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Original Article

Patients with type 1 diabetes (T1D) adhering to strict glyce-
mic control are at increased risk of developing severe hypo-
glycemia. Recent reports have indicated that the incidence of 
hypoglycemia requiring emergency assistance is as high as 
7.1% per year1 and that as many as 6-10% of all deaths in 
patients with T1D result from hypoglycemia.2-4

Patients with T1D are known to have increased risk of sud-
den, unexpected death during sleep. This phenomenon, known 
as “dead-in-bed syndrome,” occurs due to mechanisms that are 
poorly understood. However, hypoglycemia, ECG abnormali-
ties, and autonomic dysfunction have been suggested to be 
involved. A new theory suggests a link between sleep apnoea 
and hypoglycemia as repeated episodes of hypoglycemia may 
induce adaptation of orexin-neurons, causing defective awak-
ening and hypotonia of upper airway muscles during sleep.5

Severe hypoglycemia is also common in patients with 
type 2 diabetes (T2D) across all stages of glycemic control. 
In a large trial of patients with T2D, more than 10% suffered 
from severe events of hypoglycemia and required assistance 

528838 DSTXXX10.1177/1932296814528838Journal of Diabetes Science and TechnologyCichosz et al
research-article2014

1Department of Endocrinology and Internal Medicine and Medical 
Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
2Department of Health Science and Technology, Aalborg University, 
Aalborg, Denmark
3Department of Clinical Epidemiology, Aarhus University and 
Nordsjaellands Hospitaler Hilleroed, Aarhus, Denmark

Corresponding Author:
Simon Lebech Cichosz, MSc, Aarhus University Hospital, Department of 
Endocrinology and Internal Medicine and Medical Research Laboratory, 
Norrebrogade 44, Building 3, 8000 Aarhus C, Denmark. 
Email: simcich@hst.aau.dk

A Novel Algorithm for Prediction and 
Detection of Hypoglycemia Based on 
Continuous Glucose Monitoring and 
Heart Rate Variability in Patients With 
Type 1 Diabetes

Simon Lebech Cichosz, MSc1,2, Jan Frystyk, MD, PhD, DMSc1, 
Ole K. Hejlesen, PhD2, Lise Tarnow, MD, DMSc3, and Jesper 
Fleischer, MSc, BME, PhD1

Abstract
Background: Hypoglycemia is a common and serious side effect of insulin therapy in patients with diabetes. Early detection 
and prediction of hypoglycemia may improve treatment and avoidance of serious complications. Continuous glucose 
monitoring (CGM) has previously been used for detection of hypoglycemia, but with a modest accuracy. Therefore, our aim 
was to investigate whether a novel algorithm that adds information of the complex dynamic/pattern of heart rate variability 
(HRV) could improve the accuracy of hypoglycemia as detected by a CGM device. 

Methods: Data from 10 patients with type 1 diabetes studied during insulin-induced hypoglycemia were obtained. Blood 
glucose samples were used as reference. HRV patterns and CGM data were combined in a mathematical prediction algorithm. 
Detection of hypoglycemic periods, performed by the algorithm, was treated as a pattern recognition problem and features/
patterns derived from HRV and CGM prior to each blood glucose sample were used to decide if that particular point in time 
was below the hypoglycemic threshold of 3.9 mmol/L. 

Results: A total of 903 samples were analyzed by the novel algorithm, which yielded a sensitivity of 79% and a specificity of 
99%. The algorithm was able to detect 16/16 hypoglycemic events with no false positives and had a lead time of 22 minutes 
as compared to the CGM device. 

Conclusions: Detection accuracy and lead time were significantly improved by the novel algorithm compared to that of 
CGM alone.
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within the past year.6 Furthermore, a link exists between 
severe hypoglycemia and a higher risk of cardiovascular dis-
ease and therefore avoiding hypoglycemia is central in pre-
venting cardiovascular disease in patients with T2D.7

Heart rate variability (HRV) is an established tool for 
studying cardiac autonomic activity over time and HRV has 
been used to detect autonomic dysfunction in clinical set-
tings. Autonomic dysfunction has been linked to hypoglyce-
mic unawareness,8 increased mortality after myocardial 
infarction9 as well as cardiac failure.10 Furthermore, altered 
autonomic regulation during hypoglycemia may contribute 
to cardiac events.11 A recent study by Koivikko et al12 dem-
onstrated a reduction in HRV during spontaneous nocturnal 
hypoglycemia in patients with T1D.

