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Original Article

In the treatment of type 1 diabetes (T1D), perhaps the most 
useful innovation short of a cure would be an effective 
“artificial pancreas” (AP), enabling stable, closed-loop 
infused insulin in response to both the ongoing dynamics of 
T1D glucose-insulin homeostasis and the ongoing external 
perturbations of meals, exercise, sleep, and menstruation, 
among others. In this article, it is argued that existing  
medical devices can provide a significantly better quality  
of blood glucose (BG) control through the exploitation  
of alternative mathematical methods coupled with the 
availability of computing resources in cloud and mobile 
platforms.

The mathematical approach demonstrated here, a combi-
nation of differential game theory and Lyapunov stability 
theory, obtained much of its background theory in robotics. 
Industrial robots typically have highly nonlinear, coupled 

dynamics of high dimension and significant dynamic  
uncertainties, while only a small number of variables are 
observable in (noise-polluted) time series. Furthermore, 
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Abstract
Background: This study demonstrated the novel application of a “machine-intelligent” mathematical structure, combining 
differential game theory and Lyapunov-based control theory, to the artificial pancreas to handle dynamic uncertainties. 

Methods: Realistic type 1 diabetes (T1D) models from the literature were combined into a composite system. Using a mixture 
of “black box” simulations and actual data from diabetic medical histories, realistic sets of diabetic time series were constructed 
for blood glucose (BG), interstitial fluid glucose, infused insulin, meal estimates, and sometimes plasma insulin assays. The 
problem of underdetermined parameters was side stepped by applying a variant of a genetic algorithm to partial information, 
whereby multiple candidate-personalized models were constructed and then rigorously tested using further data. These formed 
a “dynamic envelope” of trajectories in state space, where each trajectory was generated by a hypothesis on the hidden T1D 
system dynamics. This dynamic envelope was then culled to a reduced form to cover observed dynamic behavior. A machine-
intelligent autonomous algorithm then implemented game theory to construct real-time insulin infusion strategies, based on the 
flow of these trajectories through state space and their interactions with hypoglycemic or near-hyperglycemic states. 

Results: This technique was tested on 2 simulated participants over a total of fifty-five 24-hour days, with no hypoglycemic 
or hyperglycemic events, despite significant uncertainties from using actual diabetic meal histories with 10-minute warnings. 
In the main case studies, BG was steered within the desired target set for 99.8% of a 16-hour daily assessment period. Tests 
confirmed algorithm robustness for ±25% carbohydrate error. For over 99% of the overall 55-day simulation period, either 
formal controller stability was achieved to the desired target or else the trajectory was within the desired target. 

Conclusions: These results suggest that this is a stable, high-confidence way to generate closed-loop insulin infusion 
strategies.
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robotic systems typically degrade over time due to selective 
wear in mechanisms, generating idiosyncratic dynamic 
behavior. From the late 1970s to early 1990s, a group of 
researchers in robotic controls rejected “classic” identifica-
tion and controller techniques (model linearization, dynamic 
optimization) partly because these were incompatible with 
robust handling of the nonlinear dynamic uncertainties for 
ongoing control of the system using noise-polluted partial 
information.

Instead, Lyapunov-based methods were developed for 
nonlinear identification, nonlinear controllers, and nonlinear 
Model Reference Adaptive Control (MRAC)—the imple-
mentation of which was described compendiously as the 
Product State Space Technique (PSST)1-8—in a body of 
robotics research that has more recently enjoyed a revival.9-13 
This provided the genesis of a medical platform technol-
ogy14,15 demonstrated here in an AP context.

In 2002, Greenwood14 outlined a “control-to-range” 
mathematical method for steering the solution trajectories of 
a biological dynamic system to a specified target range or 
more complicated set, using incomplete information, despite 
the existence of significant uncertainties or uncontrolled ele-
ments in the system dynamics. This was done using differen-
tial game theory, inspired by earlier nonbiological works.16,17 
One or more Lyapunov functions were to be used to describe 
controller objectives in terms of steering solution trajectories 
to a target set sandwiched between nested contours of a 
Lyapunov function. Uncertainties or uncontrolled elements 
were to be ascribed to a hostile player (“Nature”), who would 
endeavor to prevent those trajectories from colliding with or 
being captured by the target. A minimax method was 
described, applied to distinct variables controlled by these 
mutually hostile players, to generate a control program 
robust to real-world uncertain dynamic elements.

Important differences exist between this approach and 
other published applications of robust control methods to the 
AP problem, which also typically use a minimax approach to 
uncertainties. Two examples are those of Parker et al18 and 
Kovács et al,19 who have employed modified forms of 
Sorenson’s20 model (rather than the usual T1D benchmark 
model of Dalla Man et al21 and Magni et al22; Sorenson,20 
Dalla Man et al,21 and Magni et al22 represent nonlinear mod-
els of T1D glucose-insulin homeostasis); Parker et al18 
applied an implementation of the H∞ control, while Kovács 
et al19 applied a Linear Parameter Varying (LPV) model–
based control algorithm, itself an extension of linear time-
invariant systems.

An important criticism of both examples’ approaches is 
that they have necessarily involved significant linearization 
of the model: for instance, Parker et al18 linearized the model 
and reduced it to a third-order linear form for controller syn-
thesis, while the method of Kovács et al19 involved the con-
struction of a polytopic region with the model built up by a 
linear combination of the linearized models derived in each 
polytopic point.

A problem with significant linearization of nonlinear  
glucose-insulin dynamics is that it introduces two layers of 
potential instability in the control algorithm:

1.	 The first layer is due to the discrepancy between the 
nonlinearized and linearized models, which can be 
compensated within a specified domain using rigor-
ous simulation testing.

2.	 The second layer is fundamental: all mathematical 
models of glucose-insulin homeostasis and the insulin-
based control are themselves only approximations of 
biological reality. Even in sophisticated models such 
as that of Magni et al,22 some processes typically 
assumed to have a fixed linear structure can be rea-
sonably expected to be, in reality, significantly non-
linear and/or time varying. Examples include the 
individualized, time-dependent nature of insulin sen-
sitivity in T1D23 and the nonlinearity of insulin infu-
sion pharmacokinetics (PK) (see Kraegen and 
Chisholm,24 who attempted to fit linear parameters 
and found these values to be dependent on the infu-
sion profile, suggesting “that the linear model is an 
oversimplification”). Given that specific forms of 
such unmodeled nonlinearities are typically unknown 
a priori, it is difficult to be confident in the stability of 
control laws reliant on linearized models.

