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Abstract

Cardiac fibroblasts help maintain the normal architecture of the healthy heart and are responsible 

for scar formation and the healing response to pathological insults. Various genetic, 

biomechanical, or humoral factors stimulate fibroblasts to become contractile smooth muscle-like 

cells called myofibroblasts that secrete large amounts of extracellular matrix. Unfortunately, 

unchecked myofibroblast activation in heart disease leads to pathological fibrosis, which is a 

major risk factor for the development of cardiac arrhythmias and heart failure. A better 

understanding of the molecular mechanisms that control fibroblast plasticity and myofibroblast 

activation is essential to develop novel strategies to specifically target pathological cardiac fibrosis 

without disrupting the adaptive healing response. This review highlights the major transcriptional 

mediators of fibroblast origin and function in development and disease. The contribution of the 

fetal epicardial gene program will be discussed in the context of fibroblast origin in development 

and following injury, primarily focusing on Tcf21 and C/EBP. We will also highlight the major 

transcriptional regulatory axes that control fibroblast plasticity in the adult heart, including 

transforming growth factor β (TGFβ)/Smad signaling, the Rho/myocardin-related transcription 

factor (MRTF)/serum response factor (SRF) axis, and Calcineurin/transient receptor potential 

channel (TRP)/nuclear factor of activated T-Cell (NFAT) signaling. Finally, we will discuss recent 

strategies to divert the fibroblast transcriptional program in an effort to promote cardiomyocyte 

regeneration. This article is a part of a Special Issue entitled “Fibrosis and Myocardial 

Remodeling”.
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1. Introduction

The heart is composed of three main cell types: contractile cardiomyocytes (CMCs), 

vascular cells, and fibroblasts. Fibroblasts contribute to ~10–30% of the total cardiac cell 

population, providing basic structural support via secretion of extracellular matrix (ECM) 

into the interstitial space [1–3]. In addition to generating an ECM scaffold that other cells 

adhere to, cardiac fibroblasts (CFs) play many underappreciated functions, including 

paracrine signaling, electrical coupling, and tissue repair [4]. Thus, CFs are emerging as a 

malleable cell type that is coaxed down various pathways based upon regional requirements 

and physiological conditions.

As the major source of ECM, fibroblasts play a stereotypical role in tissue replacement and 

repair following injury. The wound healing process is typified by the transformation of 

quiescent fibroblasts into a state of high contractility and ECM production, often referred to 

as a myofibroblast. However, the characteristics of myofibroblasts that allow for efficient 

wound repair are also responsible for the development of pathological fibrosis and scar 

formation when left unchecked. In the heart, aberrant scar formation disrupts electrical 

signaling and muscle contraction and leads to heart failure, the most common cause of death 

in the U.S. [5]. Thus, tight control of fibroblast plasticity is essential for the maintenance of 

normal cardiac function. This review highlights the transcriptional control of CF phenotype 

in the healthy heart and following injury or disease.

2. Fibroblast sources and plasticity

2.1. Fibroblast origins

The heart is lined by a single cell layer of mesothelium called the epicardium. The 

epicardium is a source of cardiovascular progenitor cells that undergo epithelial-to-

mesenchymal-transition (EMT) and differentiate into various cardiac lineages including 

coronary vascular cells and CFs [6–10]. The CF population can be roughly grouped into 

three categories: ventricular CFs, atrial CFs, and CFs in specific structures within the heart 

such as around the sinoatrial node, valves, and annulus fibrosis. Compared to ventricular 

fibroblasts, atrial fibroblasts display a more robust response to congestive heart failure [11, 

12]. Fibroblasts within the valves and annulus fibrosis share significant resemblance to 

ventricular and atrial fibroblasts, but are more densely packed and retain more specialized 

phenotypes that are possibly determined during EMT [13, 14]. Fibroblasts within these 

structures secrete high levels of ECM and create an electrically inert extension of the 

atrioventricular valves that separates the atria and ventricles to allow asynchronous 

contraction [15].

In the adult, new fibroblasts are hypothesized to derive from multiple sources including 

preexisting CFs, fibrocytes, circulating bone marrow stem cells, the epicardium and 

endothelium [10, 16–21] (Figure 1). Defining the source of fibroblasts remains difficult 
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however, largely due to their heterogenous nature and lack of a specific marker. Commonly 

used markers such as FSP1/S100A4, vimentin, discoidin domain receptor tyrosine kinase 2 

(DDR2), periostin (Postn), and collagen 1a1 (Col1a1), and THY1/CD90 are also expressed 

by other cell types [22–25]. Although multiple groups have detected fibroblasts arising from 

circulating cells or EMT, a growing consensus is that resident fibroblasts are the primary 

source of myofibroblasts, at least in mouse models of pressure overload and ischemia-

reperfusion (IR) induced remodeling [19–21].