Nocturnal hypoglycemia is a frequent event in patients 
with diabetes13 and feared by patients and their relatives.14 
Prior attempts to notify patients before hypoglycemia devel-
ops have typically been made using continuous glucose 
monitoring (CGM) devices15,16 or other physiological mea-
sures, for example, ECG, heart rate, QT intervals, or skin 
impedance. However, the sensitivity and specificity of these 
approaches are far from impressive.17-21

Ly et al and Bergenstal et al have shown the potential for 
CGM/insulin pump to reduce incidences of moderate and 
severe hypoglycemia.22,23

We wanted to test the hypothesis that HRV patterns in 
combination with CGM data could be used as an improved 
method to real-time early detection of hypoglycemia.

If early real-time detection is possible, patients can be 
warned in advance about an upcoming hypoglycemic event 
and take steps to prevent it. This approach has formerly been 
successfully used in patients with chronic obstructive pulmo-
nary disease to predict upcoming exacerbations.24 The pres-
ent study investigated whether HRV patterns combined with 
CGM data could improve the accuracy of hypoglycemia as 
detected by a CGM device.

Methods

Study Design and Participants

Data for this study were obtained from a trial performed at 
Steno Diabetes Center (Gentofte, Denmark). Ten adult males 
with long-lasting T1D were recruited: age 44 ± 15 years 
(mean ± SD), BMI 24 ± 1.4 kg/m2, duration of diabetes 18 ± 
14 years, baseline heart rate of 64 [53;67] and mean HbA1c 
7.4 ± 0.9% (57 mmol/mol). None of the patients had a his-
tory of cardiovascular disease or autonomic neuropathy or 
were taking drugs affecting the cardiovascular system. All 
patients had a normal electrocardiogram.

Each patient was studied on 2 similar experimental days 
during insulin induced hypoglycemia. On study days, the 
subjects were placed in a hospital bed with the back rest ele-
vated to a comfortable position. Equipment for measuring 
ECG (lead II) and a CGM device (Guardian RT; Minimed 
Inc, Northridge, CA, USA) producing a reading every 5 min, 

were attached. The CGM was calibrated by a nurse accord-
ing to the device instructions. Blood samples for measure-
ments of insulin and blood glucose were taken at 9 am and 
9:30 am, constituting the start and end of the baseline period. 
Throughout the experiment bedside measurements of blood 
glucose were made from earlobe capillary blood, approxi-
mately every 10 minutes. The blood samples were analyzed 
with a HemoCue Glucose 201+ glucose analyzer (HemoCue, 
Sweden), which has been shown to have very good correla-
tion with the YSI system.25 Hypoglycemia was induced by a 
single subcutaneous bolus of insulin aspart (NovoRapid; 
NovoNordisk A/S, Bagsværd, Denmark); bolus size was 
determined by an experienced physician. When blood glu-
cose readings reached a nadir of 2.5 mmol/L (45 mg/dL), the 
subjects were given juice to increase blood glucose above the 
hypoglycemic threshold of 3.9 mmol/L (70 mg/dL).

The study protocol was approved by the local Danish eth-
ics committee and the study was conducted according to the 
principles of the Helsinki Declaration II. All patients gave 
their written informed consent.

Preprocessing

In total, 18 sessions with insulin induced hypoglycemia were 
obtained during the trial. For this study we excluded 2 ses-
sions due to missing CGM data, blood glucose readings, or 
unusable noisy ECG signals.

The ECG signal was used for detection of peaks and cal-
culation of RR intervals (time between R to R of the ECG 
QRS-complex). RR intervals were divided in epochs of 5 
minutes during the trial. RR interval outliers from each epoch 
were replaced with the mean from that particular epoch. 
Outliers were defined as RR intervals deviating 50% from 
previous RR intervals or when being outside mean ± 3 stan-
dard deviations. Epochs were analyzed using HRV analysis 
software (HRVAS) and measures ranging from time domain, 
Poincare, Nonlinear, time-frequency and frequency 
domain—all derived from the HRV epochs. Two different 
models were used to estimate power spectral density: Welch 
and auto regression.

The blood glucose readings were spline resampled with a 
rate of 5 minutes equivalent to each reading of the CGM 
device.