This criticism, and associated problems with nonlinear iden-
tification and nonlinear state observers, was overcome in the 
present study through the use of Lyapunov functions and dif-
ferential game theory, preventing any need for linearizing the 
original system dynamics. To avoid artificial assumptions, 
this study also used an actual medical history of a “brittle” 
volunteer with diabetes code-named WM3, awaiting pancre-
atic islet transplantation at Westmead Hospital in Sydney, 
when generating simulated histories for data mining.

Methods

An AP built on the principles of Greenwood14 has key differ-
ences from the status quo.

1. Use of Information

Sophisticated models of T1D insulin-glucose dynam-
ics20,22,25-27 are typically of high dimension, are nonlinear, 
and have many parameters. In practical AP implementations, 
only two state variables and two control variables are typically 
available for time series measurements: BG levels via finger-
stick (or similar) and interstitial fluid glucose (ISFG) levels 
via continuous glucose monitoring (CGM), and infused insu-
lin doses and meal carbohydrate content. Under clinical con-
ditions, additional variables may also be measured, including 
plasma insulin (PI), glucagon, and C-peptide levels.
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Two modeling methods strongly represented in the AP lit-
erature are as follows:

1.	 Statistical analysis of large data sets to estimate 
“nominal” T1D parameter values, followed by fur-
ther refinement (eg, neural networks, Bayesian anal-
ysis), and/or

2.	 Model reduction, simplifying (by linearizing and/or 
removing components of the dynamics) until the 
available information is sufficient to enable the iden-
tification and control of a unique estimate.

In contrast, this study used a different approach:

•• The use of Lyapunov functions enabled solution tra-
jectories of the nonlinear system to be manipulated 
without requiring an explicit closed form of these 
solutions to be computed, avoiding the need for 
simplification.

•• Differential game theory enabled the system dynamics 
to be controlled without requiring uniqueness: the 
problem of controlling an underdetermined dynamic 
model was translated into the task of manipulating the 
behavior of a multitude of nonunique candidate solu-
tion trajectories. As demonstrated here, using Lyapunov 
functions, this process is viable and generates informa-
tion that can be further exploited in decision making.

•• Discarding the requirements for simplification and 
uniqueness meant that the information loss associated 
with model reduction could be avoided. Statistical anal-
ysis, followed by refinement, was similarly rejected in 
favor of the construction of partial dynamic models 
from available information, interrogating a hypercube 
constructed from intervals of possible values.

•• Hence, the biological T1D system has its noiseless 
dynamics written as a generalized differential equa-
tion (the “contingent equation”):

d

dt
f t t t t P t t

x
x u u x∈ ∈{ }( ( ), , ( ), ) | ( ) ( ( ), ) ,β 1 1 1

	 (1)

	 where β∈
m

 denotes the vector of (unknown) param-
eter values, u1( )t  denotes the vector of controller 
variables (infused insulin), and t  denotes time. 
P t t1( ( ), )x  denotes the set of all admissible control 
programs, that is, medication strategies 
u p x x1 1 1( ) ( ( ), ) ( ( ), )t t t P t t= ∈ , such that equation 1 
has solution trajectories.

Here, the actual biological state x( )t
n∈  is assumed to be 

largely unknown; instead, all decisions have to be made 
based on an estimated state ξ ξ ξ( ) [ ( ), , ( )]t t tn

T n= ∈ ⊂1  ∆   
that at least partially approximates x( )t , consistent with 
direct observations { ( )}y tk k

Q
=0 . It is assumed that the 

physical structure of equation 1 is such that admissible medi-
cation strategies exist.

The estimated state ξ( )t  has its dynamics defined by the 
model equation fm :

d

dt
t t t t t P t tm

ξ
ξ ξ∈ ∈{ }f u w u( ( ), , ( ), ( ), ) | ( ) ( ( ), ) .λ 1 1 1

	 (2)

Here, λ∈Λ  denotes the vector of candidate parameter val-
ues within some compact hypercube (and hence, convex 
polytope),

Λ = × × ⊂− + − +[ , ] [ , ] ,λ λ λ λ1 1  m m
m 	 (3)

the hypercube of plausible parametric vectors within the 
parameter space, where the interval [ , ]λ λi i

− +  denotes the 
interval of plausible values for the ith parameter under model 
equation 2, specified in Table 1. The vector w( )t  denotes 
dynamic uncertainty: || ( ) ||w t w≤ < ∞+ . The set of control 
programs P t t1( ( ), )ξ  is again admissible, that is, defined such 
that solution trajectories exist for the model equations, where 
this can be explicitly confirmed.

•• Identification employed a technique outlined by 
Greenwood.15 The PSST typically employs Lyapunov 
functions to achieve nonlinear MRAC, whereby the 
dynamics of a complex system (equation 1) are made to 
converge with the noiseless dynamics (w 0( )t ≡ ) of a 
simpler model (equation 2); the parameters of this sim-
pler model are changed adaptively using a descent con-
dition of one Lyapunov function (typically denoted  
Vm), while an adaptive controller law is generated using 
another Lyapunov function (typically denoted VS ), 
forcing the system to track the model even under condi-
tions of noise-polluted partial information. Greenwood15 
indicated that this process can be inverted to enable the 
identification of complex nonlinear biological systems; 
provided the model (equation 2) has comparable com-
plexity to the system (equation 1), then the use of his-
torical medication data instead of an adaptive control 
law forces the descent condition of Vm to reconstruct 
candidate sets of parameter values and model structures 
for the underlying system, as the model converges to 
the system instead of vice versa.

•• The previous objections to linearization in the control 
law also posed an obstacle to formulating an appropri-
ate state observer that would estimate values of unseen 
variables over time.
|| The insulin-glucose system was to be assumed 

significantly nonlinear (including anticipated 
bounded nonlinearities of an unknown form); 
hence, linear observers such as the Luenberger 
observer or Kalman filter were rejected, as were 
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the linearizing assumptions of extended Kalman 
filters.

|| The high dimensionality of the model and the 
individually idiosyncratic nature of T1D also con-
traindicated the use of Bayesian methods.

|| Furthermore, the model to be used was not for-
mally observable, given the limited number of 
available output variables.

•• Using the technique outlined above, derived from 
Greenwood,15 enabled the direct construction of mul-
tiple underdetermined nonlinear candidate models 
using all available information. Each candidate gener-
ated an associated solution trajectory; the compact set 
comprising the volume enclosed by all such trajecto-
ries (the “dynamic envelope”) bounded the actual sys-
tem trajectory by exploiting the convergent dynamics 
of the PSST. Combined with differential game theory, 
this dynamic envelope replaced the requirement for a 
single nonlinear observer.