2.2. Myofibroblast activation

Fibroblasts proliferate and become myofibroblasts in response to various genetic, 

mechanical, and humoral cardiac insults [26–30]. The expression of a number of 

characteristic genes distinguishes myofibroblasts from quiescent fibroblasts, none of which 

is a particularly specific or defining feature in isolation. Myofibroblasts express high levels 

of genes encoding contractile proteins that are typically associated with smooth muscle cells 

(SMC), including smooth muscle α actin (Acta2, Sma) and Transgelin (Tagln, Sm22), 

although they generally lack smooth muscle myosin (Myh11) [31]. Indeed, ACTA2 

incorporation into stress fibers is among the most accepted myofibroblast markers, albeit 

with the obvious limitations with regards to cell specificity. Myofibroblasts also possess 

mature focal adhesions consisting of vinculin, paxillin, integrin αvβ3, focal adhesion kinase, 

and actin [32, 33], allowing for a directed migration to the source of injury in MI. Finally, 

myofibroblasts express and secrete an abundance of ECM proteins, including collagen 1, 

collagen 3, fibronectin 1 (FN1), fibronectin splice variant ED-A, tenascin-C (TNC), 

POSTN, and MMPs [30, 34, 35]. This ECM provides temporary structural support for 

disrupted tissue. It can also act as an anchor for static myofibroblasts to adhere to, which 

allows for the contraction of surrounding tissue. ECM components can also trigger 

mechanical signals via activation of cell surface receptors such as integrins and TRPC6, 

inducing downstream signaling pathways that contribute to changes in fibroblast and CMC 

gene expression and phenotype.

Many organs, including the heart, share this stereotypical fibroblast response to injury or 

disease. Pathological stresses on the heart including high blood pressure, ischemic heart or 

coronary artery disease, and inherited cardiomyopathy mutations can lead to CMC apoptosis 

and replacement by CFs. Indeed, following a cardiac insult such as myocardial infarction 

(MI), myofibroblasts are essential for necrotic tissue replacement and prevention of cardiac 

wall rupture [28, 36, 37]. However, key differences distinguish the CF injury response from 

that of other organs. First, ECM deposition in tissues such as the skin and lung is often 

followed by proliferation and replacement by other specialized cell types, which ultimately 

leads to the repair of organ structure and function [38–40]. Unlike organisms such as 

zebrafish that retain the ability to regenerate the adult heart after resection [41], adult 

mammalian CMCs are postmitotic and do not support cardiac repair [42]. Therefore, 

damage resulting in CMC death is considered virtually irreparable. Cardiac fibrosis thus 

serves as a compensatory mechanism to prevent the disastrous loss of cardiac integrity. 

Second, the heart becomes more rigid upon accumulation of interstitial fibrosis during the 

healing process [43]. While this increased rigidity is an adaptive response to preserve tissue 

integrity, cardiac fibrosis reduces muscle contractility and is a risk factor for arrhythmia and 
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heart failure. Third, in the absence of continued pathological stress, myofibroblasts are 

eventually lost from most tissues, either by reverting back to quiescent fibroblasts or through 

apoptotic cell death [44–46]. For reasons that are not fully understood, clearance of 

myofibroblasts from the diseased heart appears to be an inefficient process, leading to 

persistent fibrosis and deterioration of cardiac function. Because increased cellular tension is 

a major mediator of myofibroblast activation [47–49] (Figure 2), the healing heart is an ideal 

substrate for persistent myofibroblast activation that may lead to a pathological feed-forward 

loop.

Thus, despite the short-term advantages of CF activation in adaptive remodeling, this 

process remains a double-edged sword that ultimately leads to pathological fibrosis, 

maladaptive remodeling, and heart failure. Novel therapeutic strategies that directly target 

the fibroblast are needed to limit fibrosis following injury and perhaps coax activated 

fibroblasts towards a cardiac fate. The transcriptional changes that underlie fibroblast origin 

and plasticity may form a scaffold for the development of such reprogramming strategies in 

the pursuit of cardiac regenerative medicine.

3. Transcriptional regulators of the cardiac fibroblast phenotype

The CF transcriptome is altered by various pathological signals including mechanical 

tension, activation of cell surface receptors, and alterations in calcium signaling (Figure 2). 

The culmination of transcriptional changes following a cardiac insult leads to dramatic 

changes in fibroblast function. The transcriptional mechanisms contributing to fibroblast 

phenotypic plasticity in development and disease are highlighted in the following sections.