Modeling derivation and development

Early detection or prediction according to a predetermined 
threshold of hypoglycemia (3.9 mmol/L) was treated as a 
pattern recognition problem, which equals the assignment of 
a label to a given input value. This means that blood glucose 
reading from each patient served as reference and was used 
to categorize each 5-minute sample into 2 classes, that is, 
normal glucose level (C

n
) or hypoglycemia (C

hy
).

The modeling approach of the algorithm, as shown in 
Figure 1, was based on extracting and selecting (reducing) 
discriminative features from CGM and HRV data prior to the 
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point in time, which categorized as either C
n
 or C

hy
. Examples 

of discriminative features used in the algorithm is (1) the 
median heart rate averaged from epochs 10-20 prior to a 
sample or (2) the skewness of SDNN (standard deviation of 
normal-to-normal intervals) from epochs 10-40 prior to a 
sample. The calculation used to combine different HRV 
epoch measures is shown in Table 1.

The goal of feature extraction and reduction is to find 
preferably small numbers of features that are particularly dis-
tinguishing or informative for the classification, that is, 

normal glucose level (C
n
) or hypoglycemia (C

hy
). Measures 

derived from RR interval epochs and CGM reading 0-30 
minutes prior to an event were used for calculating multiple 
features in different time intervals.

The extraction of CGM was much more sparse and 
restricted to the current reading, the difference between the 
current reading and the reading made 30 minutes previously, 
the slope of all readings in the interval and the slope relative 
to the current reading.

To classify the patterns, 3296 different features were eval-
uated for their discrimination abilities. A ranking algorithm 
based on a receiver operating characteristics curve (ROC) 
area under the curve (AUC) and intercorrelation weighting 
of features was used to eliminate uninformative features. 
Afterward, forward selection was used to find a subset of 
features for the final classification algorithm including leave-
one-out cross-validation, that is, samples from the same sub-
ject were not used for both validation and training of the 
algorithm. This method ensures an accurate estimate of how 
the algorithm will generalize to an independent data set. A 
binary linear logistic regression classifier was used to clas-
sify the samples into either C

n
 or C

hy
.

All data processing was done using custom analysis soft-
ware developed in MATLAB® R2011b (MathWorks, Natick, 
MA, USA).

Algorithm performance

Sample-based sensitivity, specificity, accuracy and ROC 
AUC were used to evaluate the classification algorithm. The 
algorithm was allowed to make early prediction of a hypo-
glycemic event, up to 10 minutes prior to the blood reference 
reaching the predefined hypoglycemic level of 3.9 mmol/L 
(70 mg/dL). The algorithm produces a belonging probability 
to a given class for each sample. The ROC AUC is calculated 
by changing the probability threshold stepwise for a given 
class between 0-1.

Furthermore, we also evaluated the algorithm event-
based, that is, where 2 or more consecutive samples classi-
fied as hypoglycemic were considered as a hypoglycemic 
event. The event-based performance was evaluated in 

Figure 1. The concept of developing the model: (1) Features 
were extracted from CGM and HRV prior to each sample. (2) 
Features were ranked based on ROC curve seperability and 
weighted by feature intercorrelation—features outside the best 
40 were discarded. (3) Forward selection was used to select 
a subset of features for the best classification. Steps 2 and 3 
were done using cross-validation. CGM, continuous glucose 
monitoring; HRV, heart rate variability; ROC, receiver operating 
characteristics curve.

Table 1. Equations Used to Combine Heart Rate Variability 
(HRV) Measures Into Features.

Description Equation

Differentiation M
y
epc

x1
 – M

y
epc

x2
Average(ing) µ (M

y
epc

x1
 – M

y
epc

xn
)

Slope α (Myepcx1 – Myepcxn)
Standard deviation σ (Myepcx1 – Myepcxn)
Skewness γ

1
 (Myepcx1 – Myepcxn)

Ratio M
y
epc

x1
 / M

y
epc

x2

M
y
 represents an HRV measure y; epc

x1
 represents a 5-minute RR interval 

epoch; µ is the arithmetic mean; α is the slope regression coefficients; σ is 
the standard deviation; ϒ

1
 is the third standardized moment.
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absolute numbers of true-positive and false-positive events. 
In addition, we also calculated lead time for the detection of 
a true-positive hypoglycemic event where the lead time was 
defined as the time between the detection and the nadir blood 
glucose of that specific hypoglycemic event.