•• This alternative technique used a variant of a genetic 
algorithm (GA). This is a method28-30 of achieving 
pattern recognition through simulating the processes 
of evolution at a chromosomal level. Parameter values 
from across a compact hypercube were inserted into 
one or more specified models and evolved across gen-
erations through a process of selective breeding and 
mutation until a pattern of observed data was heuristi-
cally matched.

•• Candidate vectors λ∈ΛG , such that the solution  
trajectories j to equation 2 (defined such that 
ξ ξ( ) ( ( ), , ( ), ) | [ , ]t t t t t t t f= ∈ϕ λ0 0w ) successfully 
tracked observed medical data { ( )}y tk k

Q
=0 , were 

rewarded with enhanced fitness in the selection pro-
cess, encouraging the evolutionary emergence of 
parameter sets fitting the model (equation 2) to a 
known medical history.

This variant of a GA expressed chromosomes using the 
Gray code31 instead of conventional binary encoding to avoid 
the formation of Hamming walls.30 Consequently, the opera-
tion of mutation and crossover on the genes of Gray-encoded 
chromosomes expanded the search domain from an initial 
compact hypercube Λ  of plausible values to some larger com-
pact hypercube Λ Λ ΛG G, ⊆ ⊂ m , estimated in Table 1.

•• In the AP context, this enabled the exploitation of 
existing T1D models and direct data mining of indi-
vidual patients’ medical histories to generate multiple, 
personalized candidates for T1D dynamics consistent 
with known analytical models and observable data 
from that individual.

•• In contrast with the application of LPV methods to the 
AP,19 here, information about stability of the insulin-
based control of the full nonlinear model can be 

obtained directly using the minimax of the Lyapunov 
derivatives, where the controller is playing against the 
known dynamic uncertainties remaining in all plausi-
ble candidates ( λ∈ΛG ).

Information about the level of confidence in imposing stable 
control (in differential game theory, the “strong controllabil-
ity”) of the underdetermined system is provided by this 
method by generating a dynamic envelope of possible solu-
tion trajectories and striving to pour this envelope down the 
slope of the Lyapunov function to the target set (here includ-
ing a desired interval of BG levels), despite intelligent coun-
terstrategies exploiting known residual uncertainties to 
attempt to prevent this. Perturbations or uncertainties in the 
dynamics, if contained within this envelope over time, are 
then also controlled to target.

This method encompasses not only control of the actual 
uncertainties across λ∈ΛG  associated with an underdeter-
mined system but also other dynamic uncertainties in the 

Table 1.  Parametric Intervals for GA Search Hypercube ΛG  
for Generating Candidates λ to Achieve Model Tracking of 
Observed Data.

Parameter
Nominal  

T1D value λi
– λi

+
λi

G+  

(estimateda)

β
1

0.0450 5.00e-05 0.0975 0.15463
β

2
0.0710 0.0355 0.1185 0.2339

β
3

1.0 0.5 1.5 2.0
β

4
0.0005 2.5e-04 0.0010 0.00152

β
5

339.0 134.5 508.5 645.5
β

6
2.700 1.350 4.635 6.45

β
7

0.0007 3.50e-04 0.0032 0.0052
β

8
0.0050 0.0025 0.0135 0.0280

β
9

0.04926 0.01480 0.1128 0.21949
β

10
0.9960 0.4625 1.5390 2.0865

β
11

2.50 1.25 6.975 11.40
β

12
0.047 0.017 0.0705 0.1193

β
13

1.880 0.745 2.820 4.125
β

14
225.59 112.795 699.315 1047.80

β
15

0.0331 0.0165 0.1260 0.2213
β

16
0.0164 N/A N/A  

β
17

0.0079 0.0033 0.0119 0.016
β

18
0.0018 N/A N/A  

β
19

0.0182 N/A N/A  
β

20
0.05 0.02 0.075 0.134

β
21

0.190 0.095 0.5685 1.118
β

22
0.484 0.242 1.0095 1.183

β
23

0.3484 0.1742 0.5226 1.1962
β

24
0.194 0.097 0.4035 0.608

β
25

2.954 1.477 4.4310 6.587
β

31
0.2123 0.0000 0.3184 0.3200

Also showing nominal type 1 diabetes (T1D) values from the literature. 
GA, genetic algorithm; N/A, not applicable.
aλi

G+values are empirically sampled.
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system, such that their effects could be enclosed within a 
dynamic envelope generated by the model equations using 
an appropriate choice of some set λ j j

N{ } ⊂
=1

ΛG . This was 
effectively demonstrated in this study by strongly controlling 
the uncertain effects of meals on the dynamic system.

2. Model Analysis and Manipulation

The key problem was extracting an insulin control law from 
multiple underdetermined T1D models built from a common 
high-dimensional set of nonlinear differential equations, 
which fulfilled desired control objectives using incomplete 
information.

•• The solution involved Lyapunov functions. These are 
typically defined to be positive-definite C1  quadratic 
functions V n( ) :x  → + , where V ( )x ≥ 0 , 
V ( )x x 0= ↔ =0 , where x = ∈ ⊂[ , , ]x xn

T n
1 ∆   

denotes the state of the system being studied, and   
is defined to be some biologically relevant subset of 
state space. V ( )x  acts as a basin (Figure 1), with the 
target set T  ⊂ ∆ of desired states lying at the bottom of 
the basin: T  = {x ∈ ∆V(x) ≤ C}, some C > 0.

•• Model equations (equation 2) operating under a  
control program or strategy u p1( ) ( ( ), )t t t= ξ   
generate solution trajectories j, where 
ξ ϕ ξ λ( ) ( ( ), , ( ), ) | [ , ]t t t t t t t f= ∈0 0w . Lyapunov-based 
controls then operate by calculating the control program 
u p1( ) ( ( ), )t t t= ξ  required to generate trajectories j with 
the desired geometric relationship to the surface of  
V ( )ξ , such that the j descend to the desired target 
despite ongoing uncertainties, that is, given ξ(t0) ∉ T :

u p

f p w

1

0

( ) ( ( ), ) |

( ( ), , ( ( ), ), ( ), ) .

t t t
V

t

V t t t t tT
m

=
∂
∂

+

∇ ⋅ ≤

ξ

ξ λ ξ

•• Equation 4 represents a sufficient condition for stable 
control of the system. The preferred form of control 
corresponds with the strongest such form of stability, 
namely, asymptotic control to target T. By imposing 
strict inequality in equation 4, Skowronski7 gives 
equation 4 as sufficient for asymptotic control if T  is a 
neighborhood of natural equilibria of the system 
(equation 1) and further provides a sufficient condi-
tion for making a model strongly controllable for 
asymptotic stability, namely,

u p

f p w

1( ) ( ( ), ) |

( ( ), , ( ( ), ), ( ), ) (||

t t t

V

t
V t t t t t cT

m

=
∂
∂

+∇ ⋅ ≤ −

ξ

ξ λ ξ ξξ( ) ||)t < 0

where c : → +  is some continuous positive-definite func-
tion for all uncertainties w( )t , such that || ( ) ||w t w≤ < ∞+ .

