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Abstract

The 𝖱 package structSSI provides an accessible implementation of two recently developed 

simultaneous and selective inference techniques: the group Benjamini-Hochberg and hierarchical 

false discovery rate procedures. Unlike many multiple testing schemes, these methods specifically 

incorporate existing information about the grouped or hierarchical dependence between 

hypotheses under consideration while controlling the false discovery rate. Doing so increases 

statistical power and interpretability. Furthermore, these procedures provide novel approaches to 

the central problem of encoding complex dependency between hypotheses.

We briefly describe the group Benjamini-Hochberg and hierarchical false discovery rate 

procedures and then illustrate them using two examples, one a measure of ecological microbial 

abundances and the other a global temperature time series. For both procedures, we detail the steps 

associated with the analysis of these particular data sets, including establishing the dependence 

structures, performing the test, and interpreting the results. These steps are encapsulated by 𝖱 

functions, and we explain their applicability to general data sets.

Keywords

multiple testing; false discovery rate; simultaneous inference; selective inference; hierarchical data

1. Introduction

When testing potentially dependent multiple hypotheses according to standard multiple 

testing schemes, the following dilemma emerges: powerful testing methods, including the 

Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg 1995), require the 

independence of test statistics associated with hypotheses to ensure control of the false 

discovery rate (FDR) while those methods that control for error under general dependence 

structures, such as the Benjamini-Yekutieli (BY) procedure (Benjamini and Yekutieli 2001), 

tend to be unnecessarily conservative in identifying true alternatives. Unless more 

information about the source of dependence between the multiple hypotheses is known, not 

much can be done to simultaneously increase the power of a testing procedure and maintain 

control of the FDR.
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Here, however, lies insight that can be used to guide the design of more sophisticated 

multiple testing procedures: by examining data on a case by case basis and incorporating the 

specific structure of dependence between the p values associated with multiple hypotheses, a 

testing scheme can be constructed that performs optimally for the set of hypotheses of 

interest in the data under investigation. Often, it is known that multiple hypotheses share a 

natural underlying group, hierarchical, nested, or network structure of dependence, and this 

information should be explicitly utilized in performing multiple comparisons.

Not only does this improve the power of the testing procedure while controlling FDR, it 

contributes to the narrative and interpretability of results; for example, more than supplying 

a list of individually significant hypotheses controlled at a particular level α, these 

procedures output the clusters within which the experimental signal is most prevalent. 

Guided by these principles, several multiple testing methods have been derived that 

explicitly account for known, experiment-specific patterns of dependence between 

hypotheses.

Notably, for the intermediate situation, in which assuming independence between test 

satistics is invalid, but controlling for arbitrary dependence structures is over-conservative, 

the BH and BY procedures have natural extensions, the group Benjamini-Hochberg (GBH) 

procedure of Hu, Zhao, and Zhou (2010), and the hierarchical false discovery rate (HFDR) 

controlling procedure of Benjamini and Yekutieli (2001, 2003), and both techniques are 

made accessible to 𝖱 (𝖱 Core Team 2014) users through the package structSSI (Sankaran 

2014). The GBH procedure is applicable whenever a group dependence structure between 

hypotheses is visible before any testing is performed. For example, in a genetics differential 

expression experiment, we may group hypotheses according to what overall function they 

perform or pathway they belong to. The HFDR procedure is applicable whenever 

hypotheses can be hierarchically arranged. For example, in a quantitative trait loci (QTL) 

analysis, the hypothesis that a particular chromosomal region is associated with a particular 

brain response is a parent hypothesis to the subhypotheses that any of the subregions on the 

chromosome are associated with this brain response.

Grouped and hierachically dependent hypotheses arise in diverse research contexts:

1. Genes in microarray experiments can be grouped according to the Gene Ontology.

2. Hypotheses associated with microbiota in metagenomic experiments exhibit 

dependence associated with their phylogenetic taxonomy.

3. Questions in QTL analysis and time series often involve testing hypotheses at 

multiple resolutions in the data.

4. Studies of clinical trials have a natural grouping according to primary and 

secondary endpoints.

Several papers have demonstrated the promise of these methods in diverse disciplines; 

however, despite the increasing attention paid to multiple testing and the variety of packages 

implementing multiple testing techniques, there are still no other packages on the 

Comprehensive 𝖱 Archive Network (CRAN) available except package structSSI that render 

either the GBH or HFDR procedures directly usable (Hothorn, Bretz, and Westfall 2008; 

Sankaran and Holmes Page 2

J Stat Softw. Author manuscript; available in PMC 2016 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pollard, Dudoit, and Laan 2004; Blanchard, Dickhaus, Hack, Konietschke, Rohmeyer, 

Rosenblatt, Scheer, and Werft 2010; Dabney and Storey 2014; Strimmer 2008).

The outline of this paper is as follows. In Section 2, we motivate the necessity for 

procedures to perform simultaneous and selective inference, and we briefly summarize 

traditional methodology. Then, we introduce the two recent techniques implemented in this 

package: the GBH and HFDR procedures. The purpose of these sections is to sketch the 

theoretical and conceptual properties of these methods, which we refer to in our data 

analysis examples. These data analysis examples are the focus of Section 3. We apply both 

the GBH and HFDR procedures to two data sets. In each instance, we explain the data, the 

functions used in testing, and the interpretation of results. We further identify the data 

analysis decisions that may be encountered in practice and outline principles that can be 

used to inform those decisions.

2. Selective and simultaneous inference background

In this section, we survey the fundamental concepts and techniques associated with testing 

multiple hypotheses that will be referenced throughout the remainder of this paper.

2.1. Traditional motivation and methodology

Recall that the selective and simultaneous inference problem involves controlling for false 

positives while identifying true signals when the number of hypotheses under consideration 

is large (Farcomeni 2009; Dudoit, Shaffer, and Boldrick 2003; Reiner, Yekutieli, and 

Benjamini 2003; Benjamini 2010b).

If each individual hypothesis is controlled at level α, then a proportion α of all null 

hypotheses in the multiple testing situation will be false positives. When the number of 

discoveries becomes large, as is often the case when testing a large number of hypotheses, 

this can become a serious problem, leading researchers to have confidence in a larger 

number of discoveries than is acceptable.