For comparison, we also calculated the sample-based and 
event-based evaluation for the CGM alone, purely based on 
the current readings.

Statistics

We used classical statistics to test results for the proposed 
algorithm and that of CGM alone.

Differences in lead time, sensitivity and specificity 
between CGM and the algorithm were tested using a 2-sam-
ple t test or the McNemar test. Statistical comparisons were 
considered significant when P values were < .05. Coefficient 
of variation (CV) was calculated for lead-time differences in 
those patients who had multiple successful days. Non-
normal-distributed measures are presented as median 
[5%;95% percentile]—normal distribution was tested using 
QQ-plots.

Results

The time from insulin injection to nadir glucose was 110 
[91;147] minutes. Blood glucose at nadir was 2.4 [2.2;2.9] 
mmol/l, baseline glucose level was 9.0 [7.6;13.3] mmol/l, and 
time in hypoglycemia (blood glucose ≤ 3.9 mmol/l) was 31 
[26;39] minutes. Heart rate increased significantly (P < .01) 
64 [53;67] to 69 [62;74] from baseline to nadir glucose level.

Sample-based evaluation

A total of 903 samples equivalent to 4515 minutes among 10 
patients with 16 hypoglycemic events were analyzed and 
classified by the novel algorithm. Figure 2 shows the sam-
ple-based evaluation, which yielded a ROC AUC of 0.98. 
Furthermore, Figure 3 shows a blood glucose profile for a 
subject during a hypoglycemic event and the algorithms 
probability output for each sample. The results are presented 
in Table 2. With a specificity of 99% the algorithm had a 
sensitivity of 79% versus 33% for CGM alone which was a 
significant improvement (P < .05).
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Figure 2. (A) Sample-based receiver operating characteristics curve with area under the curve of 0.98. (B) Top image shows the blood 
glucose drop during 1 session; and (B) bottom image shows the algorithm probabilistic output for samples belonging to an hypoglycemic 
event.
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hypoglycemic episode by blood glucose levels (solid curve) and 
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Event-Based Evaluation

The algorithm classified all hypoglycemic events correctly, 
and did not detect any false-positive events, whereas the 
CGM alone detected 12/16 events (P < .05). Importantly, the 
algorithm had a lead time of 22 ± 12 minutes as compared 
with the CGM device, which had a lead time of 0 ± 11 min-
utes (P < .05). Figure 4A shows the patients average CGM 
and blood glucose curve. Figure 4B illustrates the difference 
in lead time between the algorithm and that of the CGM 
alone. Only 6 patients had 2 days included and the difference 
in lead time between days ranged from 0 to 25 minutes with 
a CV of 0.65.

Discussion

There is evidence that the onset of moderate hypoglycemia is 
preceded by release of counter-regulatory hormones such as 
growth hormone, glucagon, epinephrine, and cortisol,26 
causing signals such as rise in pulse and lowering of the 
HRV. Accordingly, the purpose of this study was to 

investigate whether the HRV patterns in combination with 
CGM could be used to predict the onset of insulin induced 
hypoglycemia. Early detection and intervention may 
decrease or eliminate the events themselves and hence any 
damage caused by hypoglycemic episodes. Based on the 
results set forth in this article, our algorithm can improve 
early detection or even predict the occurrence of hypoglyce-
mic events.

Our proposed algorithm yielded significantly higher sam-
ple-based sensitivity with equally high specificity compared 
to that of CGM alone. Furthermore, the algorithm was able 
to detect 16/16 hypoglycemic events without any false-posi-
tives and with a lead time of 22 min. With CGM alone the 
true-positive rate was much lower (12/16) without a lead 
time. Recently, Jensen et al27 published an article on the same 
data as our study but with the aim of detecting hypoglycemia 
from CGM readings and insulin data. Our algorithm with 
inclusion of HRV features appears to have a better specificity 
(99% vs 93%), higher ROC AUC (0.98 vs 0.96) and a larger 
lead time, 22 versus 14 minutes while the sensitivity was 
slightly lower (79% vs 81%). In addition, the model by 

Table 2. The Classification Algorithm Compared With Continuous Glucose Monitoring alone.