•• Lyapunov-based control is typically formally subopti-
mal under conditions of perfect information. However, 
when controlling a complex nonlinear system under 
conditions of incomplete information and unknown 
dynamic aspects, the Lyapunov approach has the fol-
lowing advantages:
|| A controller response sufficient to overcome 

the effects of bounded uncertain dynamics 
|| ( ) ||w t w≤ +  within a solution trajectory is 
straightforward to compute:

u f u w
w

1 1 0| sup ( ), , , , )
|| ||≤ +

∂
∂

+∇ ⋅ <
w

T
m

V

t
V t t(ξ λ

for asymptotically stable controls and

u f u w
w

1 1 0| sup ( ( ), , , , ) (|| ( ) ||)
|| ||≤ +

∂
∂

+∇ ⋅ <
w

T
m

V

t
V t t c tξ λ ≤ − ξ

	
(7)

for strong controllability, ensuring asymptotically 
stable controls.
This approach was applied to poorly modeled 
components of the T1D system’s nonlinear dynam-
ics to ensure high-confidence controller stability.

|| Estimated regions of controllability are readily 
computable; such estimates are based on suffi-
cient conditions6,7 so they are conservative and 
high confidence.

|| Designing a controller law using Lyapunov condi-
tions imposes asymptotic stability on the result-
ing dynamics within the region of controllability; 

Figure 1.  Plot of Lyapunov function showing the descent of 
solution trajectories towards the target.

(6)

(4)

(5)
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hence, the strongest available form of stability has 
been imposed as part of the design process.6,7

|| Real-time computation is fast (an algebraic 
descent condition); hence, Lyapunov methods 
have been studied for possible real-time military 
use.17,32 This also means that an additional layer 
of machine-intelligent computation can be intro-
duced to operate within a feasible time, as is done 
here.

3. Response to Constraints

Significant dynamic constraints affect AP control:

•• Changes in ISFG values dynamically lag behind their 
BG counterparts by a time period that varies based on 
local BG conditions33 and in ways that may not be 
entirely described by current models.34-36

•• A significant fixed-value CGM sensor lag also exists 
as an artifact of the ISFG sensors’ filter algorithms.

•• CGM has difficulty tracking hypoglycemia directly.35,37

•• Elsewhere, synthetic insulin, once infused subcutane-
ously, continues to act on BG levels for a considerable 
duration. The value of this duration of action depends 
on local dynamic conditions as well as the form of 
insulin being used.

Consequently, this demonstration did not use CGM data for 
direct prediction of system dynamics, nor did it assume a 
specific horizon for a past insulin dose. Both issues were 
instead resolved through the predictive use of a large number 
of candidate solution trajectories, generated from the model 
equations using underdetermined evolutionary fitting to the 
patients’ available medical histories:

•• Partial system identification via data mining medical 
histories using a variant of a GA gave multiple candi-
date values for parameters in self-consistent combina-
tions, including those relating ISFG to BG (and 
similarly for insulin, assuming consistent use of a 
single insulin type).

•• These various values generated multiple trajectories, 
forming a forward-moving divergent dynamic enve-
lope of the actual system dynamics.

Ongoing CGM data were used to establish recent past values 
for ISFG and reassess expected recent values for BG, updat-
ing the starting point for the dynamic envelope in the recent 
past every 5 minutes. Thus, CGM data still formed part of a 
closed-loop AP control but were not used for direct predic-
tion (performed instead by the dynamic envelope). To 
emphasize the robustness of this approach, in these simula-
tions, the fixed-value CGM sensor lag was taken to be rela-
tively large: τCGM =10minutes.

4. Modeling of Meals

Meals represent a major source of uncertainty in BG dynam-
ics, with carbohydrate content difficult to predict accurately 
for most patients with diabetes. Consequently, the AP litera-
ture typically imposes strict constraints on meal carbohy-
drate content, timing, or both38,39 and views meals as a 
“disturbance that must be rejected by the control law imple-
mented within the AP algorithm.”39

This study took a different view: meals are an inherent, if 
highly uncertain, part of the T1D system dynamics. Their 
effects are not a disturbance to be rejected but are handled by 
the control law applying game theory on the dynamic enve-
lope (below).

To demonstrate this, WM3’s medical history provided 
actual meal data from several months in 2008, which were 
used in this study:

•• Meals were irregularly timed and had irregular carbo-
hydrate content.

•• The algorithm received only 10 minutes’ warning 
before each meal (this constraint was deliberately 
harsh to emphasize the algorithm’s robustness  
to short-warning perturbations; in real-world  
applications, a longer-duration warning would be 
feasible).

•• Estimates of meals’ carbohydrate content were ini-
tially assumed accurate, and then robustness studies 
were performed using ±25% error.

5. Machine-Intelligent Handling of Uncertainty: 
Game Against Nature

The model dynamics had 2 forms of significant uncertainty:

1.	 Uncertainties in the values of parameters and state 
variables due to underdetermined equations, mani-
fested by the dynamic envelope, and

2.	 Uncertainty associated with an inherently uncertain 
variable (meal carbohydrates), affecting this dynamic 
envelope as it flowed through state space.

