controls, generally
consistent with widespread pathological findings in the brain in PD. Other types of structural
MRI findings have included 7 Tesla T2*-weighted imaging of the substantia nigra that have
shown diminished smoothness of substantia nigra borders (Cho et al., 2011) or absence of
hyperintense nigrosome 1 (Blazejewska et al., 2013) in PD. Susceptibility weighted imaging
at 3 Tesla has also been able to detect absence of nigrosomes in PD (Schwarz et al., 2014).
Susceptibility mapping has shown increased magnetic susceptibility in the substantia nigra,
consistent with increased iron content in PD (Loftipour et al., 2012; Murakami et al., 2015).
Susceptibility mapping in PD patients has also shown improved imaging of the subthalamic
nucleus and globus pallidus internus, both important regions for neurosurgical placement of
electrodes for DBS (Liu, T. et al., 2013). Decreased magnetization transfer has been
observed for substantia nigra in PD suggesting diminished structural integrity (Bunzeck et
al., 2013). Alterations in rotating frame adiabatic R1 rho mapping have also been observed
in the brainstem in PD indicating neurodegenerative changes (Tuite et al., 2012). Finally,
neuromelanin sensitive imaging has observed decreased volumes of substantia nigra pars
compacta and locus coeruleus (Castellanos et al., 2015), or decreased signals in locus
coeruleus (Garcia-Lorenzo et al., 2013), indicating loss of dopaminergic neuromelanin
containing neurons in these regions in PD.

Several ASL perfusion studies of PD have appeared. Al-Bachari et al. (2014) examined
neurovascular status in PD through ASL measures of arterial arrival time (AAT).
Widespread regions of the brain showed prolongation of AAT. A combined ASL and
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morphometric study observed a pattern of “parietal cortical thinning and reduced precuneus
perfusion” that appeared even in mild PD (Madhyastha et al., 2015: 1). A novel ASL
perfusion approach has also been used to examine functional connectivity of the subthalamic
nucleus in PD and indicated subthalamic nucleus hyperconnectivity with primary motor
cortex and precuneus regions (Fernandez-Seara et al., 2015).

The number of DTI studies of PD are large and growing rapidly (Table 3). Two meta-
analyses have recently appeared. Cochrane & Ebmeier (2013: 859) assessed studies of
“parkinsonian syndromes and related dementias” and “consistently detected an alteration in
anisotropy of at least 1 region.” The strongest result, based on a meta-analysis of nine
studies comparing PD patients with healthy controls, was for decreased FA in the substantia
nigra. However, in another meta-analysis of DTI of the substantia nigra comparing PD with
controls, Schwarz et al. (2013) did not observe any significant changes in FA of the
substantia nigra but did observe a significant increase in MD in the substantia nigra. Their
results showed a much larger variation in results than observed by Cochrane & Ebmeier
(2013) and their meta-analyses of either MD or FA changes in the substantia nigra showed
insignificant disease effects. They concluded: “results of the meta-analysis of nigral FA
changes question the stability and validity of this measure as a PD biomarker” (Schwarz et
al., 2013: 481).

Although these two meta-analyses are quite recent, many DTI studies have appeared since
their publication. Indeed, none of the diffusion weighted studies in Table 3 of this review
were included in Cochrane & Ebmeier (2013) or Schwarz et al. (2013). These studies often
reported decreased FA and/or increased MD in gray and white matter regions and tracts in
many cortical, subcortical, brainstem, and cerebellar regions. Decreased FA and increased
MD indicate loss of microstructural integrity and, therefore, these results are generally
consistent with neuropathological findings in widespread regions in gray and white matter in
PD. Also note that correlations between FA or MD with measures of clinical function (e.g.
unified Parkinson’s disease rating scale (UPDRS), cognitive measures) suggest that better
microstructural integrity correlates with better clinical function, such as FA positively
correlated with executive function in multiple white matter tracts (Rae et al., 2012). An
example of an exception to this type of result is Garcia-Lorenzo et al.’s (2013) observation
of increased FA in the midbrain tegmentum and rostral pons in PD patients with REM sleep
behavior disorder compared with healthy controls. Possible reasons for increased FA in this
result included degeneration of a crossing fiber tract in these regions, or other expressions of
disease progression particular to this patient population.

Note that DTI studies can have complex results. For example, Kim, H. et al. (2013)
examined white matter tracts in PD patients compared with healthy controls. Although no
significant differences in FA were observed, increased MD in many white matter tracts was
observed, including the corticofugal tracts (corona radiata, internal capsule, cerebral
peduncle); cingulum, uncinate fasiculus, crus fornix stria terminalis, corpus callosum,
external capsule, superior longitudinal fasiculus, posterior thalamic radiation, superior
cerebellar peduncle, and tracts near the precuneus and supramarginal gyrus. The
investigators noted that the corona radiata and internal capsule are traversed by the
corticostriatal, corticospinal, corticopontine, and corticobulbar tracts. The corticostriatal

Neurosci Biobehav Rev. Author manuscript; available in PMC 2016 December 01.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Weingarten et al.

Page 26

pathway is a component of the cortico-basal ganglia-thalamocortical circuit; and the
corticospinal and corticopontine and corticobulbar (cranial nerves) tracts contain the
pyramidal projection pathways essential for motor function. The cingulum, uncinate
fasiculus and external capsule are pathways of cholinergic projection neurons from the
nucleus basalis of Meynert, which begin to show pathological changes relatively early in PD
Braak stage 2. These cholinergic afferents are important for cognitive function, which is
often impaired in PD. Involvement of many of these regions has been observed for
visuospatial as well as motor functions. By way of summary, deficits were observed in many
white matter tracts that subserve motor and nonmotor symptoms PD.

As another example, Zheng et al. (2014) examined correlations between five domains of
cognitive function and FA and MD maps of white matter tracts in PD. The five cognitive
domains were executive function, linguistic performance, attention, short-term memory, and
long-term memory. Performance in all five domains showed positive correlations with FA
and negative correlations with MD in some regions, consistent with expectations that FA
decreases and MD increases with neurodegeneration and neurocognitive dysfunction. The
anterior corona radiata appeared in results for executive, linguistic, attention, and long-term
memory domains, suggesting that motor function subserved by pathways of the anterior
corona radiata may influence assessments of cognitive function across domains.

4.5. Functional neuroimaging

PET/SPECT studies of glucose metabolism and cerebral blood flow have been the most
frequently used methods to study patterns of brain activity during rest (Tables 2 and 5). MRI
has been the most frequently used modality to study brain activity during tasks or functional
connectivity networks during rest or tasks (Table 3).

