Skip to main content
. Author manuscript; available in PMC: 2016 Feb 23.
Published in final edited form as: Int J Data Min Bioinform. 2015;11(3):257–276. doi: 10.1504/ijdmb.2015.067319

Table 3.

Classifiers’ performance for each task, for the training data. Values not in bold are statistically significantly worse than the classifier with highest accuracy (using paired t-test with α = 0.05)

Exp. Algorithm CCI K F AUROC
E 1 SMO 85.6 ±7.3 0.69 ±0.16 0.80 ±0.11 0.84 ±0.08
E 1 DTNB 81.6 ±8.2 0.60 ±0.18 0.74 ±0.13 0.88 ±0.07
E 1 NaiveBayes 81.3 +9.5 0.61 ±0.20 0.76 ±0.12 0.88 ±0.08
E 1 J48 80.7 ±9.3 0.59 ±0.20 0.75 ±0.13 0.79 ±0.11

E 2 SMO 83.9 ±7.7 0.66 ±0.17 0.78 ±0.11 0.82 ±0.08
E 2 NaiveBayes 80.3 ±9.3 0.59 ±0.19 0.75 ±0.12 0.87 ±0.09
E 2 DTNB 79.8 ±9.5 0.56 ±0.21 0.72 ±0.15 0.86 ±0.09
E 2 J48 75.4 ±9.5 0.47 ±0.21 0.65 ±0.15 0.73 ±0.12

E 3 SMO 83.8 ±7.7 0.65 ±0.17 0.78 ±0.11 0.82 ±0.09
E 3 J48 76.3 ±9.9 0.49 ±0.22 0.67 ±0.15 0.76 ±0.13
E 3 NaiveBayes 76.2 ±9.9 0.51 ±0.20 0.71 ±0.13 0.85 ±0.09
E 3 DTNB 75.7 ±9.0 0.48 ±0.19 0.67 ±0.13 0.81 ±0.10

E 4 SMO 81.3 ±8.2 0.52 ±0.21 0.64 ±0.17 0.75 ±0.11
E 4 J48 74.4 ±8.8 0.32 ±0.24 0.47 ±0.21 0.67 ±0.15
E 4 DTNB 73.5 ±10.0 0.34 ±0.24 0.51 ±0.19 0.76 ±0.12
E 4 NaiveBayes 72.8 ±9.9 0.37 ±0.23 0.56 ±0.18 0.77 ±0.11

E 5 NaiveBayes 67.2 ±12.1 0.33 ±0.25 0.62 ±0.15 0.72 ±0.14
E 5 SMO 66.8 ±10.7 0.31 ±0.22 0.55 ±0.16 0.65 ±0.11
E 5 J48 63.6 ±10.1 0.26 ±0.21 0.56 ±0.15 0.62 ±0.13
E 5 DTNB 62.1 ±11.9 0.22 ±0.24 0.54 ±0.16 0.64 ±0.14