Table 3.
Classifiers’ performance for each task, for the training data. Values not in bold are statistically significantly worse than the classifier with highest accuracy (using paired t-test with α = 0.05)
| Exp. | Algorithm | CCI | K | F | AUROC |
|---|---|---|---|---|---|
| E 1 | SMO | 85.6 ±7.3 | 0.69 ±0.16 | 0.80 ±0.11 | 0.84 ±0.08 |
| E 1 | DTNB | 81.6 ±8.2 | 0.60 ±0.18 | 0.74 ±0.13 | 0.88 ±0.07 |
| E 1 | NaiveBayes | 81.3 +9.5 | 0.61 ±0.20 | 0.76 ±0.12 | 0.88 ±0.08 |
| E 1 | J48 | 80.7 ±9.3 | 0.59 ±0.20 | 0.75 ±0.13 | 0.79 ±0.11 |
|
| |||||
| E 2 | SMO | 83.9 ±7.7 | 0.66 ±0.17 | 0.78 ±0.11 | 0.82 ±0.08 |
| E 2 | NaiveBayes | 80.3 ±9.3 | 0.59 ±0.19 | 0.75 ±0.12 | 0.87 ±0.09 |
| E 2 | DTNB | 79.8 ±9.5 | 0.56 ±0.21 | 0.72 ±0.15 | 0.86 ±0.09 |
| E 2 | J48 | 75.4 ±9.5 | 0.47 ±0.21 | 0.65 ±0.15 | 0.73 ±0.12 |
|
| |||||
| E 3 | SMO | 83.8 ±7.7 | 0.65 ±0.17 | 0.78 ±0.11 | 0.82 ±0.09 |
| E 3 | J48 | 76.3 ±9.9 | 0.49 ±0.22 | 0.67 ±0.15 | 0.76 ±0.13 |
| E 3 | NaiveBayes | 76.2 ±9.9 | 0.51 ±0.20 | 0.71 ±0.13 | 0.85 ±0.09 |
| E 3 | DTNB | 75.7 ±9.0 | 0.48 ±0.19 | 0.67 ±0.13 | 0.81 ±0.10 |
|
| |||||
| E 4 | SMO | 81.3 ±8.2 | 0.52 ±0.21 | 0.64 ±0.17 | 0.75 ±0.11 |
| E 4 | J48 | 74.4 ±8.8 | 0.32 ±0.24 | 0.47 ±0.21 | 0.67 ±0.15 |
| E 4 | DTNB | 73.5 ±10.0 | 0.34 ±0.24 | 0.51 ±0.19 | 0.76 ±0.12 |
| E 4 | NaiveBayes | 72.8 ±9.9 | 0.37 ±0.23 | 0.56 ±0.18 | 0.77 ±0.11 |
|
| |||||
| E 5 | NaiveBayes | 67.2 ±12.1 | 0.33 ±0.25 | 0.62 ±0.15 | 0.72 ±0.14 |
| E 5 | SMO | 66.8 ±10.7 | 0.31 ±0.22 | 0.55 ±0.16 | 0.65 ±0.11 |
| E 5 | J48 | 63.6 ±10.1 | 0.26 ±0.21 | 0.56 ±0.15 | 0.62 ±0.13 |
| E 5 | DTNB | 62.1 ±11.9 | 0.22 ±0.24 | 0.54 ±0.16 | 0.64 ±0.14 |