4.5.1. Brain activity during rest—18F-FDG PET imaging of regional cerebral glucose
metabolism has been used to assess resting-state spatial covariance patterns of metabolic
activity in PD (Eidelberg, 2009; Ma et al., 2007). The most important PD related metabolic
pattern (PDRP) has been identified in association with motor symptoms. PDRP can be
characterized by relatively decreased metabolism, in PD patients compared with healthy
controls, in “parietal association cortex, visual cortex, and lateral premotor and prefrontal
association cortices” and increases “in the pons, bilateral thalamus, pallidum, dorsal
putamen, primary motor cortex, and supplementary motor area” (Teune et al., 2013: 550)
(Tang et al., 2010). A similar pattern has been observed in a nonhuman primate model of
parkinsonism (Ma et al., 2012). PDRP has also been assessed using 1°0-H,0 PET or 99MTc-
ECD SPECT imaging of cerebral blood flow (Eckert et al., 2007; Hirano et al., 2008;
Holtbernd et al., 2014).

MRI can also image patterns of regional brain activity in the resting-state in PD (Tables 3
and 5). Continuous arterial spin labeling measures have been used to assess spatial
covariance patterns of perfusion in PD. A direct comparison between 18F-FDG-PET and
CASL spatial covariance patterns in PD observed good overlap (Ma et al., 2010a; Teune et
al., 2014). Other MRI studies have used ALFF or ReHo analyses of fMRI BOLD signals.
For example, a PDRP pattern derived from ALFF (PDRP-ALFF) comprised decreases in
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“striatum, supplementary motor area, middle frontal gyrus, and occiptal cortex” and
increases in “thalamus, cerebellum, precuneus, superior parietal lobule, and temporal
cortex” (Wu et al., 2015: 1). Some PDRP-ALFF results were similar to 18F-FDG PET
derived PDRP, e.g. in supplementary motor area, thalamus, cerebellum, but others were
different, e.g. in striatum. Also, there were some similarities and differences between these
PDRP-ALFF results and other ALFF studies of PD (Hou et al., 2014; Skidmore et al.,
2013a; Zhang et al., 2013) (Table 3).

4.5.2. Brain activity during tasks—The most frequently studied tasks in PD
neuroimaging have been motor tasks. Herz et al. (2014) conducted a meta-analysis of 24
functional neuroimaging studies (three PET, 21 fMRI) of motor tasks in PD. Finger and
hand motor tasks showed decreased activation in the right posterior putamen but increased
activation in left superior parietal lobule. Further, in the OFF medication state during
externally but not internally driven motions, PD patients showed decreased activation in the
left primary motor cortex and increased activation in the left inferior parietal cortex and
superior parietal lobule. The 24 studies also showed some inconsistent results. For example,
studies of presupplementary motor area activity in PD patients versus controls described
both increased and decreased activation. Inconsistent results were also observed for ON
versus OFF dopaminergic medication comparisons in the right putamen and middle frontal
gyrus; some studies showed increases while others showed decreases.

Additional functional neuroimaging studies of tasks (Tables 2, 3, and 5) have been of motor
or motor sequence learning (Burciu et al., 2015; Gonzalez-Garcia et al., 2011; Herz et al.,
2015; Jahanshahi et al., 2010; Ko et al., 2013; Mure et al., 2012; Van Nuenen et al., 2009;
Weiss et al., 2015; Wu et al., 2011a, 2011b, 2012), selection (MacDonald et al., 2011),
affective face processing (Anders et al., 2012), virtual reality gait (Shine et al., 2013),
visuomotor tracking (Palmer et al., 2010), visual tasks that can identify patients with
hallucinations (Shine et al., 2014), and the ictal period of REM sleep in PD patients with
REM sleep behavior disorder (Mayer et al., 2015) (section 4.7 ). Overall, changes have been
observed in widely distributed regions of the brain, brainstem, and cerebellum in PD for
many types of tasks.

4.5.3. Functional connectivity—Resting-state fMRI based functional connectivity
studies comprise the vast majority of functional connectivity studies of PD (Tables 3, 5).
Many of these have shown alterations to motor networks. An early study was by Helmich et
al. (2010) on functional connectivity of corticostriatal networks. In both PD and healthy
controls, the posterior putamen was functionally connected with motor cortex (e.g. primary
motor, primary somatosensory, supplementary motor area); anterior putamen with pre-
supplementary motor area and anterior cingulate cortex; and caudate with dorsomedial and
dorsolateral prefrontal cortex. However, PD patients compared with controls showed
decreased functional connectivity between posterior putamen with cingulate motor area,
postcentral gyrus and inferior parietal cortex, and increased functional connectivity between
anterior putamen and inferior parietal cortex. Further, a dissociation was observed for a
region in the inferior parietal cortex, for which healthy controls showed connectivity with
posterior putamen but PD patients showed connectivity with anterior putamen. Finally, in
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controls both precentral gyrus and inferior parietal cortex were connected with the posterior
putamen, but in PD patients the precentral gyrus was connected with posterior putamen
while the inferior parietal cortex connected with the anterior putamen (Helmich et al., 2010:
1181). These results suggested that compensatory alterations or “remapping” occur in PD
that increase the role of the anterior putamen versus the posterior putamen, consistent with
the posterior putamen’s earlier and greater dopaminergic dysfunction in PD (Brooks &
Pavese, 2011). Functional connectivity between the precentral gyrus and inferior parietal
cortex were also decreased in PD, indicating that “cortico-striatal remapping may also
impair cortico-cortico processing” (ibid: 1181).

More recent striatal connectivity studies have supported some of these findings, such as
decreased corticostriatal functional connectivity with the putamen in PD (Luo et al., 2014).
However, there have also been important differences. For example, Hacker et al. (2012)
highlighted decreased functional connectivity between the striatum and extended brainstem
— thalamus, midbrain, pons, and cerebellum — in PD. As another example, Luo et al. (2014b)
observed decreased functional connectivity in corticostriatal and mesolimbic-striatal
networks but did not observe any increased functional connectivity in PD. The investigators
suggested that differences in patient characteristics, such as study of early stage medication
naive patients by Luo et al. (2014b) but more advanced stage patients by Helmich et al.
(2010) and Hacker et al. (2012), or methodological differences might be the basis for
differences in results.

Functional connectivity studies of PD have highlighted other networks in addition to striatal
networks. Baudrexel et al. (2011) observed increased connectivity between subthalamic
nucleus and bilateral primary motor, premotor, supplementary motor area, and primary
sensory regions. These results suggested increased engagement of the hyperdirect pathway
in PD. Increased functional connectivity between the subthalamic nucleus and cortex in PD
has also been observed more recently by Fernandez-Seara et al. (2015) and Kahan et al.
(2014).