To overcome this problem, a natural response is to define a new type of error rate that takes 

into account the multiple hypothesis tests being performed and that, unlike the α probability 

that a single hypothesis is a false positive, can be interpreted from a multiple hypothesis 

testing perspective. A widely-utilized definition historically is the family-wise error rate 

(FWER), defined as the probability of at least one false positive among all the outcomes of a 

multiple testing procedure (Benjamini and Hochberg 1995). Many procedures are designed 

to control the FWER at some prespecified level. However, when the number of hypotheses 

increases, this definition of error can become unjustifiably stringent, restricting the ability to 

identify true discoveries (Dudoit, Keleç, and Van Der Laan 2008; Benjamini 2010a).

The false discovery rate—The FDR, defined in Benjamini and Hochberg (1995), is a 

formulation of error-rate in the multiple-testing context designed in response to the over-

conservative performance of the FWER. The fundamental idea behind the FDR is that the 

proportion of false positives among all discoveries is a more meaningful value to control 

than the absolute number of false positives. Thus, while procedures controlling the FWER 
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attempt to prevent any false positives from arising during multiple testing, the FDR allows a 

prespecified proportion of false-positives among the large number of hypotheses being 

tested in order to facilitate improvements in power.

We now define the FDR more formally. Suppose we are testing hypotheses H1, …, HN. Let 

R be the number of hypotheses rejected by some testing scheme, and let V be the number of 

false positives, that is, hypotheses that were rejected but which are in truth null. Then, the 

FDR is defined as  when R > 0 and 0 when R = 0. This is exactly the expected 

proportion of false positives among all rejected hypotheses.

Benjamini-Hochberg procedure review—In addition to defining the FDR, Benjamini 

and Hochberg (1995) provided a step-up procedure, now known as the BH procedure, for 

controlling the FDR at level α. As the methods implemented in structSSI are extensions of 

BH to more general settings, we here provide a formal statement of the procedure.

Let H1, H2, …, HN be the multiple hypotheses under consideration, and let p1, p2, …, pN be 

the corresponding p values resulting from tests of each of the individual hypotheses. 

Suppose that we want to control the FDR at level α.

First, order the p values so that p(1) ≤ p(2) ≤ ⋯ ≤ p(N). Now, let . Reject 

those hypotheses H(i) associated with p values satisfying p(i) ≤ p(k). If no such k exists, then 

do not reject any hypotheses. If these p values are independent, then this procedure was 

proven to control the FDR at level π0α, where π0 is the proportion of true null hypotheses 

among all those being tested. Since π0 is generally unknown and typically close to 1, this 

method is most often used to control the FDR at level α. Notice that, not only does this 

procedure not integrate any information about dependence structure into inference, it does 

not generally control the FDR in settings where such dependence is present (Benjamini and 

Hochberg 1995, 2000).

2.2. New techniques

Several studies have proposed multiple testing procedures that specifically incorporate 

known dependence information between hypotheses (Zhong, Tian, Li, Storch, and Wong 

2004; Farcomeni 2009; Dudoit et al. 2008; Benjamini and Yekutieli 2003; Hu et al. 2010). 

In this section, we overview the two that are implemented in structSSI: the GBH procedure 

of Hu et al. (2010) and the HFDR procedure of Benjamini and Yekutieli (2003) and 

Yekutieli (2008). Though the particular steps employed between the two procedures are very 

different, both rely on the insight that known relationships between the multiple hypotheses 

in question can be employed to focus on subsets of hypotheses that are more likely to 

contain true discoveries. More specifically, in the GBH procedure, hypotheses are grouped 

based on known dependence information; the proportion of alternative hypotheses in each 

group is estimated, and the original p values are reweighted to emphasize the groups with 

higher estimated proportions of true discoveries. The HFDR procedure, on the other hand, 

arranges hypotheses on a tree according to their dependence information and restricts 

attention to those families of hypotheses whose parents on the tree have been rejected.
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Group Benjamini-Hochberg procedure—Before defining the GBH procedure, we 

describe the statistical context and introduce notation. We suppose that N hypotheses H1, 

H2, …, HN have been tested, and individual unadjusted p values have been found for each. 

We further suppose that we can bin these N hypotheses into K distinct groups, where each 

group contains ng hypotheses, g = 1, …, K. We define ng,0 to be the number of true null 

hypotheses and ng,1 = ng − ng,0 to be the number of true alternative hypotheses within group 

g. Hence,  is the proportion of true null hypotheses in group g and 

 is the proportion of true alternative hypotheses in group g. We can then 

let  be the proportion of true null hypotheses in the overall set of N 

hypotheses. Our goal is to employ estimates of these values to design a multiple testing 

procedure. We first define the GBH procedure assuming that πg,0 is known for each group g. 

This is known as the oracle case.

Definition 1: Oracle group Benjamini-Hochberg procedure

1. For each hypothesis i contained in group g, reweight its associated p value Pg,i to 

create the weighted p values, denoted . In the case that πg,1 = 0, set 

. If πg,1 = 0 for every g ∈ {1, …, K}, then do not reject any hypotheses and 

terminate the procedure. Otherwise, continue to Step 2.

2. Pool all the weighted hypotheses together and sort them, so that 

.

3.
Let , where . If such a k exists, reject the k 

hypotheses associated with ; otherwise, do not reject any hypotheses.

Hence, if the proportion of true null hypotheses is smaller than the proportion of true 

alternatives within a given group, then each hypothesis within that group is more likely to be 

a true alternative and the reweighted p values will be smaller than the corresponding 

unweighted ones, making their rejection more likely. Conversely, if there is a higher 

proportion of true null hypotheses than true alternatives within a group, then the reweighted 

p values will be inflated, making their rejection less likely.

The last step is the BH procedure applied to these adjusted p values, where α is adjusted to 

take advantage of the fact that the BH procedure controls the FDR at level π0α. Indeed, this 

procedure can be interpreted as the BH procedure with focus of rejections redirected towards 

more promising intradependent groups, that is, the groups that have a higher estimated 

proportion of true discoveries.