The solution to handling these dynamic uncertainties was to 
overlay the so-called Game against Nature as an additional 
layer of machine-intelligent decision making on top of the 
Lyapunov formulation.11,14,16,17,40

Equation 4 shows the essential criterion for steering a tra-
jectory to a target set despite uncertainty. The Lyapunov-
based Game against Nature (L-GaN) goes further, assuming 
all such (bounded) uncertainty || ( ) ||w t w≤ +  is being manip-
ulated intelligently by a hostile player (“Nature”) to thwart 
these control efforts. The counterstrategy then played is a 
revised u p1( ) ( ( ), )t t t= ξ , such that equation 6 is nonetheless 
obeyed as far as possible.
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In the L-GaN implementation demonstrated, the domi-
nant uncertainty was the underdetermined model equations 
partially identified from available data, leading to a finite set 
of possible parameter vectors λ j j

N{ } ⊂
=1

ΛG , consistent with 
the observed data for that participant under the T1D model. 
This generated a finite set of candidate trajectories 
ϕ ξ λ( ( ), , , ) | [ , ]t t t t tj f j

N
0 0 1

0 ∈{ } =  that formed the dynamic enve-
lope. Nature chose which trajectory represented the actual 
system at any given moment. Equation 6 then implied that 
the desired requirement was to find

u p

f p

1

1

( ) ( ( ), ) |

sup ( ( ), , ( ( ), ),

t t t

V

t
V t t t

j j

N

T
m

=
∂
∂

+∇ ⋅
∈{ } =

ξ

ξ λ ξ
λ λ
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with the preferred form (from equation 7)
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When no single strategy satisfied equations 8 or 9 for all 
λ λ∈{ } =j j

N

1  
at a particular state ξ( )t , a form of “triage logic” 

was applied by the algorithm to find u p1( ) ( ( ), )t t t= ξ , 
satisfying
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for some λ λj j

M
j j

N{ } ⊂ { }= =1 1
,  with the condition that 

p( ( ), )ξ t t  and M  were chosen to satisfy the following pref-
erence ordering:

1.	 If possible, all candidate parameter vectors associ-
ated with trajectories projecting hypoglycemia from 
ξ( )t  were to be included in λ λ∈{ } =j j

M

1
.

2.	 If not all λ j  projecting hypoglycemia could be 
included under a single strategy p( ( ), )ξ t t , then 
p( ( ), )ξ t t  was chosen to include the most significant 
such λ j  (i.e., those projecting the most dangerous 
hypoglycemic episodes).

3.	 Subordinate to the above, p( ( ), )ξ t t  was chosen to 
include in λ j j

M{ } =1  the maximal number of λ j  (if 
any), projecting hyperglycemia from ξ( )t .

4.	 Subordinate to the above, p( ( ), )ξ t t  was then chosen 
for maximal M .

The T1D system was primarily derived from Magni et al22 
with four modifications:

1.	 The unit step function U z
z

z
[ ]

,

,
�
1 0

0 0

≥
<





 was intro-

duced to handle on/off switching of the renal excre-

tion of glucose and endogenous glucose production.
2.	 A dimensional anomaly was found in the BG-ISFG 

dynamics of Magni et al.22 This was remedied by 
inserting an additional term corresponding with 
g∈[ , ]0.925 1.026  from Facchinetti et al.33

3.	 Meal equations were taken from Magni et al22 and 
Dalla Man et al.41 The medical histories of “brittle” 
patients with diabetes at Westmead Hospital demon-
strated significantly higher glycemic sensitivity than 
predicted by Dalla Man et al,41 so a correction factor 
ν∈ ( , ]0 1  modified the body mass η  in equation 11 
to align the scale of these fluctuations.

4.	 Clinical T1D typically has vestigial pancreatic insu-
lin secretion, complicating insulin control. To simu-
late the presence of this tiny insulin signal, 
ε βpancreas ( )= 31

25,42 was used via equation 20 for a 
steady-state approximation.

Then, the system equations were as follows (with vari-
ables as defined in Table 2):
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The components of β  were system parameters to be partially 
identified (exceptβ β β16 18 19, , ; see below); all other system 
parameters use symbols defined in relevant works.21,22,25,41,42

•• For each participant, β  was permanently hidden 

within a “black box,” as were nonmeal components of 

the state vector x( )t , partly revealed by measure-

ments of BG { ( )} , ( ) ( )y t y t x tk k
Q

k k
BG

10 0 10 10= ≡( ) , ISFG 
{ ( )} , ( ) ( )y t y t x tk k

Q
k k

ISFG
11 0 11 11= ≡( ) , and sometimes PI 

{ ( )} , ( ) ( )y t y t x tk k
Q

k k
PI

20 0 20 20= ≡( ) .
•• Partial identification was to be achieved through gen-

eration of vectors λ  and associated model state vec-
tors ξ( )t  that predicted the observed measurements.

•• Apart from β0 , meal equations 21 to 23 were not to 
be identified, as the major uncertainties—meal carbo-
hydrate content, candidate values of λ0 , and other 
parameters in ξ10 ( )t —dominated other meal-related 
dynamics.

A related question in this study was the impact on stable insu-
lin control of PI assay (non)availability during identification:

•• PK parameters for subcutaneous insulin infusion were 
assumed to be well estimated by the insulin 

manufacturer and available to the clinician. 
Reassessing existing manufacturers’ estimates of 
insulin infusion PK using these algorithms is possible 
but was regarded as a less interesting question than 
exploring the deeper capabilities of these algorithms 
in tandem with existing estimates, with and/or without 
PI time series being available, so accurate infusion PK 
estimates were assumed.

	 Consequently, equation 15 was replaced by equation 24:
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•• Were this assumption to be abandoned, the same iden-
tification techniques demonstrated here would be 
repeated for β16 , β18 , and β19 ; however, this would 
then necessitate a PI time series.

The literature21,22,24,25,33,41-44 gave possible βi  values, 
whereby variation among patients with diabetes and healthy 
participants typically produced a maximal interval [ , ].β βi i

− +

•• When such intervals existed, an associated search 
interval [ , ] [ . , . ]λ λ β βi i i i

− + − += 0 5 1 5  was constructed for 
the identifier using a further ±50% tolerance to 
emphasize method robustness. When only a single 
value βi°  was published, this interval became 
[ , ] [ . , . ]λ λ β βi i i i

− + ° °= 0 5 1 5 .
•• The parametric plausible candidate hypercube 

Λ = × ×− + − +[ , ] [ , ]λ λ λ λ0 0 31 31  was then constructed 

Table 2.  Variables in the State Vector x( )t .