With respect to core brain networks, Tessitore et al. (2012b) found decreased functional
connectivity between the medial temporal lobe and inferior parietal cortex regions of the
default mode network. Further, although PD patients did not have diagnoses of mild
cognitive impairment, functional connectivity of the medial temporal lobe was positively
correlated with memory scores, while connectivity of the inferior parietal lobule positively
correlated with visuospatial function. Results indicated a role for disruption of the default
mode network in cognitive dysfunction in PD. Gorges et al (2013) investigated the default
mode network and a subtype of motor impairment, namely, oculomotor motor dysfunction
in PD. They found decreased functional connectivity between the medial prefrontal cortex
and posterior cingulate cortex, and increased connectivity between the right and left
hippocampi. There was also a negative correlation between saccadic accuracy and functional
connectivity between posterior cingulate cortex and medial temporal lobe, but positive
correlation between vertical saccadic accuracy and functional connectivity of the right
hippocampus to left inferior parietal lobe and left hippocampus to right inferior parietal
lobule. 1t was suggested that increased connectivity between bilateral hippocampi, involved
in memory, might help compensate for cognitive dysfunction.
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In the normal brain, the default mode and central executive networks are typically
anticorrelated while the salience and central executive networks are positively correlated.
Recently, Putcha et al. (2015) described alterations to coupling between these networks in
PD. The default mode and central executive networks were observed to be positively
coupled rather than anticorrelated. Also, there was decreased coupling between the salience
and central executive networks. Functional connectivity between the salience network and
the striatum was also negatively correlated with motor function. Results indicated disruption
of the normal function of core connectivity networks that may explain aspects of motor and
cognitive dysfunction in PD.

Application of graph theoretical perspectives to brain functional connectivity networks in
PD has also shown widespread alterations in network function. Skidmore et al. (2011) found
decreased mean global efficiency in PD, as well as decreased efficiency for many nodes
including precuneus/cuneus, middle frontal gyrus, supplementary and precentral regions,
calcarine and secondary visual regions, and cerebellum. Géttlich et al. (2013) also observed
decreased global efficiency and increased characteristic path length in PD. Further, they
found that the visual network had a lower degree (number of connections) and sensorimotor
network had a higher degree in PD patients versus controls. The increased connectivity of
the sensorimotor module suggested a possible compensatory mechanism. Finally, Zhang et
al. (2015) observed decreased functional connectivity density in the ventral visual pathway
and increased connectivity density in precuneus and posterior cingulate regions, overlapping
some results from Géttlich et al. (2013).

An important question is whether there is a relationship between structural and functional
connectivity alterations in PD and other disorders. Sharman et al. (2013) conducted a
multimodal study of both structural and functional connectivity in PD. Structural
connectivity was decreased between the sensorimotor cortical region and putamen and
thalamus, along with decreased connectivity in pallidothalamic and nigrothalamic
connections. Functional connectivity was decreased in connections of the sensorimotor
cortex with thalamus; globus pallidus with putamen and thalamus; and substantia nigra with
globus pallidus, thalamus, and putamen; but increased in connections of thalamus with
associative cortex, limbic cortex, and putamen (Sharman et al., 2013: 452). Thus structural
and functional connectivity changes overlapped in connections from “thalamus to
sensorimotor cortex, globus pallidus, and SN (substantia nigra)” (ibid: 452) and indicated “a
possible link between brain structure and function” for “dysfunction of the sensorimotor
circuit in PD” (ibid: 447). The increased functional connectivity in some thalamic
connections suggested compensatory mechanisms.

4.6. Differential diagnosis and co-morbid syndromes

Currently there is one approved neuroimaging agent to aid in the diagnosis of parkinsonian
syndromes, namely, the radioligand 123]-FP-CIT (also known as 123|-fluopane or
DaTSCAN) that is used for SPECT imaging of the dopamine transporter (Bajaj et al., 2013).
Patients with parkinsonian syndromes show decreased FP-CIT binding in the striatum
(Table 2). This finding can help differentiate parkinsonian syndromes (i.e. PD, multiple
system atrophy, progressive supranuclear palsy) from essential tremor, or dementia with
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Lewy bodies (which overlaps diagnosis of PD) from Alzheimer’s disease (Bajaj et al., 2013;
Gerasimou et al., 2012; Oliveira et al., 2015; Thiriez et al., 2015). However, it is important
to realize that decreased 1231 -FP-CIT identifies the loss of dopaminergic neurons, which is
not specific for PD. This highlights the many diagnostic needs that are unaddressed by
currently available techniques. The development of neuroimaging to improve PD diagnosis
continues to be a major topic in PD neuroimaging (Politis, 2014; Zhang & Liu, 2013).

Another important molecular imaging approach for differential diagnosis in PD is 18F-FDG
PET imaging of resting-state cerebral glucose metabolism (described in section 4.5 above).
This has been used to identify differences in regional cerebral glucose metabolism that can
differentiate PD from healthy controls, CBD, DLB, MSA-C, MSA-P, and PSP (Table 2).
For example, resting-state spatial covariance patterns can discriminate between PD (PDRP),
MSA (MSARP), and PSP (PSPRP) (Eckert et al., 2008; Tang et al., 2010). Resting-state
spatial covariance patterns have also been obtained from 1°0-H,0 PET or ASL MRI
perfusion imaging and ALFF fMRI. Although further studies are needed, note that Wu et
al.’s (2015) study of ALFF resting-state spatial covariance patterns showed promise for
differentiating PD patients from healthy controls at the individual level, and may have
potential clinical advantages over 18F-FDG PET approaches because of the wider
availability and safety profile of MRI.

There are also many structural MRI studies relevant to diagnosis of PD, including many of
the structural MRI studies presented above (section 4.4). These have involved voxel based
morphometric analyses of cortical, basal ganglia, and brainstem regions to look for atrophic
changes secondary to neurodegeneration in PD. They have also involved an expanding list
of advanced MRI methods, such as T2, T2*, susceptibility weighted imaging, magnetization
transfer, neuromelanin sensitive imaging, etc., to image the substantia nigra and midbrain
with sufficient detail to discriminate pathological changes of PD. A meta-analysis of 39
voxel-based morphometry studies of PD, MSA-P, CBD, and PSP has indicated that there are
patterns of atrophy that can differentiate these disorders from each other (Yu et al., 2015).
Other recent structural MRI studies not included in this meta-analysis were a volumetric
study of the midbrain tegmentum to differentiate PD versus PSP (Kim et al., 2015); a
support vector machine learning algorithm for classification of PD, PSP, and healthy
controls using T1-weighted MRI (Salvatore et al., 2014); and susceptibility weighted
imaging of the putamen to differentiate PD and MSA-P (Yoon et al., 2015). DTI also has
potential for differentiating PD from atypical parkinsonian syndromes (Cherubini et al.,
2014; Haller et al., 2012; Prodoehl et al., 2013) (Table 3).

Another important neuroimaging topic in PD diagnosis is differentiation of PD from
Alzheimer’s disease and other dementias or taupathies (Petrou et al., 2015; Politis, 2014).
Examples are PET 11C-PiB imaging of amyloid for comparison of PD and Alzheimer’s
disease (Campbell et al., 2013), PET 18F-FDDNP imaging of tau deposits for comparison of
PSP and PD (Kepe et al., 2013), and 1H-MRS metabolites and MRI morphometric studies
for comparison of Alzheimer’s disease, dementia with Lewy bodies, and controls (Graff-
Radford et al., 2014) (Table 2).
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Finally, there are numerous co-morbid syndromes in PD that are being studied with
neuroimaging. The results are highly heterogeneous, complex, particular to specific co-
morbid syndromes, and often include examples of inconsistent findings. Thus it is not
possible to adequately discuss them in our review. Here we will call attention to the range of
neuroimaging studies of PD co-morbid syndromes, examples of which are given in Tables 2,
3, and 5; and recent reviews of PD co-morbid syndromes that included discussions of
neuroimaging studies. These can be useful background for further inquiry.