Next, we remove the assumption that the proportion of true null hypotheses in each group is 

known. This modified procedure is known as the adaptive GBH procedure (Hu et al. 2010).

Definition 2: Adaptive group Benjamini-Hochberg procedure
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1. For each group g, estimate πg,0 by π̂g0.

2. Apply the oracle GBH procedure, with πg,0 replaced by π̂
g,0.

Various methods of estimating πg,0 have been developed, and each has unique properties 

(Hu et al. 2010; Storey, Taylor, and Siegmund 2004; Benjamini, Krieger, and Yekutieli 

2006; Benjamini and Hochberg 2000). Part of the appeal of the adaptive GBH procedure is 

that it does not rely upon a specific type of estimator: Hu, Zhou, and Zhao Hu et al. (2010) 

have shown that the adaptive GBH procedure asymptotically controls the FDR as long as the 

estimator π̂
g,0 is either unbiased or asymptotically conservative.

As this estimation is essential for use of the GBH procedure in practice, we supply three 

estimation procedures in package structSSI: the tail proportion of p values estimator of 

Storey et al. (2004), the least-slope method of Benjamini and Hochberg (2000), and the two-

stage method of Benjamini et al. (2006). Examples of their use are highlighted in the 

adaptive GBH example in Section 3.

Hierarchical false discovery rate controlling procedure—Like the GBH procedure, 

the HFDR procedure leverages specific information on the dependence structure between 

hypotheses to focus attention on subsets of hypotheses that are more likely candidates for 

discoveries. However, rather than reweighting p values, the procedure achieves this focus by 

arranging families of related hypotheses along a tree and restricting attention to particular 

subtrees that are more likely to contain alternative hypotheses; specifically, children 

hypotheses are considered for rejection if and only if their parents are rejected. The essential 

idea is that hierarchical application of an FDR controlling procedure among families of 

related hypotheses implies global, tree-wide FDR control.

As in the above discussion of GBH, suppose that there are N hypotheses to be tested, H1, 

H2, …, HN, and suppose that they can be arranged on a tree with L levels. Associate each 

hypothesis, besides the root, with a parent hypothesis on the level directly above it. That is, 

hypotheses Hi on level L(i) ∈ {2, …, L} is associated with a parent hypothesis on level L(i) 

− 1, which we will denote by Par (i). Reindex the hypotheses so that H1, …, HT are the 

parent hypotheses. Then, we can group the hypotheses into T +1 families, where one of the 

families is the root hypothesis and each of the other families of hypotheses is defined as a set 

of hypotheses sharing the same parent. We denote these families by 0, 1, …, T, where 

0 = {Hi : L(i) = 1} and t = {Hi : Par (i) = t}. Test statistics associated with hypotheses 

within the same family t are assumed independent.

Definition 3: Hierarchical false discovery rate controlling procedure

1. Test 0, the root hypothesis. If it is significant, proceed.

2. Test the hypotheses in family 1 simultaneously, using the BH procedure to 

control the FDR at level α.

3. For each rejected node i in 1, simultaneously test its family of children 

hypotheses.
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4. While children nodes continue to be rejected, repeat Step 3, with 1 replaced by 

the family of children associated with the immediately previous rejected hypothesis.

Essentially, this algorithm requires that:

1. Hypotheses contained in the same family are tested simultaneously, and FDR is 

controlled within families.

2. A family of hypotheses on a given level is tested if and only if its parent hypothesis 

is rejected.

Care is required in the characterization of FDR control for this algorithm. In particular, the α 

FDR control rate used in the BH procedure applied to each family t is not preserved at the 

tree-wide level. To understand the notion of FDR control for the HFDR procedure, consider 

several variations of the usual FDR, each of interest in the hierarchical testing setting:

1. FDRtree: The proportion of discoveries over the entire tree that are false 

discoveries.

2. FDRL: The proportion of discoveries within an a priori specificied level L of the 

tree that are false discoveries.

3. FDRtips: The proportion of discoveries on the tips of the tree that are false 

discoveries.

Given the outcome of the HFDR procedure, Benjamini and Yekutieli (2003) and Yekutieli 

(2008) prove universal upper bounds for two of these FDR variations,

where α is the FDR control level for each application of the BH procedure, L is the total 

number of levels in the testing tree, and δ* is an inflation factor analytically bounded above 

by 1.44 and found through simulation study to be near one in most testing situations 

(Benjamini and Yekutieli 2003; Yekutieli 2008). Further, in their study, they advocate the 

following estimator, applicable to all three characterizations of the tree FDR,

where a discovery is defined as an adjusted p value below α within the entire tree, at 

prespecified level L, or at the tips, for FDRtree, FDRL and FDRtips, respectively. structSSI 
supplies these estimates for the full tree and tip FDR, via the function 

EstimatedHFDRControl.

We can now point out several consequences of this procedure that are relevant from a 

researcher’s perspective. First, notice that, unlike testing within groups, which only 
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explicitly utilizes stratified information, when using a tree, we can specifically model the 

nested, hierarchical relationships between hypotheses. Typically the specific arrangement is 

motivated by the design of the experiment or the structure of the data analysis problem. For 

example, in a microarray study, the hypothesis that a functional pathway in the gene 

ontology is significantly associated with an experimental variable may depend on the status 

of a broader category within the ontology.

Notice that the HFDR procedure only takes into account the topology of the tree; in 

particular, it disregards branch lengths. Therefore, while these branch lengths may be 

important in determining groups when applying the GBH procedure to hierarchical data, 

they have no effect on the outcome of the HFDR method.

Another consequence is that, when rejecting hypotheses along the tree, we can gain insight 

at several levels of resolution, from more general to more specific hypotheses. For example, 

during a single iteration of the testing procedure applied to a microarray study, we might be 

able to simultaneously associate very specific functional pathways and very general 

categories with an experimental variable of interest.