Variable Meaning

x10 Blood glucose concentration (mg/dL)
x11 Interstitial fluid glucose concentration (mg/dL)
x12 Glucose mass in slowly equilibrating tissue  

(mg/kg)
x20 Insulin concentration in plasma (pmol/L)
x21 Nonmonomeric insulin in subcutaneous space 

(pmol)
x22 Monomeric insulin in subcutaneous space (pmol)
x23 Insulin variable (pmol/L)
x24 Remote insulin signal (pmol/L)
x25 Delayed insulin signal (pmol/L)
x26 Liver insulin (pmol/kg)
x x27 28, Variables relating to vestigial pancreatic insulin 

synthesis and secretion
x x51 52, Glucose in solid- and liquid-phase food in 

stomach (mg)
x53 Glucose mass in intestine (mg)
u

I
(t) Infused insulin control variable (pmol/kg/min)
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(without intervals for β β β16 18 19, , ,β β26 30to ). 
Recombination and mutation on Gray-encoded genes 
caused the effective upper bounds of these gene inter-
vals to expand, forming a larger parametric search 
hypercube ΛG = × ×− + − +[ , ] [ , ]λ λ λ λ0 0 31 31

G G  (Table 1).

Hence, using the standard “black box” method for simulation 
testing, vectors of system parameters βS1  and βS2  were con-
structed for 2 patients with diabetes, S1 and S2, and hidden 
from both the identifier and controller in a “black box” par-
ticipant simulator:

•• S1 used representative T1D values from the above lit-
erature, as a “typical” patient with diabetes (basal BG 
= 179.5 mg/dL).

•• S2 was modified within the plausible range of diabetic 
values to reflect more extreme behavior observed in a 
“brittle” patient with diabetes (in particular, basal BG 
= 231.7 mg/dL), chosen to be challenging to reduce 
the desired BG interval [80, 140] mg/dL without 
either inducing hypoglycemia or experiencing interim 
hyperglycemia.

Using 61 days’ actual meal and insulin pump data from 
WM3’s medical history, βS1  and βS2  were used by the 
“black box” to generate by simulation nineteen 24-hour days 
of complete medical histories (using equivalent dates: 
September 23, 2008; July 25 to August 11, 2008) for these 2 
participants, assuming fingerstick measurements every 2 
hours and CGM measurements every 5 minutes.

The observable time series from these medical histories were 
given to the identifier to analyze. Identification involved hypoth-
esis formulation and predictive testing on independent data. Up 
to 11 days’ actual meal data were also used for the controller 
phase. Throughout identification, the “tracking criterion” was 
that trajectories must track fasting BG and ISFG measurements 
to within ±1 mg/dL and PI data, where measured, within ±5 pM.

Results

Computational processes were divided between time-intensive 
identification, performed offline prior to the controller regime, 
and the controller, which was demonstrated to operate effec-
tively in real time (computations required in 10 minutes’ simu-
lated time were performed within 10 minutes in real time).

For each participant, the process was as follows.

Stage 1: Initial Identification

This was performed on a single day’s fasting data (September 
23) 7.5 hours from midnight to breakfast.

For each participant, two scenarios were studied:

1.	 (I): PI assays accompanied each fasting BG measure-
ment in stage 1, and

2.	 (No I): no such PI measurements were available.

Running in a parallel-computing architecture using an 
AMAX Servmax MNL-1185 (AMAX, Fremont, California) 
high-performance server, equipped with 2 quad-core Intel 
Xeon E5520 (Intel, Santa Clara, California) Nehalem pro-
cessors and 3 Nvidia Tesla C1060 cards (Nvidia, Santa Clara, 
California), each time, the identifier used 100 chromosomes, 
initially generated randomly across Λ  in a GA running 

10,000 to 15,000 generations to seek vectors λ j j{ } ⊂
=1
100 ΛG  

that complied with (ie, tracked within criterion) the observed 
time series measurements of the “black box” system when 
responding to insulin infusion.

This was done using 10 to 15 runs per participant per sce-
nario, generating an analysis of 10 million to 22.5 million 
(typically 15 million) candidate vectors each. Table 3 lists the 
numbers of compliant vectors/candidate trajectories derived 
from fasting data, each corresponding with an initial hypothe-
sis of the system dynamics based on incomplete information. 
Note that the severely underdetermined nature of the identifi-
cation process and the nonlinearity and complexity of system 
and model equations meant that the possibility of large-scale 
divergent dynamics remained: models constructed on ΛG  
would not necessarily track the system dynamics, emphasized 
by Table 3, which typically extracted fewer than 1600 accept-
able hypotheses out of millions of chromosomes.

Stage 2: First-Pass Fasting Open-Loop Predictive 
Testing

•• Using 8 distinct days’ fasting insulin infusion data 
(6-8 hours daily; July 25 to August 1), hypotheses pre-
dicted BG and ISFG trajectories each day, which were 
compared with “black box” measurements. All com-
pliant stage 1 hypotheses tracked the measurements 
each day within the tracking criterion.

•• This was then successfully repeated using another 10 
days’ fasting data (6-8 hours daily; August 2-11).

Stage 3: First-Pass Open-Loop Prandial Filter

Insulin infusion and meal time series across September 23 
were then supplied to the hypotheses, which predicted BG 
and ISFG time series for 24 hours.

Table 3.  Number of Hypotheses per Participant and Scenario.

Participant  
(PI scenario)

Number of Stage 1– 
compliant hypotheses

Number of final  
hypotheses in reduced  

dynamic envelope

S1 (I) 1106 549
S1 (No I) 1571 535
S2 (I) 1017 621
S2 (No I) 1115 894

(I), scenario where plasma insulin (PI) assays are available in Stage 1 
identification; (No I), scenario where PI assays are unavailable.
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•• Given the uncertainty associated with meal dynamics, 
the key question was whether the dynamic envelope 
encompassed all known system behavior.

•• The dynamic envelope was indeed observed to sur-
round all actual “black box” postprandial BG and 
ISFG measurements (Table 4, left-hand column: BG 
data shown as squares).

•• As the hypotheses were generated under fasting con-
ditions, some trajectories diverged significantly from 
observed postprandial BG behavior while still impos-
ing an envelope upon it. Those diverging too far from 
observed BG levels were culled as extraneous to 
reflect the observed meal dynamics reality and reduce 
the computational burden of the L-GaN. Table 3 
shows the number of remaining hypotheses in the 
“reduced” dynamic envelope, illustrated in Table 4 
(left-hand column) for both participants and both sce-
narios, including the associated tracking/prediction of 
PI time series (right-hand column). Note that the 
actual PI time series (dashed blue line) had its wave-
form successfully predicted as a candidate, when PI 
data were unavailable.

Stage 4: Second-Pass Open-Loop Prandial 
Predictive Testing

•• Remaining hypotheses were given whole-of-day meal 
and insulin infusion time series for 10 distinct days 
(August 2-11) and generated predictions for BG and 
ISFG, which were then compared with “black box” 
measurements for consistency.

•• The dynamic envelopes passed all the stages of testing 
and thus were deemed suitably robust as a predictive 
tool.