Cognitive dysfunction/dementia is one of the most common co-morbid syndromes in PD.
Discussions of neuroimaging of cognitive dysfunction in PD have been included in reviews
by Calabresi et al. (2006), Duncan et al., 2013; Lin & Wu (2015), Mak et al. (2015), and
Petrou et al. (2015). Neuroimaging studies relevant to understanding cognitive dysfunction
in PD have examined PD with dementia, PD with mild cognitive impairment, and
neuroimaging correlates of cognitive function in patients with PD who did not have a
diagnosed cognitive disorder (e.g. Weintraub et al., 2012; Yarnall et al., 2014). Significant
findings related to cognitive dysfunction have included alterations in dopaminergic and
cholinergic function, amyloid, MRS metabolites, 18F-FDG PET cognitive related PDCP
pattern, atrophy observed using structural MRI, DTI abnormalities in gray and white matter
and white matter tracts, and fMRI assessment of deficits in functional connectivity
networks, ReHo, and ALFF findings. As one example of a recent PET study of PD with co-
morbid cognitive dysfunction, Lucero et al. (2015) observed that binding of 11C-PiB PET
correlated with cognitive decline in PD patients with less than 16 years of education but not
in those with 16 or more years of education, suggesting that “education may protect PD
patients’ cognition against cortical amyloid pathology” (ibid: 899) (Table 2).

Depression is another very common co-morbid syndrome of PD that is beginning to be
studied with neuroimaging. Vriend et al. (2014a) reviewed neuroimaging studies of
depression in PD and highlighted decreased dopaminergic function in the ventral striatum.
MRI studies of co-morbid depression in PD have also shown alterations in ALFF and
morphometric result although they are notable for some inconsistent results in ALFF results
(Luo et al., 2014a; Skidmore et al., 2013b; Wen et al., 2013) and morphometric studies
(Surdhar et al., 2012; van Mierlo et al., 2015).

Three other PD co-morbid syndromes that have been the focus of recent reviews are visual
hallucinations (Lenka et al., 2015), impulse control disorders (Jimenez-Urbieta et al., 2015;
Vriend et al., 2014a), and dyskinesias (Jimenez-Urbieta et al., 2015). Note that Vriend et al.
(2014a) reviewed both depression and impulse control disorders in PD, while Jimenez-
Urbieta et al. (2015) reviewed both impulse control disorders and levodopa induced
dyskinesias, as disorders with related neurobiological mechanisms. Finally, co-morbid
olfactory dysfunction, REM sleep behavior disorder, and tremor are also being investigated
with neuroimaging (Tables 2, 3, 5).

PD and prodromal PD

Neuroimaging of genetic PD can increase understanding of pathways from specific genetic
and biochemical alterations to alterations in structure and function of the brain (Table 4).
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Studies of genetic PD also provide unique opportunities to investigate changes occurring in
the presymptomatic period in asyptomatic carriers.

Asymptomatic carriers of Parkin and PINK1 mutations have shown decreased 18F-FDOPA
uptake in the striatum, especially in the putamen, a key striatal region for motor deficits in
PD (Eggers et al., 2010; Hilker et al., 2012; Pavese et al., 2010). For example, homozygous
PINK1 carriers have shown a 60% decrease in 18F-FDOPA uptake in caudate and putamen,
while heterozygous carriers showed a 20% decrease in the putamen (Eggers et al., 2010). As
another example, Pavese et al. (2010) observed that asymptomatic heterozygote Parkin
carriers showed decreased 18F-FDOPA uptake in caudate and putamen in comparison with
healthy controls. However, Parkin PD patients showed decreases in additional regions of the
ventral striatum, locus coeruleus, midbrain raphe, and pallidum. Idiopathic PD patients
showed decreases in even more regions, including the hypothalamus, thalamus, and pineal.
PINK1 patients showed reductions in caudate, putamen, and ventral striatum. Thus results
indicated alterations in monoaminergic function that differed between asymptomatic carriers
and patients, and between genetic and idiopathic forms of PD. Results also showed evidence
of abnormal dopaminergic, noradrenergic (locus coeruleus), and serotonergic (midbrain
raphe) function in genetic Parkin and idiopathic PD.

McNeill et al. (2013) examined patients with GBA, SNCA, LRRK2, PINK1, and Parkin PD
with 123|-FP-CIT SPECT imaging to assess asymmetry of uptake in caudate and putamen.
Parkin, PINK1, and SNCA PD showed relatively symmetric decreases in 1231-FP-CIT
uptake, while GBA and LRRK2 showed relatively asymmetric decreases in uptake.
Investigators suggested that the symmetry of Parkin, PINK1 and SNCA alterations were
consistent with deficits that would be expressed from birth. On the other hand, the
asymmetric alterations of GBA and LRRK2 could be more consistent with the later onset of
these disorders and involvement of endogenous or environmental factors for PD to manifest.

Several studies of genetic PD have indicated compensatory mechanisms in tasks. An fMRI
study of finger tapping motor tasks in asymptomatic carriers of Parkin or PINK1 mutations
showed increased activation in motor regions of the rostral supplementary motor area and
dorsal premotor cortex in comparison with healthy controls, suggestive of a compensatory
mechanism (Van Nuenen et al., 2009). A neuroimaging study of an affective face processing
task in asymptomatic carriers showed increased activation in the right ventrolateral premotor
cortex/inferior frontal gyrus pars opercularis and decreased activity in the left lateral
orbitofrontal cortex (Anders et al., 2012). The inferior frontal gyrus pars opercularis is the
putative site of mirror neurons, suggesting compensatory recruitment for this social affective
processing task.

Resting-state functional connectivity studies have also shown evidence of compensatory
mechanisms in SCA2 parkinsonism (Wu et al., 2013). Both asymptomatic carriers and
patients showed decreased functional connectivity between the posterior putamen and many
regions of the basal ganglia, cortex, and thalamus. However, asymptomatic carriers also
showed increased functional connectivity between the posterior putamen and M1,
postcentral gyrus, precuneus, parietal lobule, anterior cingulate cortex, prefrontal cortex, and
pons. With respect to functional connectivity with the pre-supplementary motor region,
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asymptomatic carriers showed increased connectivity with motor cortical areas such as M1,
caudate, pons, and cerebellum, while patients showed increased connectivity with M1 but
decreased connectivity with basal ganglia, pons, cerebellum, etc. These results indicated that
there are resting state functional connectivity decreases in basal ganglia networks that
already occur in asymptomatic states of SCAZ2 carriers, along with compensatory increases
in other connectivity networks such as with M1 that could explain the lack of motor
symptoms.