These characteristics of the HFDR procedure – the ability to explicitly take into account 

known information related to the hierarchical structure present in data and associated 

hypotheses as well as the potential to conduct a multiresolution search for significant 

discoveries – supply reasons for the procedure’s usefulness apart from its control of the FDR 

and increased power over classical procedures.

3. Data analysis examples

In this section, we demonstrate the application of both the GBH and the HFDR controlling 

procedures to real data. The first example is from the field of microbial ecology. In such 

data, we are given the evolutionary relationships between individual microbes and their 

abundances in different ecological environments; we test multiple hypotheses to uncover 

associations between the individual microbes and their prevalence in these different 

environments. The second example is a time series of global surface temperature from the 

Goddard Institute for Space Studies (Shumway and Stoffer 2000). We test multiple 

hypotheses, each corresponding to whether there is a significant increasing trend in global 

temperature at a variety of time resolutions: has there been an increase in temperature in the 

last century? in any quarter-century window? in any decade in particular?

Despite emerging from disparate contexts and being motivated by different questions, these 

two data analyses are conceptually unified by a need to test multiple hypotheses with a 

known dependence structure. For the microbes, the dependence structure is encoded in the 

evolutionary tree between microbes. For the time series, the strength of dependence between 

time windows is given by how many years apart they are – the closer together, the more 

correlated. We now proceed to describe the application of structSSI procedures to these two 

data sets, with the goal that the following sections can serve as a guide for analysis in a 

variety of contexts in which structurally dependent hypotheses arise.
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3.1. Microbial abundance data

The microbial abundance data set included in package structSSI, called chlamydiae, 

describes the microbial community structures of 26 samples in seven environments via a 

table of abundances of 21 types of microbes across these samples. It is a small subset of the 

GlobalPatterns data set specific to the Chlamydiae bacteria taxon. The 

GlobalPatterns data was the subject of Caporaso et al. (2011), and is available through 

the Bioconductor package phyloseq (McMurdie and Holmes 2011). The goal of Caporaso et 

al. (2011) was to understand the composition and variation of microbial communities 

between environments. For example, with this data, we can begin to ask whether particular 

microbes, labeled by their operational taxonomic unit (OTU) number, are more or less 

abundant between any of the environments.

Before going further, we load and survey the data.

R> library("structSSI")

R> library("phyloseq")

R> data("chlamydiae", package = "structSSI")

R> chlamydiae

phyloseq-class experiment-level object

otu_table()   OTU Table:         [ 21 taxa and 26 samples ]

sample_data() Sample Data:       [ 26 samples by 7 sample variables ]

tax_table()   Taxonomy Table:    [ 21 taxa by 7 taxonomic ranks ]

phy_tree()    Phylogenetic Tree: [ 21 tips and 20 internal nodes ]

The abundance data, auxiliary sample data, taxonomic assignments, and phylogenetic tree 

are all stored in a specialized phyloseq data class. This data set is amenable to the methods 

in package structSSI due to its large scale and hierarchical structure. This is highlighted by 

the potential to investigate questions about microbial community structure at varying 

resolutions. For example, individual species, taxonomic families, and higher ranks, such as 

phyla, may exhibit different patterns of community structure and variation across 

environmental samples. For each microbe and collection of microbes within this phylum, we 

seek to analyze the association between prevalence and environment; i.e., does the microbe 

or collection of microbes have a preferred environment? More precisely, we will determine 

whether individual microbes or taxonomic groups of microbes are more or less abundant 

between the seven sample environment types.

Adaptive group Benjamini-Hochberg procedure—One approach to this problem 

involves the adaptive GBH procedure. To test for individual microbe associations between 

abundance and sample type, we can perform multiple F tests. The current standard practice 

would be to then apply the BH multiple testing correction to the resulting p values. This, 

however, is not conceptually valid: recall from Section 2.1 that the BH correction requires 

independence of hypotheses, and it is known that microbes that are closely related at tips of 

the phylogenetic tree are more likely to share abundance patterns between sample types. 
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Further, since we can integrate this dependence structure into our analysis using the 

taxonomic table, the adaptive GBH procedure is readily applicable. We will consider groups 

defined by the family phyla levels of the microbial taxonomy.

First, we perform individual hypothesis tests to see whether or not there is an association 

between environment type and abundance.

R> taxaPValues <- numeric(length = ntaxa(chlamydiae))

R> names(taxaPValues) <- taxa_names(chlamydiae)

R> environments <- sample_data(chlamydiae)$SampleType

R> abundances <- otu_table(chlamydiae)

R> for (taxaIndex in 1:ntaxa(chlamydiae)) {

+    abundModel <- summary(lm(as.vector(abundances[taxaIndex, ]) ~

+      environments))

+    taxaPValues[taxaIndex] <- with(abundModel, pf(fstatistic[1],

+      fstatistic[2], fstatistic[3], lower.tail = FALSE))

+  }

Before adjustment for multiple testing, six microbes are found to be significantly 

differentially abundant between environments, refer to Figure 1.

Next, we perform the GBH correction. First, we group hypotheses according to the 

taxonomic family that the corresponding microbes belong to. If a hypothesis does not have a 

family label, we discard it from our analysis.

The arguments to the Adaptive.GBH function are a vector of the unadjusted p values, a 

vector with coordinate i containing the group label of the hypothesis in coordinate i of the 

unadjusted p values vector, the α FDR control level, and the method for estimating the 

proportion of null hypotheses within each group. We use "lsl", the lowest-slope method for 

estimating the proportion of true null hypotheses within each group (Benjamini and 

Hochberg 2000).

R> chlamydiae.families <- na.omit(tax_table(chlamydiae)[, "Family"])

R> taxaPValues <- taxaPValues[taxa_names(chlamydiae.families)]

R> family.AGBH <- Adaptive.GBH(unadj.p = taxaPValues,

+    group.index = matrix(chlamydiae.families), method = "lsl")

R> summary(family.AGBH)

GBH adjusted p values:

          unadjp      adjp               group adj.significance

253897 1.813e-05 9.671e-05 Rhabdochlamydiaceae              ***

249365 1.189e-02 3.172e-02 Rhabdochlamydiaceae                *

152689 2.461e-02 4.375e-02 Rhabdochlamydiaceae                *

544430 3.446e-02 5.169e-02   Parachlamydiaceae                .