Sample-based Event-based

 Sensitivity Specificity True positive False positive Lead time (minutes)

HRV/CGM algorithm 79 99 16/16 0 22 ± 12
CGM 33 98 12/16 0 0 ± 11

CGM, continuous glucose monitoring; HRV, heart rate variability.
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Jensen et al had 1 false-positive event. Our model has con-
siderable better lead time and specificity compared to that 
previously proposed. Thus, based on the present results it 
seems beneficial to add HRV data to reduce false positives, 
which is a recurrent problem when using CGM for hypogly-
cemic detection.16,27-29 However, high sensitivity of the sys-
tem is likewise important, otherwise the system could give 
the patient a false sense of safety.

This trial was conducted in 10 patients with T1D who 
were bedbound during insulin-induced hypoglycemia. It is 
known that diurnal variation influences both glucose excur-
sions and HRV.30 In addition, HRV is affected by gender, age, 
nightly activities, and blood pressure.31-33 If the proposed 
prediction algorithm was to be used in a real-life setting, 
these variations should be taken into consideration. However, 
the strength of our algorithm is that the features used were 
more related to relative changes in HRV than absolute val-
ues—which make it more robust to diurnal variations.

Despite the consistent use of cross validation, the combi-
nation of features selected in this algorithm is not definitively 
the best selection for generalization. The patient sample 
number is small and not necessarily representative. Selecting 
optimal subset of features should ideally be performed in a 
larger set of patients than included in this proof of concept 
study. One possible approach could be to replace the current 
static algorithm which is applied on all patients with a 
dynamic adaptive algorithm individually tailored to each 
patient or to a group of similar patients.

The performance of this study’s classifier was good. 
However, in the real world real-time surveillance would be 
the ultimate goal, as this would identify the majority of 
events with normoglycemia and only a few dangerous events 
with hypoglycemia. In addition, the amount of data and 
events needed to be evaluated would be larger and more 
divergent. Furthermore, Koivikko et al12 state that symptoms 
at the time of hypoglycemia induced by clamp may contrib-
ute to an autonomic response. In future studies the ideal 
setup would consist of data obtained during spontaneous 
nocturnal hypoglycemia.

A nonlaboratory setup is challenging when it comes to the 
use of HRV as a standalone predictor for hypoglycemia. 
HRV is an indirect measure of the autonomic modulation and 
thereby a result of both internal and external changes in 
breathing, blood pressure, hormonal activity, as well as men-
tal and physical status.34 For example, a sudden change in 
body position from lying to standing will result in a sudden 
change in HRV measurements, which in a standalone appli-
cation could result in a false-positive hypoglycemia alarm. 
Because of difficulties in extracting the information of inter-
est that is embedded in the HRV measurements, it seems 
inappropriate to reply only on HRV in the prediction of 
hypoglycemia. To circumvent this challenge, the novel algo-
rithm only uses the dynamic/pattern of HRV to clarify 
whether a change in the measurements conducted with the 
CGM device is of clinical interest. In the example with the 
change in body position from laying to standing, this change 

would not affect the CGM measurement and in this case the 
HRV values are ignored. In patients with both T1D and T2D, 
autonomic imbalance is prevalent and may progress to auto-
nomic neuropathy which is associated with hypoglycemic 
unawareness. However, it is expected that the algorithm can-
not be used in patients with severe cardiovascular autonomic 
neuropathy, which encompasses damage to the autonomic 
nerve fibers that innervate the heart, resulting in abnormali-
ties in heart rate control and significantly reduced HRV.

CGM has been used in several applications as hypoglyce-
mia alarms and it has been shown to reduce the incidence.35 
This comes with a trade-off partly because of the 10-minute 
lag time from changes in blood glucose and partly because of 
poor accuracy of the CGM systems in measuring glucose 
values within the hypoglycemic range.36,37 The result is an 
increased number of false alarms or even false security. The 
combination of CGM and our algorithm seems attractive—
as the CGM could provide information regarding blood glu-
cose levels and sudden drops and the novel algorithm could 
be used to classify if a drop should be treated as a hypogly-
cemic incidence.

Conclusions

Detection accuracy and lead time were significantly 
improved by the novel algorithm compared to that of CGM 
alone. Real time moving surveillance and prediction is the 
goal; therefore, the novel algorithm needs to be evaluated in 
a larger and more divergent population.
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