Compensatory mechanisms have also been observed using DTI in a study by Thaler et al.
(2014) on asymptomatic carriers of the G2019S mutation in the leucine-rich repeat kinase 2
(LRRK2) gene, which is the most common mutation that causes PD. Carriers compared to
noncarriers did not show significant differences in FA, MD, RD, or AD values in gray
matter regions of the basal ganglia or thalamus or white matter tracts. However, there was a
trend towards significance for increased FA and decreased MD in the bilateral anterior
thalamic radiations and corticospinal tracts, and right superior longitudinal fasiculus, inferior
fronto-occipital fasiculus, cingulate, and forceps major (Thaler et al., 2014: 3). Because
decreased FA and increased MD indicate neurodegeneration, this trend towards increased
FA and decreased MD might “indicate structural remodeling as a mechanism of
compensation” (Thaler et al., 2014:3).

Neuroimaging of prodromal syndromes is another important way to study how the brain
may be altered before PD is clinically manifest. REM sleep behavior disorder, which may
appear 10 to 15 years earlier in patients with PD (Mayer et al., 2015), has been studied with
many types of neuroimaging approaches in Tables 2 and 3. Kotagal et al. (2012) used PET
to examine acetylcholinesterase, vesicular monoamine transporter, and serotonin transporter
activity and observed decreased cholinergic function in the neocortex without change in
dopaminergic or serotonergic function in PD patients with RBD. A 18F-DOPA PET study of
dopaminergic function in patients with RBD with depression but without PD showed
decreased dopaminergic function in the putamen and caudate (Wing et al., 2015). As these
patients also showed olfactory dysfunction the evidence suggested that the patients may
represent a prodromal stage of PD. An MRI study employed neuromelanin sensitive
imaging, diffusion weighted ADC mapping, and DTl measures and showed that PD patients
with RBD had decreased intensity in the locus coeruleus/subcoeruleus (Garcia-Lorenzo et
al., 2013). Using 18F-FDG PET, Holtbernd et al. (2014) observed that patients with RBD
showed elevated PDRP patterns. Further, follow-up after around 5 years showed that 8 out
of 17 subjects converted to PD or DLB and that conversion was predicted by PDRP
expression and age at the time of PET imaging. Finally, Mayer et al. (2015)

conducted 9°™T¢c-ECD SPECT imaging during ictal REM sleep in one patient with RBD,
one with PD-RBD, and two with narcolepsy and RBD. All patients showed similar
activation patterns in cortical, brainstem, and cerebellum regions. There was also no
evidence of basal ganglia involvement, indicating that the motor activity of RBD did not
involve the basal ganglia, unlike motor activity in the waking state.
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4.8. Treatment effects

Most neuroimaging studies of treatment effects in Table 5 have been of idiopathic PD, with
one study each of SCA2 genetic PD, MSA, and parkinsonism associated with schizophrenia.
Several studies have included investigation of levodopa induced dyskinesias. Although to
our knowledge no articles have yet appeared on effects of treatment for patients with PD and
depression, one study has assessed PD patients with L-DOPA associated mood fluctuations
(Black et al., 2005). Patients have been assessed as early as the asymptomatic carrier state of
a genetic mutation (SCA2), early stage, drug naive PD, advanced stages of PD after DBS
electrodes have been implanted, or 13 to 16 years after dopamine grafting.

All neuroimaging studies of treatment of PD in Table 5 have shown significant results,
usually in the direction of normalization of abnormal findings. Here we give examples of a
few of the many interesting results.

Many PET/SPECT treatment studies examined changes in neurotransmitter function after
treatment, including adenosine, dopamine, glutamate, norepinephrine, and serotonin. The
most frequently investigated neurotransmitter systems have been dopamine and serotonin,
and several studies have investigated both neurotransmitter systems. Serotonin function has
been of special interest in patients with levodopa induced dyskinesias (Politis et al., 2012,
2014; Smith et al., 2015). For example, there have been two PET studies of neurotransmitter
function after dopamine grafts (Ma et al., 2010b; Politis et al., 2012). Both of these
examined dopaminergic function with 18F-DOPA PET imaging and showed improved
dopaminergic function in the basal ganglia after grafting. In addition, Politis et al. (2012)
also examined norepinephrine function with 18F-DOPA PET and serotonin function

with 11C-DASB PET. Results indicated that although norepinephrine (:8F-DOPA binding in
the locus coeruleus region) function appeared normal, serotonergic function in the raphe
region declined and, therefore, was not improved by the dopamine graft. As another
example, Politis et al. (2014) studied effects of L-DOPA along with the serotonin agonist
buspirone as treatments for PD with levodopa induced dyskinesias. Patients with PD and
dyskinesia showed abnormally increased striatal release of dopamine from L-DOPA.
Buspirone pretreatment before administration of L-DOPA resulted in decreased striatal
dopamine release, as well as decreased dyskinesias. L-DOPA effects have also been
investigated in patients with parkinsonism associated with schizophrenia (Tinazzi et al.,
2014). In these patients, abnormal dopaminergic function in the dorsal striatum predicted
motor impairment and also response to L-DOPA treatment.

Study of cerebral metabolic and blood flow spatial covariance patterns are making important
contributions to understanding of a wide range of treatments, including effects of L-DOPA,
DBS, AAV-GAD, and sham surgery treatments. An 18F-FDG PET study of AAV-GAD
gene therapy examined expression of PDRP and PDCP, which were elevated at baseline,
and showed that there was decreased expression of PDRP but not PDCP after treatment
(Feigin et al., 2007). Other studies examined L-DOPA and DBS treatments and observed
that they had different effects, for example, for a normal movement related pattern (Ko et
al., 2013), motor sequence learning related pattern (Mure et al., 2012), and motor related PD
patterns (Hirano et al., 2008). Note that the study by Hirano et al. (2008) included both 18F-
FDG PET metabolic and 1°0-H,0 PET CBF assessments that revealed an interesting
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dissociation: L-DOPA decreased metabolic but increased CBF PDRPs, while DBS
decreased both metabolic and CBF PDRPs.

One of the most interesting PET studies of spatial covariance patterns was of sham burr hole
surgery (SHAM) in a double-blind 12 month longitudinal study of AAV-GAD gene therapy
(Ko et al., 2014). Under the blind, patients who received SHAM treatment and showed
clinical motor improvement revealed a sham-related metabolic covariance pattern (SSRP)
characterized by increased activity in the anterior cingulate, subgenual cingulate, inferior
temporal cortex, hippocampus, amygdala, and posterior cerebellar vermis. SSRP expression
correlated with motor scores. Motor outcomes for SHAM and AAV-GAD responders were
not significantly different under the blind, although SSRP expression differed. When
patients were unblinded, SHAM expression in responders decreased. Baseline SSRP
expression predicted motor outcomes under blinded conditions at 6 months. One conclusion
was that results indicated that baseline SSRP expression might be useful as a way to identify
SHAM placebo responders when selecting subjects for randomized trials.