Sankaran and Holmes Page 10

J Stat Softw. Author manuscript; available in PMC 2016 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



547579 5.550e-02 5.770e-02   Parachlamydiaceae                .

25769  6.491e-02 5.770e-02 Rhabdochlamydiaceae                .

217851 3.692e-02 7.397e-02        Simkaniaceae                .

239522 1.110e-01 7.397e-02 Rhabdochlamydiaceae                .

2920   1.568e-01 1.038e-01   Parachlamydiaceae                -

89521  6.488e-02 1.038e-01        Simkaniaceae                -

[only 10 most significant hypotheses shown] 

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '-' 1

 Estimated proportion of hypotheses that are null, within each group:

        Waddliaceae   Parachlamydiaceae        Simkaniaceae

             1.0000              0.4286              0.6667

Rhabdochlamydiaceae

             0.4000

 Significance across groups:

                     adj.significance

group                 - . * ***

  Parachlamydiaceae   5 2 0 0

  Rhabdochlamydiaceae 0 2 2 1

  Simkaniaceae        2 1 0 0

  Waddliaceae         2 0 0 0

We now reject three hypotheses. Notice that, in addition to specifying which microbes are 

significantly differentially abundant between environments, we are supplied with estimates 

of the proportion of microbes within each family likely to be differentially abundant 

between environments. For example, in this particular application, the adaptive GBH 

procedure identifies microbes from the family Rhabdochlamydiaceae as more likely to be 

differentially abundant between environments, and it is not surprising that all significant 

microbes belong to that family. Further, observe in Figure 1 that the original family p values 

are scaled by a factor proportional to the estimated signal strength in that group.

Hierarchical false discovery rate controlling procedure—To explicitly account for 

the hierarchical dependence between microbes, we can apply the HFDR procedure. Rather 

than analyzing only whether different microbes are differentially abundant between 

environments, we will test whether broader taxonomic groups are associated with 

environments. To apply the HFDR procedure, we must identify the tree representative of the 

hierarchical dependence, and in this case the evolutionary tree is a natural choice. 

Specifically, we will provide the edgelist of the phylogenetic tree as input into structSSI as 

a proxy for the dependence between types of microbes. We must also supply unadjusted p 

values associated with each node in the tree; in this case, a hypothesis at a node in the 

phylogenetic tree will test whether the collection of descendant microbes are significantly 

differentially abundant between environment types. We use the structSSI function 

treePValues to aggregate abundances of individual microbes to higher levels in the tree 

Sankaran and Holmes Page 11

J Stat Softw. Author manuscript; available in PMC 2016 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and test whether those aggregated abundances are significantly different between 

environments.

R> library("igraph")

R> library("ape")

R> chl.tree <- get.edgelist(as.igraph(phy_tree(chlamydiae)))

R> chl.pval <- treePValues(chl.tree, abundances, environments)

The results of these unadjusted hypothesis tests are depicted in Figure 2. A total of 25 are 

found significant at the α = 0.10 significance level. Those hypotheses that are blue are 

rejected at the α level before any multiple testing adjustment; we fail to reject those that are 

orange. More precisely, a p value of exactly 0, α, or 1 would correspond to a node color of 

pure blue, magenta, or orange, respectively, with all other p value colors interpolated 

between these. Notice that, even before performing the HFDR procedure, half of the tree 

contains many significant hypotheses while the other does not. If we were performing a 

standard multiple testing correction, this structure would not be evident. This is exactly the 

type of situation where the HFDR procedure is most relevant. We will see soon that the 

HFDR procedure fails to reject hypothesis 0.962.436 of the tree and does not expend any 

testing power correcting for p values on that side of the tree. Instead, it focuses the 

adjustment, and hence testing power, on those hypotheses on the bottom of the tree, which 

we can already see are more likely to be significant. We now perform the HFDR procedure 

and visualize the result in Figure 3. This is done by supplying the unadjusted p values and 

the edgelist between unadjusted hypotheses names describing the tree to the function 

hFDR.adjust.

R> chl.hfdr <- hFDR.adjust(chl.pval, chl.tree, alpha = 0.1)

R> summary(chl.hfdr)

Number of hypotheses: 41

Number of tree discoveries: 20

Estimated tree FDR: 0.1524

Number of tip discoveries: 8

Estimated tips FDR: 0.2222

 hFDR adjusted p-values:

             unadjp      adjp adj.significance

253897    1.813e-05 3.627e-05              ***

0.652.73  1.059e-02 2.119e-02                *

249365    1.189e-02 2.379e-02                *

152689    2.461e-02 2.461e-02                *

0.989.505 2.067e-02 2.461e-02                *

0.938.455 1.749e-02 3.497e-02                *

0.888.489 4.001e-02 4.001e-02                *
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0.992.653 2.104e-02 4.208e-02                *

0.927.676 4.860e-02 4.860e-02                *

0.930.581 6.356e-02 6.356e-02                *

[only 10 most significant hypotheses shown]

---

Signif. codes:  0 '***' 0.002 '**' 0.02 '*' 0.1 '.' 0.2 '-' 1

After adjustment, we reject 20 hypotheses at the α = 0.10 level. We find that most 

collections of microbes on the bottom of the tree are differentially abundant. Indeed, this 

pattern is visible down to the species level – it is not always the case that hypotheses are 

found to be significant at all resolutions in the tree, as is the case with the temperature data 

in Section 3.2. Further, observe that the adjustment follows a simple pattern, since every 

parent has only two children, the BH adjustment keeps the smaller p value the same and the 

doubles the larger one.

Further, the full tree FDR is about 0.15, a modest increase over the FDR control rate of α = 

0.10 used in testing families recursively over the hierarchy, and the tip FDR is about 2α.

More than providing information about the individual microbe abundance hypotheses, the 

HFDR procedure allows us to see levels in the phylogenetic tree that are more or less 

differentially abundant between environments. Indeed, the choice of testing individual 

species of microbes is somewhat arbitrary; one could test whether families, genera, or 

classes of microbes are significantly differentially abundant between environments. The 

HFDR procedure allows us to analyze the question of differential microbial abundance at 

every taxonomic resolution while still controlling the FDR.