The next part of the study was to demonstrate the L-GaN 
closed-loop controller applying the triage logic of equations 
8 and 10 to the participants under both scenarios. On each of 
5 to 11 days (September 23 repeated as a common bench-
mark; additional days from August 2-11), the closed-loop 
controller was tasked with steering BG levels to the desired 
target T

BG
 = [80,140]mg/dL via insulin infusion, using the 

relevant dynamic envelope while avoiding hypoglycemia 
(<70 mg/dL) or high BG/hyperglycemia (>160 mg/dL). 
Meal time series were communicated to the controller as 
specified in the Methods section.

The baseline controller sampled BG every 2 hours and 
ISFG using the ongoing flow of CGM data every 5 minutes 
and assumed accurate carbohydrate estimates. Control began 
at 0001 hours each day, with the controller recomputing 
strategies on a time scale of minutes. To emphasize algo-
rithm stability, each day was treated in isolation, beginning at 
basal conditions (instead of successor days benefitting from 
previous successful BG control).

To distinguish between initial high BG conditions and 
subsequent hyperglycemia, a grace period of 6 hours (mid-
night to 0600 hours) was permitted when logging nonhypo-
glycemic BG levels to handle the daily descent from basal 
conditions (Figure 2). Hypoglycemic events (if any) were to 
be recorded over the full 24 hours.

As shown in Tables 5 and 6, the baseline L-GaN insulin 
control was successfully established, with no high BG occur-
ring after 0600 hours, or hypoglycemia at any time, over 38 
simulated days. In the case of S2, BG fingerstick samples 
were then relaxed to every 4 hours to assess this effect on 
performance over 5 additional simulated days.

Meal robustness tests were then performed over 6 days 
per participant under No I conditions:

•• Fingerstick tests were relaxed to every 4 hours.
•• In accordance with Patek et al,39 carbohydrate data 

communicated to the controller were falsified by 
±25% to test robustness to meal uncertainty. To avoid 
random errors partially canceling, 2 distinct scenarios 
of daylong systematic errors were tested: systematic 
+25% and –25% meal errors were applied to all meals 
across simulation days.

•• The +25% test (increasing actual carbohydrate con-
tent by 25% over the values given the AP; all meals) 
used a single day (September 23). The –25% test 
(reducing actual carbohydrate content by 25% below 
the values given the AP; all meals) was regarded as 
more important due to the risk of hypoglycemia from 
excessive insulin, so it used 5 days’ meal data 
(September 23, August 2-5) to assess.

Successful, stable closed-loop control was achieved on all 
days (Table 7), despite this additional uncertainty.

Hence, stable closed-loop insulin control was success-
fully demonstrated under realistic meal conditions for both 
participants under both scenarios, without hypoglycemia or 
postprandial hyperglycemia, for a total of 55 days.

Discussion

The simulations showed the following:

•• Available fasting PI data during identification signifi-
cantly improved BG control for S1 (Table 5), although 
it had negligible effects in the analogous S2 baseline 
study, where the reduced dynamic envelope appeared 
to be sufficient (Table 6).

•• Relaxing fingerstick intervals in the S2 (No I) study to 
4 hours had a significant effect on BG levels, shifting 
BG activity upwards (Table 6).

•• As shown in Table 7, the carbohydrate +25% study for 
S1 pushed BG out of target 57.3% of the time, 
although no postprandial high BG levels or hypergly-
cemia ensued. The uncertainty had a negligible effect 



Greenwood and Gunton	 801

Table 4.  Construction of the Reduced Dynamic Envelope.

S1 (I) (September 23)

S1 (No I) (September 23)

S2 (I) (September 23)

S2 (No I) (September 23)

(Left) The reduced dynamic envelope generated from fasting data, with extraneous trajectories removed, shown for blood glucose (BG) (mg/dL) for 
September 23 with actual measurements superimposed (squares). Note that it enclosed the actual BG dynamics. (Right) Projected plasma insulin (PI) 
(pM), with actual PI shown (dashed blue line): (I) scenarios achieved prediction of blood insulin from fasting partial information, while (No I) scenarios 
predicted PI waveform as a function of underdetermined amplitude. (I), scenario where PI assays are available in stage 1 identification; (No I), scenario 
where PI assays are unavailable.
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in the equivalent study for S2, suggesting that S2’s 
dynamic envelope (profuse λ0  candidates) was robust 
against it.

•• The reduced dynamic envelopes for both participants 
were robust against hypoglycemia under the carbohy-
drate –25% studies in BG levels dropping low gave 
the antihypoglycemia strategies priority within S1’s 
dynamic envelope, pushing the subsequent profiles 
up.

•• Table 8 illustrates examples of the stable control for 
both participants, first under the I scenario with accu-
rate meal data and then under the No I carbohydrate 
–25% scenario, all using WM3’s actual meal history 
of August 2 (left-hand column) and August 3 (right-
hand column).

•• The absence of any hypoglycemic or postprandial 
high BG levels is attributed to the controller’s applica-
tion of triage logic to the reduced dynamic envelope 
generated by the evolutionary identifier.

A key question for any AP controller for real-world medical 
deployment is its stability under dynamic perturbations. An 
advantage of the present technique was that the stability of 
its Lyapunov controller could be directly analyzed.

Although the controller function VS  was too complicated 
for easy interpretation, the system dynamics and AP objec-
tives allowed a much simpler function Vss  to be used for 
stability analysis of the controller on BG levels outside the 
target set x

10
(t) ∈ T

BG
 = [80,140]mg/dL. The dynamics of the 

system (equation 1) and model (equation 2) were bounded on 
all variables and inputs and dissipative, with an equilibrium 

under “basal” conditions. Consequently, the simple positive-
definite function

V x tss = −( )1

2
11010

2
( )

	 (25)

was adequate to test BG stability with respect to the objec-
tive of steering the trajectory to the target and retaining it 
there. Segments of the trajectory within the target T 

BG
 were 

ignored as the objective was already met; however, meal- 
and insulin-based perturbations enabled the ongoing possi-
bility of target escape or excursions.