Another important neuroimaging approach for the study of PD treatments is fcMRI based
functional connectivity studies. The earliest study was by Kwak et al. (2010), who observed
increased resting-state functional connectivity in corticostriatal connections in PD that was
decreased by L-DOPA. However, Esposito et al. (2013) observed decreased functional
connectivity in the sensorimotor network in PD patients OFF medication that increased and
normalized after L-DOPA administration. Further, PD patients showed “rhythm specific
modulation of the sensorimotor network” by L-DOPA (Esposito et al., 2013: 710). For
example, L-DOPA led to increased oscillations in the 0.02-0.03 Hz, but not in 0.015-0.020
Hz, band in the sensorimotor network. Regarding differences between their results and
Kwak et al. (2010), the investigators noted differences in patients (medication naive patients
versus treated patients withdrawn from medication) as well as different analytic approaches,
such as ICA versus seed-based connectivity networks respectively (Esposito et al., 2013:
721). More recently, decreased resting-state functional connectivity in the basal ganglia
network has been observed in PD patients OFF medication, which improved after
administration of their own medications (Szewczyk-Krolikowski et al., 2015). Other studies
have observed that L-DOPA increased functional connectivity of regions in the cerebellum
and brain stem (Jech et al., 2013); between substantia nigra pars compacta and multiple
regions of the cerebral cortex, basal ganglia, thalamus, cerebellum, and pons (Wu et al.,
2012); and between putamen and thalamo-cortical and cerebellar circuits and cortical motor
networks in asymptomatic and symptomatic SCA2 carriers (Wu et al., 2013).

FcMRI has also been used to investigate effects of subthalamic DBS (Kahan et al., 2014). A
simplified version of the DCM model was used (Figure 2c). DBS increased the strength of
cortico-striatal, striato-thalamic (direct pathway), and thalamo-cortical connections; but
decreased cortico-subthalamic (hyperdirect), striato-subthalamic, and subthalamic-thalamic
connections. Connectivity strengths in several connections were able to predict motor
impairment, with three connections that were predictive both on and off DBS stimulation:
hyperdirect, striato-subthalamic, and direct pathways (Figure 2c). Increasing connectivity
strength in the direct and hyperdirect pathways predicted decreased motor impairment, while
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increasing connectivity strength in the striato-subthalamic pathway predicted increased
motor impairment. These three connections also predicted response to DBS treatment.

Overall, the complexity of current neuroimaging findings on treatments of PD demonstrates
the valuable contributions being made from many different types of neuroimaging studies,
and that much work remains to develop understanding of the neural mechanisms involved in
treatments of PD.

5. Overall summary and future directions

Our understanding of PD has long been informed by a model of the cortico-basal ganglia-
thalamocortical motor circuit that describes how decreased dopaminergic input into the
motor loop of the circuit alters neuronal activity in direct and indirect pathways and thus
leads to diminished motor function. Neuroimaging investigations have helped to validate
some aspects of this model.

The white matter structural connections of the nigrostriatal, subthalamopallidal,
pallidothalamic, and striatopallidal pathways of the simplified model of the corticobasal
ganglia-thalamocortical circuit in PD have recently been imaged in vivo in humans for the
first time, helping to validate pathways that previously had only been observed in animal or
human post mortem studies or sometimes group MRI studies (Figures 1, 6). With respect to
the model’s role for dopamine, numerous PET and SPECT radioligand studies have
demonstrated decline in dopaminergic function in the dorsal striatum, the target of substantia
nigra pars compacta projection neurons that degenerate in PD (Table 2). A meta-analysis of
functional MRI studies of motor tasks in PD has also shown that patients OFF dopaminergic
medication have decreased putaminal activity associated with motor tasks and increased
likelihood of decreased putaminal activity with increasing motor impairment. 1H-MRS
studies have been able to observe a decline in dopamine levels in the substantia nigra per se
in PD. The model also predicts that there will be alterations in pathways of the cortico-basal
ganglia-thalamocortical circuit in PD. Many neuroimaging studies have observed alterations
in structure and function of regions and connections of this circuit in PD. Finally, the model
predicts that dopaminergic replacement therapies will improve function of the cortico-basal
ganglia-thalamocortical circuit; many neuroimaging studies have observed this.

Although many aspects of the model have been validated, neuroimaging studies are also
providing evidence for ways to modify the model. One such modification is importance of
the hyperdirect pathway between the cortex and subthalamic nucleus in PD
neuropathophysiology and treatments. Structural connectivity studies have now provided in
vivo neuroimaging evidence for the hyperdirect pathway in humans. Several studies have
observed alterations to the hyperdirect pathway, such as increased functional connectivity
(hyperconnectivity) of the hyperdirect pathway in PD. In addition, neuroimaging studies are
beginning to provide evidence for a critical role of the hyperdirect pathway in the emergence
of beta oscillations that are not explained by the classic rate model. Further, neuroimaging
studies have indicated that L-DOPA and DBS treatments can modulate the connectivity of
the hyperdirect pathway.
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Another possible modification is inclusion of the cerebellum (Wu & Hallett, 2013). The
cerebellum is absent from the classic model of PD although neuroimaging studies frequently
observe its involvement in PD (Tables 2, 3, and 5). Although the cerebellum has been an
infrequent target of molecular neuroimaging neurotransmitter studies, 18F-FDG PET

and 1%0-H,0 PET or 99MTc-ECD SPECT studies of cerebellar glucose metabolism and
cerebral blood flow, respectively, have often observed alterations in PD and atypical
parkinsonian syndromes. Functional MRI studies of PD have shown increased activation of
the cerebellum associated with motor tasks or REM ictal periods for RBD, while resting-
state functional connectivity studies have shown alterations in cerebellar functional
connectivity in PD that tended to normalize after administration of L-DOPA. Imaging of
two white matter tracts to the cerebellum that may be important in PD and DBS treatment
have also recently been imaged for the first time in vivo in humans and the studies suggested
the importance of the dentatothalamic tracts for DBS tremor control.

There are numerous other neurotransmitters, neurochemicals, brain regions, and
connectivity networks that show involvement in PD and its treatments as this review has
shown. Alterations of all the major neurotransmitters of the brain, as well as other
neuromodulators such as adenosine, and other neurochemicals such as the
neurodegenerative marker TPSO, bioenergetic metabolites, and amyloid, are being revealed
by molecular neuroimaging. There are also alterations in many brain regions and networks
beyond the motor loop of the cortico-basal ganglia-thalamocortical circuit, from the lower
brainstem to cerebellum and all the lobes of the cerebral cortex. Current trends towards use
of data driven analytic methods that can reveal findings throughout the brain and are not
limited by model dependent hypotheses may be facilitating expansion of knowledge about
PD beyond the classic model. Many of these more wide ranging findings involve
neurocognitive systems for nonmotor systems and symptoms, such as the limbic and
executive loops of the cortico-basal ganglia-thalamocortical circuit, default mode network,
cognitive impairment and dementia, depression, olfactory or visual functions, etc.