Further, note that the reallocation of power for the HFDR procedure is consistent with the 

estimates of π̂
0 in the adaptive GBH procedure. For example, the family 

Rhabdochlamydiaceae are the tips descending from nodel 0.652.73 in the plots of the 

chlamydiae hypotheses tree, which are found by both methods to be enriched for 

differential abundance.

3.2. Global temperature data

In this data set we analyze changes in global surface temperature between 1880 and 2009. 

The essential question of interest is whether there have been significant trends in global 

temperature since 1880. However, as in the microbial abundance example, there are many 

resolutions with which we can frame this question. In this case, the different resolutions are 

different time scales. For example, we may want to detect whether there is a significant 

trend in global temperature each decade, each quarter century, or over the entire time span of 

the data set. Using the GBH technique, we test hypotheses at a particular time scale 

resolution while leveraging information about how closely together the different windows 

are. We presume the dependence between these different hypotheses is structured by the 

number of years between the time windows being tested.

Using the HFDR procedure, we are able to test hypotheses at multiple time resolutions, 

proceeding to finer resolutions only if a significant trend was detected at the coarser 
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resolution. Hence, the HFDR procedure allows us to test at multiple resolutions, avoiding 

any arbitrary choice for which time scale to test, while still controlling the FDR.

First, we perform individual hypothesis tests at multiple time resolutions, without 

accounting for simultaneous inference. In particular, we divide the 130 years over which the 

temperatures are measured into two resolutions. The first, more broad resolution, which we 

refer to as depth one, divides the 130 year period into five windows of size 26 years. The 

second, finer resolution, which we refer to as depth two, divides the same period into 10 

windows of size 13 years. We test whether there is a significant increasing trend in 

temperature over each of these windows.

R> AllTimePval <- coef(summary(lm(temp ~ year, data = gtemp)))["year",

+    "Pr(>|t|)"]

R> names(AllTimePval) <- "D0"

R> nYears <- nrow(gtemp)

R> chunk <- function(x, n) split(x, sort(rank(x) %% n))

R> pValsFromChunks <- function(chunk, depth.label) {

+    pvalDepth <- vector(length = length(chunk))

+    names(pvalDepth) <- paste(depth.label, 1:length(chunk), sep = "")

+    for (subset in 1:length(chunk)) {

+       curTimes <- chunk[[subset]]

+       pvalDepth[subset] <- coef(summary(lm(temp ~ year,

+         data = gtemp[curTimes,])))["year", "Pr(>|t|)"]

+     }

+     return(pvalDepth)

+ }

R> depth1 <- chunk(1:nYears, 5)

R> depth2 <- chunk(1:nYears, 10)

R> pValsDepth1 <- pValsFromChunks(depth1, "D1-")

R> pValsDepth2 <- pValsFromChunks(depth2, "D2-")

R> unadjp <- c(AllTimePval, pValsDepth1, pValsDepth2)

R> unadjp

       D0      D1-1      D1-2      D1-3      D1-4      D1-5      D2-1

1.797e-40 1.217e-01 2.037e-04 9.969e-01 8.350e-02 6.424e-08 3.949e-01

     D2-2      D2-3      D2-4      D2-5      D2-6      D2-7      D2-8

9.333e-01 7.400e-01 7.579e-02 2.528e-04 6.858e-01 4.679e-01 1.725e-02

     D2-9     D2-10

8.111e-02 8.435e-02

In the vector of unadjusted p values above, D0 denotes the hypothesis that there is an 

increasing trend in global temperature over the entire 130 year data set. The hypothesis D1-i 
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denotes the hypothesis that there is an increasing trend in global temperature in the ith 

window of size 26 years. For example, the hypothesis D1-2 tests whether there was a 

significant increasing trend in global temperature between 1906 and 1931. We can visualize 

the unadjusted p values in Figure 6 (left). As in the above visualizations, hypotheses are 

shaded blue and orange depending on whether they are rejected or not. Note that 5 

hypotheses are rejected, 3 at the depth two resolution, and those that are rejected seem to be 

frequently linked with each other, justifying our modeling of dependence structure using this 

tree.

We now consider how to use this dependence structure to adjust the p values for multiple 

testing error using both the GBH and HFDR procedures.

Group Benjamini-Hochberg procedure—To apply the GBH procedure to the question 

of whether there is an increasing trend in temperature over multiple time windows over the 

130 year span of the data, we choose to test each of the 13 depth two windows and perform 

a GBH adjustment using the depth one window membership to create a grouping.

For example, the hypothesis associated with the window between 1919 and 1931 belongs to 

depth two and has an unadjusted p value of 0.0758. Since the window 1919–1931 is a subset 

of the depth one window 1909–1931, we will group it along with the window 1909–1918 

when performing the GBH adjustment.

R> depth.2.unadjp <- unadjp[-c(1:6)]

R> depth.1.groups <- rep(paste("D1", 1:5, sep = "-"), each = 2)

R> gtemp.AGBH <- Adaptive.GBH(depth.2.unadjp, depth.1.groups,

+    method = "tst")

R> gtemp.AGBH

GBH adjusted p values:

         unadjp      adjp group adj.significance

D2-5  0.0002528 0.0005056  D1-3              ***

D2-8  0.0172526 0.0172526  D1-4                *

D2-7  0.4678910 0.3119274  D1-4                -

D2-6  0.6858234 0.3429117  D1-3                -

D2-1  0.3949242 1.0000000  D1-1                -

D2-2  0.9333085 1.0000000  D1-1                -

D2-3  0.7400278 1.0000000  D1-2                -

D2-4  0.0757946 1.0000000  D1-2                -

D2-9  0.0811059 1.0000000  D1-5                -

D2-10 0.0843518 1.0000000  D1-5                -

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '-' 1

 Estimated proportion of hypotheses that are null, within each group:
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D1-1 D1-2 D1-3 D1-4 D1-5

 1.0  1.0  0.5  0.5  1.0

The π0 estimates for the proportion of null hypotheses within each of the depth one 

groupings suggests an increasing proportion of significance in windows D1-3 and D1-4. Of 

course, these estimates are only approximate and further investigation is required. The two-

step test procedure requires a large number of hypotheses within each group to accurately 

estimate π0 for each group. Nonetheless, the finding is suggestive and warrants further 

analysis.