Analysis over the 55 days revealed that the controller 
established strong controllability for asymptotically stable 
control, the strongest possible form of stable control, as stip-
ulated in equation 7 by 0100 hours every morning, retaining 
it while steering the trajectory to the target under fasting con-
ditions in preparation for meal-based perturbations that 
might break stability. Including the daily descent phase from 
midnight, trajectories were external to the target 21.67% of 
the overall simulation time. They were under stable control 
for 99.43% of this period and so suffered formal instability 
for less than 1% of their overall time external to the target. As 
shows, the scenario that suffered the most meal-induced 
breaks in formal Lyapunov stability was the S1 (No I) carbo-
hydrate +25% scenario, where deliberately inputting false 
meal data caused formal stability to lapse for 19.01% of the 
24-hour day, but under this scenario, the algorithm still 
imposed effective control, preventing all BG excursions 
from leaving the interval [80, 160] mg/dL.

Conclusions

The key problems confronting stable, high-confidence AP 
control of BG via insulin infusion are the following:

•• Realistic T1D models in the literature are significantly 
underdetermined when using available time series data.

•• Three dynamic uncertainties dominate closed-loop 
control: namely, BG-ISFG lag, duration of insulin 
effect, and meal carbohydrate uncertainty.

•• Stability of the BG controller algorithm is essential in 
an uncertain environment.

This study demonstrated that these problems could be 
solved by resolving them simultaneously: evolving multiple 
candidate models for a realistic T1D model from partial 
information and then combining Lyapunov stability theory 
and differential game theory in the construction of insulin 
control strategies to handle dynamic uncertainties robustly 
using machine-intelligent “triage logic.” Rigorous simula-
tion testing suggests that this is a stable, high-confidence 
way to generate closed-loop insulin infusion strategies, 
although this needs to be confirmed in a clinical study.

Figure 2.  Plot of successful Lyapunov-based Game against 
Nature control of blood glucose, showing controlled descent 
during the “grace period” (checkered) and controlled meal 
perturbations.
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Table 6.  Results of L-GaN Control for S2: BG Sampling Period of 2 Hours or 4 Hours.

BG level, mg/dL Status

S2: reference  
(WM3 insulin; 

September 23), %

S2 (I)  
(September 23 +  

10 days), %

S2 (No I)  
(September 23 +  

4 days), %

S2 (No I): BG every  
4 hours (September 

23 + 4 days), %

160+ Hyperglycemia and near hyperglycemia 100.0  
140-160 High intermediate 0.5 0.5 0.5
120-140 Desired prandial 9.3 7.9 34.0
80-120 Desired basal and prandial 90.3 91.7 65.5
70-80 Low intermediate  
0-70 Hypoglycemia  

S2’s values under WM3’s insulin regime (shaded) are included for comparison. BG, blood glucose; (I), scenario where plasma insulin assays are available in 
stage 1 identification; L-GaN, Lyapunov-based Game against Nature; (No I), scenario where plasma insulin assays are unavailable. Bold text and numbers 
pertain to the desired target interval for blood glucose values.

Table 7.  Meal Robustness Tests for L-GaN Control: BG Sampling Every 4 Hours.

BG level, mg/dL Status

S1 (No I): 
carbohydrate + 
25% (September  

23), %

S1 (No I): 
carbohydrate –25% 
(September 23 +  

4 days), %

S2 (No I): 
carbohydrate  

+25% (September 
23), %

S2 (No I): 
carbohydrate –25% 
(September 23 +  

4 days), %

160+ Hyperglycemia and near hyperglycemia  
140-160 High intermediate 57.3   2.9   0.5   0.5
120-140 Desired prandial 16.9 36.2 67.6   7.4
80-120 Desired basal and prandial 25.7 60.9 31.9 92.1
70-80 Low intermediate  
0-70 Hypoglycemia  

BG, blood glucose; L-GaN, Lyapunov-based Game against Nature; (No I), scenario where plasma insulin assays are unavailable. Bold text and numbers 
pertain to the desired target interval for blood glucose values.

Table 5.  Results of Baseline L-GaN Control for S1.

BG level, mg/dL Status

WM3: CGM data 
(actual insulin; 

September 23), %

S1: reference  
(WM3 insulin; 

September 23), %
S1 (I) (September  
23 + 10 days), %

S1 (No I)  
(September 23 +  

10 days), %

160+ Hyperglycemia and near hyperglycemia 90.3 65.4  
140-160 High intermediate   9.7 20.6  
120-140 Desired prandial 14.0 24.2 42.5
80-120 Desired basal and prandial 75.8 57.5
70-80 Low intermediate  
0-70 Hypoglycemia  

WM3’s and S1’s values under WM3’s insulin regime (shaded) are included for comparison. BG, blood glucose; CGM, continuous glucose monitoring); (I), 
scenario where plasma insulin assays are available in Stage 1 identification; L-GaN, Lyapunov-based Game against Nature; (No I), scenario where plasma 
insulin assays are unavailable. Bold text and numbers pertain to the desired target interval for blood glucose values.



804	 Journal of Diabetes Science and Technology 8(4)

Table 8.  Examples of BG Plots (mg/dL): August 2 and 3.

S1 (I) (August 2-3)

S1 (No I): carbohydrate –25% (August 2-3)

S2 (I) (August 2-4)

S2 (No I): carbohydrate –25% (August 2-3)

Showing the Lyapunov-based Game against Nature controller achieving stable blood glucose (BG) control despite realistic uncertainties. (I), scenario 
where plasma insulin assays are available in stage 1 identification; (No I), scenario where plasma insulin assays are unavailable.
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Provided the model represented a good approximation of 
the T1D system, such that the dynamic discrepancies could 
be represented by the combination of finitely bounded para-
metric uncertainties within the ΛG  intervals listed in Table 
1, it was also determined that stable closed-loop control was 
possible without access to PI assays; however, having such 
assays during identification significantly improved algo-
rithm performance for participant S1, especially under cir-
cumstances of meal carbohydrate uncertainty, and may be 
useful either when reducing other data sources, for example, 
relaxing the incidence of fingerstick tests, or else in the case 
of uncertainty in the underlying model structure.

Abbreviations

AP, artificial pancreas; BG, blood glucose; CGM, continuous glu-
cose monitoring; GA, genetic algorithm; I, scenario where plasma 
insulin assays are available in stage 1 identification; ISFG, intersti-
tial fluid glucose; L-GaN, Lyapunov-based Game against Nature; 
LPV, Linear Parameter Varying; MRAC, Model Reference Adaptive 
Control; No I, scenario where plasma insulin assays are unavail-
able; PI, plasma insulin; PK, pharmacokinetics; PSST, Product 
State Space Technique; S1, (simulated) participant 1; S2, (simu-
lated) participant 2; T1D, type 1 diabetes; WM3, Westmead 3 (des-
ignation of a volunteer with “brittle” T1D at Westmead Hospital, 
Sydney, who consented to make medical data available).
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