Although there has been great expansion in the number of PD neuroimaging studies much
work remains. First, there are discrepancies in the current literature that await further
investigation and understanding. Perlmutter & Norris’ (2014) review of neuroimaging
biomarkers in PD provided several examples of discrepancies. Additional examples of
discrepancies were described in this review. Possible reasons for discrepancies include
heterogeneous methods and analytical approaches (e.g. Groger et al., 2014; Hacker et al.,
2012; Rae et al., 2012). However, imaging and analytical approaches employed in PD
studies have, in general, contributed to understanding of many neurocognitive systems in
healthy individuals and neuropsychiatric disorders.

Another possible factor is the heterogeneity of PD patients in studies (Duncan et al., 2013).
PD patients may have heterogeneous etiologies (idiopathic, genetic, etc.) and diagnoses that
include atypical Parkinsonian syndromes; stages from early stage medication naive to
advanced PD; akinetic rigid or tremor dominant forms; history or not of levodopa induced
dyskinesias, mood fluctuations, or impulse control disorders; dominant left or right sided
motor symptoms; presence or not of co-morbid depression or cognitive impairment; age;
gender; etc. Any of these differences could be predicted to show differentiable neuroimaging
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findings, with potential combinations and interactions between various factors adding to the
complexity. Thus a second direction for future studies is better characterization and selection
of patient groups that would provide more homogeneous groups for investigations, as well
as analytical approaches that can better probe heterogeneous populations. Many studies are
beginning to target more specific subtypes of PD patients according to factors such as
rigidity/akinesia, tremor, depression, cognitive impairment, dyskinesias, men versus women,
etc., and these results can contribute to understanding effects of heterogeneous participants.
Note that study of genetic PD may allow for especially homogeneous participant groups and
findings, since genetic PD emerges from a specific genetic variation and biochemical
alteration and, further, participants may be assessed from asymptomatic (including
heterozygotic and homozygotic carriers) through advanced stages. Application of analytical
approaches to address heterogeneity has begun (Holiga et al., 2013). Methods such as
behavior-based connectivity analysis that can address multiple behavioral measures may be
helpful (Chen et al., 2009).

Third, improved methods for motion correction in MRI studies may diminish effects of head
motion that could lead to systematic errors in comparisons of ON versus OFF treatment
conditions, since motion artifacts would be expected to be greater in the OFF condition in
movement disorders such as PD. Improved mation correction may also lead to decreased
variance in either ON or OFF conditions.

Fourth, development of the clinical value of neuroimaging will continue to be an important
area of endeavor as the clinical value of neuroimaging has been limited (Perimutter &
Norris, 2014; Politis, 2014). So far the additive value of neuroimaging over a good history
and physical exam has not been very useful for clinical purposes (e.g. Hellwig et al., 2013).
For example, although many neuroimaging studies of PD cited in this review refer to one or
more of their neuroimaging findings as a biomarker or potential biomarker, currently there
are no established neuroimaging biomarkers for clinical use in PD (Duncan et al., 2013;
Miller & O’Callaghan, 2015; Perlmutter & Norris, 2014; Schapira, 2013; Sharma et al.,
2013). Further, it is possible that any single measure, neuroimaging or otherwise, may not be
sufficiently useful as a clinical biomarker of PD (Schapira, 2013). Thus future work on
biomarkers may include studies that explore combinations of measures, perhaps including
combinations of neuroimaging biomarkers.

Fifth, a key direction for future studies is the advancement of current and novel
neuroimaging methods to improve investigation of the neurodegenerative changes in PD.
Neuroimaging approaches that could better reveal the nature of neurodegenerative changes,
especially in prodromal and early stages, could help advance understanding of
neurodegenerative processes and may lead to new approaches for treatments and, hopefully,
preventive strategies. The ability to image a-synuclein would be of particular importance as
a-synuclein deposits in Lewy bodies and neurites are the neuropathological signature of PD.
Efforts to image a-synuclein are underway (Perlmutter & Norris, 2014; Vernon et al., 2010).
A better understanding of the biochemical and cellular pathways that lead to
neurodegeneration may also open up new imaging targets to facilitate early detection and
disease staging (e.g. NO and glial activation (Bortolanza et al., 2015); axonal degeneration
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(Burke & O’Malley, 2013); prion-like mechanisms (Goedert et al., 2013; Surmeier &
Sulzer, 2013).

Overall, neuroimaging of PD is likely to continue to reveal a complex picture of neural
involvement consistent with the extensive brain regions and neurobiological systems
involved in PD, with many neurodegenerative changes already present when patients first
begin to seek medical attention and which then further expand as the disorder progresses.
These changes potentially include all the major regions of the brain and multiple
neurotransmitter systems. Thus future advances in neuroimaging that allow for more refined
imaging of brain structure and function seem likely to lead to even more complexity.
Hopefully this complexity will converge with development of more individualized
neuroimaging and personalized medicine approaches for assessment, treatment, and
prevention of PD.

Finally, Gjerlgff et al.’s (2015) PET study of parasympathetic denervation in PD reminds us
that “neuroimaging” extends far beyond the brain (Stoessl, 2015). The Braak hypothesis
supports the pattern of a “gut-to-brain” propagation of Lewy pathology, and indeed
symptoms of peripheral nervous system dysfunction are common amongst de novo PD
patients. Future neuroimaging studies targeted to the peripheral nervous system may allow
identification of PD in its earliest (preclinical) stages, improve our understanding of disease
pathogenesis and progression, and enable the design of clinical trials to test treatments that
might prevent or delay the onset of motor and other central nervous system features of PD.

In conclusion, much work will be needed to develop better treatments and preventive
strategies. A description of PD and effects of L-DOPA treatment was once given by a
patient: “‘who likened the glow of the levodopa awakening to the switching on of a light and
the equally abrupt return of the parkinsonian darkness to the light going off” (Lees, 1989;
Duvoisin, 1974) (sic)” (Black et al., 2005: 590). Neuroimaging is bringing more light to the
previously hidden landscape of the neuropathophysiological alterations occurring in PD and
its treatments. In this way it is hoped that neuroimaging will also help bring more light to
where it is most needed, in the lives of those with PD.
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» PD neuroimaging is revealing a rapidly expanding range of findings
«  Studies of diagnosis, co-morbidity, treatments, and other topics are increasing

» Advances in neuroimaging of clinically useful biomarkers are needed
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D1 +,

cerebral cortex

D2 -

globus pallidus interna

ia nigra
pars compacta

nigra
pars
reticulata

globus pallidus
externa

thalamus

subthalamic nucleus

Fig. 1.

Simplified schema of the cortico-basal ganglia-thalamocortical circuit with direct and

indirect pathways from the dorsal striatum. Black arrows with triangle heads: Glutamatergic

excitatory projection neurons. Black arrows with circle heads: GABAergic inhibitory
projection neurons. Red arrows: Dopaminergic projection neurons. Dopamine excites

GABAergic medium spiny neurons (MSN) via D1 receptors; dopamine inhibits GABAergic
MSNs via D2 receptors. (Delong, 1990; Galvan & Wichmann, 2008; Honey et al., 2003;

Lanciego et al., 2012; Siegel & Sapru, 2006).
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dorsal striatum
thalamus
globus pallidus interna
cerebral cortex
Glu stellate globus pallidus
externa
Glu pyramidal A
Ins® ® Ins
> subthalamic nucleus
dorsal striatum
thalamus
globus pallidus interna
cerebral cortex
Glu stellate globus pallidus
externa
Glu pyramidal
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) subthalamic nucleus
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thalamus
obus pallidus interna
A 4 globus pallidus i
cerebral cortex E
Glu stellate globus pallidus
externa
Glu pyramidal
Ins® ®Ins
_____________________________________________________________________________________ ] subthalamic nucleus
Fig. 2.