Hierarchical false discovery rate controlling procedure—We now apply the HFDR 

procedure to the same global temperature data set. This is accomplished by supplying an 

edgelist describing the tree, called gtemp.el below, and the vector of unadjusted p values 

to the function hFDR.adjust. The result is visualized in Figure 6 (right).

R> gtemp.el <- matrix(nrow = 15, ncol = 2)

R> gtemp.el[, 1] <- c(rep("D0", 5), rep(paste("D1", 1:5, sep = "-"),

+    each = 2))

R> gtemp.el[, 2] <- c(paste("D1", 1:5, sep = "-"),

+    paste("D2", 1:10, sep = "-"))

R> gtemp.hfdr <- hFDR.adjust(unadjp, gtemp.el)

R> gtemp.hfdr

hFDR adjusted p-values:

         unadjp      adjp adj.significance

D0    1.797e-40 1.797e-40              ***

D1-1  1.217e-01 1.522e-01                -

D1-2  2.037e-04 5.094e-04              ***

D1-3  9.969e-01 9.969e-01                -

D1-4  8.350e-02 1.392e-01                -

D1-5  6.424e-08 3.212e-07              ***

D2-1  3.949e-01        NA              <NA>

D2-2  9.333e-01        NA              <NA>

D2-3  7.400e-01 7.400e-01                 -

D2-4  7.579e-02 1.516e-01                 -

D2-5  2.528e-04        NA              <NA>

D2-6  6.858e-01        NA              <NA>

D2-7  4.679e-01        NA              <NA>

D2-8  1.725e-02        NA              <NA>

D2-9  8.111e-02 8.435e-02                 .

D2-10 8.435e-02 8.435e-02                 .

---

Signif. codes:  0 '***' 0.001 '**' 0.01  '*' 0.05 '.' 0.1 '-' 1
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Notice that the results in the hypotheses testing tree in Figure 6 (right) correspond naturally 

with the time series plot of global temperature over time. In particular, the time series seems 

relatively stable between 1880 and 1920, increasing between 1910 and 1940, stable up to 

1980, and increasing again until 2009. This appearance of windows of increasing trend is 

formally justified by the significance of the depth one windows D1-2 (1906–1931), D1-5 

(1984–2009), D2-9 (1984–1996), and D2-10 (1996–2009). However, the most significant 

adjusted depth two p values according to the HFDR procedure are above the α significance 

threshold. This is in fact a benefit of testing hypotheses hierarchically. We can find 

significance at some coarse levels but not at finer ones in a principled way without 

arbitrarily selecting a threshold window size to define groups, or worse, fishing for 

significance at a number of window sizes, and only reporting the most significant one.

We can estimate the FDR variations for this hierarchical testing realization, and we again 

find the tree and tip FDR to be modest increases over the original α = 0.05.

Further, note the differences between the results of the Adpative GBH and HFDR 

procedures applied to the gtemp data. In particular, the hypotheses within D1-3 and D1-4 

windows are only declared significant in the adaptive GBH procedure, while the D1-2 and 

D1-5 hypotheses are only declared significant in the HFDR procedure. The source of this 

contrast is most likely the small sample sizes used to estimate π0̂ in the adaptive GBH 

procedure, and as mentioned before, these results cannot be taken as conclusive.

Finally, this ability to evaluate hypotheses at multiple resolutions can sometimes lead to 

more complex narratives, as evidenced by the fact that, in Figure 6 (left), the hypothesis 

D2-5 has a significant p value while its parent, D1-3, does not. This is an example of a more 

general pattern, in which aggregating data can either wash out inconsistent signals or 

amplify coherent ones. Though the resulting interpretations are potentially more complex, 

this richer structure is nonetheless more informative than the output of traditional testing 

methods which ignore such structure.

4. Conclusion

As techniques associated with the collection of large-scale data become more sophisticated, 

and as more information regarding the underlying structure of relations within data becomes 

available, the promise of testing procedures that capitalize on known hierarchical 

associations becomes increasingly apparent. The package structSSI is designed to facilitate 

application of recent developments to these structurally rich data.

Acknowledgments

We would like to acknowledge Joey McMurdie for motivating this research project and providing microbial 
abundance data. We would also like to thank Balasubramaniam Narasimhan and Yoav Benjamini for guiding the 
development and applications of this package, respectively.

References

Benjamini Y. Discovering the False Discovery Rate. Journal of the Royal Statistical Society B. 2010a; 
72(4):405–416.

Sankaran and Holmes Page 17

J Stat Softw. Author manuscript; available in PMC 2016 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Benjamini Y. Simultaneous and Selective Inference: Current Successes and Future Challenges. 
Biometrical Journal. 2010b; 52(6):708–721. [PubMed: 21154895] 

Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach 
to Multiple Testing. Journal of the Royal Statistical Society B. 1995; 57(1):125–133.

Benjamini Y, Hochberg Y. The Adaptive Control of the False Discovery Rate in Multiple Testing. 
Journal of Educational and Behavioral Statistics. 2000; 25(1):60–83.

Benjamini Y, Krieger AM, Yekutieli D. Adaptive Linear Step-Up Procedures that Control the False 
Discovery Rate. Biometrika. 2006; 93(3):491–507.

Benjamini Y, Yekutieli D. The Control of the False Discovery Rate in Multiple Testing under 
Dependency. The Annals of Statistics. 2001; 29(4):1165–1188.

Benjamini, Y.; Yekutieli, D. Technical Report RP-SOR-02-02. Tel Aviv University; 2003. 
Hierarchical FDR Testing of Trees of Hypotheses. 

Blanchard, G.; Dickhaus, T.; Hack, N.; Konietschke, F.; Rohmeyer, K.; Rosenblatt, J.; Scheer, M.; 
Werft, W. µTOSS – Multiple Hypothesis Testing in an Open Software System. Journal of Machine 
Learning Research: Workshop and Coference Proceedings; Workshop on Applications of Pattern 
Analysis; 2010. p. 12-19.

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight 
R. Global Patterns of 16S rRNA Diversity at a Depth of Millions of Sequences per Sample. 
Proceedings of the National Academy of Sciences of the United States of America. 2011; 
108(Supplement 1):4516–4522. [PubMed: 20534432] 

Dabney A, Storey J. qvalue: Q-Value Estimation for False Discovery Rate Control. 𝖱 package version 
1.38.0. 2014 URL http://www.Bioconductor.org/packages/release/bioc/html/qvalue.html. 

Dudoit, S.; Keleç, S.; Van Der Laan, MJ. Multiple Tests of Association with Biological Annotation 
Metadata. In: Nolan, D.; Speed, T., editors. Institute of Mathematical Statistics Collections. Vol. 2. 
Probability and Statistics: Essays in Honor of David. A. Freedman; 2008. p. 153-218.

Dudoit S, Shaffer JP, Boldrick JC. Multiple Hypothesis Testing in Microarray Experiments. Statistical 
Science. 2003; 18(1):71–103.

Farcomeni, A. Multiple Testing Procedures under Dependence, with Applications. VDM Verlag; 2009. 

Hothorn T, Bretz F, Westfall P. Simultaneous Inference in General Parametric Models. Biometrical 
Journal. 2008; 50(3):346–363. [PubMed: 18481363] 

Hu JX, Zhao H, Zhou HH. False Discovery Rate Control with Groups. Journal of the American 
Statistical Association. 2010; 105(491):1215–1227. [PubMed: 21931466] 

McMurdie, PJ.; Holmes, S. phyloseq: A Bioconductor Package for Handling and Analysis of High-
Throughput Phylogenetic Sequence Data. PSB Proceedings 2012; Pacific Symposium on 
Biocomputing; 2011. p. 235-246.

Pollard, K.; Dudoit, S.; Laan, MVD. Technical Report 164. U.C. Berkeley: 2004. Multiple Testing 
Procedures: 𝖱 multtest Package and Applications to Genomics. 

𝖱 Core Team. 𝖱 Foundation for Statistical Computing. Vienna, Austria: 2014. 𝖱: A Language and 
Environment for Statistical Computing. URL http://www.R-project.org/.

Reiner A, Yekutieli D, Benjamini Y. Identifying Differentially Expressed Genes using False 
Discovery Rate Controlling Procedures. Bioinformatics. 2003; 19(3):368–375. [PubMed: 
12584122] 

Sankaran K. structSSI: Multiple Testing for Hypotheses with Hierarchical or Group Structure. 𝖱 
package version 1.1. 2014 URL http://CRAN.R-project.org/package=structSSI. 

Shumway, R.; Stoffer, D. Time Series Analysis and Its Applications. Springer-Verlag; 2000. 

Storey JD, Taylor JE, Siegmund D. Strong Control, Conservative Point Estimation and Simultaneous 
Conservative Consistency of False Discovery Rates: A Unified Approach. Journal of the Royal 
Statistical Society B. 2004; 66(1):187–205.

Strimmer K. fdrtool: A Versatile R Package for Estimating Local and Tail Area-Based False 
Discovery Rates. Bioinformatics. 2008; 24(12):1461–1462. [PubMed: 18441000] 

Yekutieli D. Hierarchical False Discovery Rate-Controlling Methodology. Journal of the American 
Statistical Association. 2008; 103(481):309–316.

Sankaran and Holmes Page 18

J Stat Softw. Author manuscript; available in PMC 2016 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.Bioconductor.org/packages/release/bioc/html/qvalue.html
http://www.R-project.org/
http://CRAN.R-project.org/package=structSSI


Zhong, S.; Tian, L.; Li, C.; Storch, K.; Wong, W. Comparative Analysis of Gene Sets in the Gene 
Ontology Space Under the Multiple Hypothesis Testing Framework; Proceedings of the 2004 
IEEE Computational Systems Bioinformatics Conference; 2004. 

Sankaran and Holmes Page 19

J Stat Softw. Author manuscript; available in PMC 2016 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Results of the adaptive GBH procedure on the chlamydiae data set.
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Figure 2. 
Differential microbial abundance hypotheses tree p values before HFDR adjustment. The tip 

labels are OTU IDs, the internal node labels are common ancestors in the associated 

phylogenetic tree. The shade of any particular node corresponds to the outcome of the 

associated hypothesis test when considered independently of all other tests.
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Figure 3. 
Differential microbial abundance hypotheses tree p values after HFDR adjustment. The tip 

labels are OTU IDs, the internal node labels are common ancestors in the associated 

phylogenetic tree. The shade of any particular node corresponds to the outcome of the 

associated hypothesis test when considered independently of all other tests. Those 

hypotheses that are blue, magenta, or orange, have p values below, at or above α = 0.10, the 

threshold for each BH application to sibling pairs.
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Figure 4. 
Global temperature data, as measured by the Goddard Institute for Space Studies (Shumway 

and Stoffer 2000). We are interested in the detection of trends at multiple levels of 

resolution while maintaining control of the FDR.
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Figure 5. 
Results of the adaptive GBH procedure applied to the gtemp data set.
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Figure 6. 
Left: Hypotheses tree p values for the global temperature data before HFDR adjustment is 

performed. Nodes closer to the root represent the test for a trend at a larger time scale, while 

nodes closer to the base test for trends within time subsets. Right: HFDR adjustment applied 

to global temperature time series.
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Table 1

A summary of the differences between the adaptive GBH and HFDR procedures.

Adaptive GBH HFDR

Hypotheses structure Group. Hierarchical.

Independence assumption The test-statistics associated 
with hypotheses in different 
groups are mutually 
independent.

The test-statistics associated with hypotheses that are immediate children of a 
parent hypothesis are mutually independent.

Estimates π0. Yes. No.

FDR control FDR ≤ α.
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