Dynamic causal model (DCM) of cortico-basal ganglia-thalamocortical circuit with direct,
indirect, and hyperdirect pathways, and three cortical subpopulations: excitatory
glutamatergic stellate cells, excitatory glutamatergic pyramidal projection neurons, and
inhibitory GABAergic interneurons (adapted from Moran et al., 2011). Black arrows with
triangle heads: Glutamatergic exhitatory projection neurons. Black arrows with circle heads:
GABAergic inhibitory projection neurons. Black arrow with double circles: GABAergic
interneurons. Glu=glutamatergic; Ins=interneurons. (top) DCM study by Moran et al.
(2011). Bold arrows: effective connectivity was greater in Parkinsonian versus control
animals. Dotted arrows: effective connectivity was less in Parkinsonian versus control
animals. Glowing arrows: increasing these connections increased beta oscillations. (Note
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that the entopeduncular nucleus in Moran et al.’s (2011) model is homologous to the primate
globus pallidus interna shown here.) (middle) DCM and electrophysiological study of
Parkinson’s patients by Marrieros et al. (2013). Bold arrows: effective connectivity was
greater in OFF versus ON L-DOPA state. Glowing arrows: these connections increased beta
oscillations in the OFF state. (bottom) DCM and resting-state functional connectivity study
of Parkinson’s patients by Kahan et al. (2014). The earlier DCM model was simplified by
eliminating globus pallidum (gray filled boxes) and adding connections between putamen
(dorsal striatum), subthalamic nucleus, and thalamus (lines without arrowheads). Bold
arrows: deep brain stimulation (DBS) increased strength of these pathways. Dotted arrows:
DBS decreased strength of these pathways. Glowing arrows: these connections predicted
motor function both OFF and ON stimulation. Lavendar glow: increasing strength of these
connections predicted decreased motor impairment. Red glow: increasing strength of these
connections predicted increased motor impairment. (Adapted from Kahan et al., 2014).
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dopamine B-hydroxlase
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vesicular monamine transporter
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cytoplasmic vesicle

s

rojection neuron —Q ;
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dopamine receptors
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Fig. 3.

Dopamine biochemistry. Some common abbreviations are given. Italics: enzymes. COMT:
catechol-O-methyl transferase; MAO: monoamine oxidase. (Hammoud et al. 2007; Rice et

al.; 2011).
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‘ Motor l ‘ dIPFC - executive | OFC - limbic ‘ | ACC - limbic ‘
/ v \ \
‘ DS - Put ‘ ‘ DS -dCau ‘ ‘ VS-vCau ‘ ‘ VS - NAcc ‘
A 7 N 7
SNpc VTA

Fig. 4.
Simplified schema of corticostriatal loops and dopaminergic input to the striatum. A direct

connection between ventral tegemental area (VTA) and the cortex (mesocortical pathway) is
also shown. Glow indicates progression of dopaminergic dysfunction: lowest glow indicates
earliest dysfunction; lavendar highlights striatal regions and red highlights sources of
dopaminergic projection neurons. ACC=anterior cingulate cortex; dCau=dorsal caudate;
dIPFC=dorsolateral prefrontal cortex; DS=dorsal striatum; NAcc=nucleus accumbens;
OFC=orbitofrontal cortex; Put=putamen; SNpc=substantia nigra pars compacta;
vCau=ventral caudate; VS=ventral striatum. (Adapted from Alexander et al., 1986; Fuente-
Fernandez, 2012; O’Callaghan et al., 2014).
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: dorsal striatum
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I globus pallidus interna
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cerebral cortex bt
D2 globus pallidus externa T
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subthalamic nucleus
AN R A
substantia substantia
nigra pars nigra
compacta pars reticulata
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Mevnert
\L pedunculopontine nucleus
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/ locus coeruleus
hippocampus
amygdala <
le—— VY
cerebellum

Fig. 5.
Some important brain regions and neurotransmitters in PD. Pathways of the cortico-basal

ganglia-thalamocortical circuit are included. D1, D2= dopamine receptors; Ins=interneurons;
NAcc=nucleus accumbens. Black arrows with triangle heads: glutamatergic excitatory
projection neurons. Black arrows with circle heads: GABAergic inhibitory projection
neurons. Colored arrows and boxes: projection neurons and their sources respectively for
acetylcholine (green), dopamine (red), norepinephrine (lavendar), and serotonin (blue). For
clarity, only the heads of blue arrows portraying serotonergic projection neurons are shown
for most locations.
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dorsal striatum

[ 1
globus pallidus interna
cerebral cortex _‘ ‘

J_ globus pallidus
externa

subthalamic nucleus

substantia nigra

cerebellum

Fig. 6.

Cgrticobasal ganglia-thalamocortical circuit with pathways that were recently observed in
vivo in humans (adapted from Lenglet et al. (2012)). Bold: neuroimaging of structural
connections in humans in vivo by Brunenberg et al. (2012; hyperdirect pathway), Sweet et
al. (2014; subthalamopontocerebellar and dentothalamic tracts), and Lenglet et al. (2012;
other bold pathways).
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Brain regions in Parkinson’s disease

Forebrain
Cortex — all lobes>®
Caudate
Putamen
Globus pallidus externa
Globus pallidusinterna
Nucleus accumbens
Ammon’s Horn 4
Hippocampus *
Nucleus basalis of Meynert (ACh)3
Magnocellular nucleus (ACh)3
Olfactory bulb?
Diencephalon
Thalamus
Hypothalamus 4
Subthalamic nucleus
Brainstem
Midbrain
Ventral tegmental area (DA)
Substantia nigra pars compacta (DA)3
Substantia nigra pars reticularis

Pons

Pedunculopontine tegmental nucleus (ACh)3

Raphe nuclei (Ser) 2

Locus coeruleus (NEpi) 2
Medulla

Raphe nuclei (Ser) 2

Gigantocellular reticular nucleus 2

Dorsal motor nucleus X of the vagus nerve 1

Cerebellum

Notes: Some of the brain regions involved in Parkinson’s disease. Bold: regions of the basal ganglia; italics: lenticular/lentiform nucleus.
Neurotransmitters are indicated in parentheses (') for regions that are a source of neurotransmitter projection neurons: acetylcholine (ACh);

Table 1

Page 66

dopamine (DA); norepinephrine (NEpi); serotonin (Ser). Superscripts: Braak stage in which the region is noted (Goedert et al., 2013; Braak et al.,

2004).
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