3.1. Fetal gene program

Reactivation of the fetal cardiac gene program, which is thought to provide the basis of 

compensatory remodeling during heart disease, is commonly considered a CMC response. 

However, recent studies suggest that fibroblast biology may also be impacted by the 

induction of developmental programs in the damaged heart. In fact, adult CFs display 

heterogeneous expression of early cardiogenic and stem cell markers such as TBX20 and 

SCA1. SCA1-positive fibroblasts have reduced Acta2 expression, suggesting they may 

reflect a more stem-like population that may be resistant to activation. Furthermore, 

conditional knockout of Tbx20 in CFs results in an increase in BMP10 expression and 

myocardial hypoplasia, providing further evidence of CF – CMC crosstalk [50].

During embryonic development, epicardial cells are identified by the heterogeneous 

expression of various transcription factors, including Wilms Tumor 1 (Wt1), C/EBP, 

RALDH2/ALDH1A2, TBX18, TCF21 (also known as Capsulin or POD1), HAND2, and 

Myocardin-Related Transcription Factors (MRTF) which influence EMT and epicardial-

derived progenitor cell (EPDC) differentiation [51–57]. This gene signature is silenced after 

birth, but is reactivated by disease or injury, potentially mobilizing EPDCs and leading to 

the generation of nascent fibroblasts. TCF21 is expressed in a population of EPDCs and 

appears to be essential for the formation of CFs during embryonic development at the 

expense of the SMC lineage [58]. Animals deficient in Tcf21 fail to produce CFs, instead 

accumulating cells expressing SMC markers on the surface of the heart [58, 59]. RNA-
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sequencing of Tcf21-deficient coronary SMC combined with Ingenuity Pathway Analysis 

revealed that TCF21 promotes a gene expression signature consistent with cell proliferation 

and migration while inhibiting SMC differentiation [60]. ChIP-sequencing identified 5' – 

CAGCTG – 3' as the canonical binding sequence for TCF21 and suggests shared genomic 

occupancy with other transcription factors, including AP-1, TEAD, C/EBP, and ATF. 

Currently, the direct transcriptional targets of TCF21 that mediate the differentiation of 

epicardial derived cells into fibroblasts are not clear. However, these findings hint at a 

potential cooperative regulation between TCF21 and AP-1, which was previously shown to 

bind to and activate the type 1 collagen promoter in fibroblasts and regulate CF migration 

[61, 62]. The Olson group recently defined a requisite early upstream role of C/EBP in the 

reactivation of Raldh and Wt1 following MI or IR injury [52]. Animals that lack C/EBP in 

the epicardium have improved cardiac function following ischemic injury, at least partially 

stemming from reduced inflammatory cell recruitment. Although this study did not test the 

possibility that C/EBP may directly modulate the fibroblast phenotype, it is interesting to 

speculate that C/EBP and TCF21 may also coordinate the generation of epicardial-derived 

fibroblasts in the adult heart. Taken together, these studies highlight the transcriptional 

regulation of CF formation in the embryo and suggest a combinatorial transcriptional code 

in the epicardium that may contribute to the adult injury response.

3.2. TGF-β signaling

One of the best-characterized regulators of fibroblast activation in the adult is transforming 

growth factor (TGF)-β [63]. Most tissues harbor high levels of biologically inactive latent 

TGFβ that is cleaved into an active form by proteases, thrombospondin 1, integrins, and 

reactive oxygen species [64–66]. The MI injury response also leads to the accumulation of 

additional TGFβ, which is secreted from inflammatory cells or resident fibroblasts [63, 67]. 

TGFβ signaling is mediated through the stimulation of a heterodimer of the TGFβRI/ALK5 

and TGFβRII receptors [68]. The canonical TGFβ pathway is defined by the subsequent 

phosphorylation and activation of the intracellular SMAD2/3 proteins. SMAD2/3 then 

interacts with SMAD4 and enters the nucleus, binding to and activating SMAD-binding 

elements (minimally 5' – GTCT – 3') in the promoters of target genes [69–71] (Figure 2). 

The inhibitory SMADs 6/7 prevent SMAD2/3/4 nuclear accumulation and the activation of 

TGFβ-SMAD targets, which includes the core myofibroblast gene program such as Col1a, 

Acta2, Tagln [72–77]. CFs isolated from Smad3-deficient animals secrete less collagen and 

have fewer ACTA2 positive stress fibers compared to fibroblasts from control animals [78]. 

Furthermore, loss of Smad3 attenuates fibrotic remodeling in mouse models of MI, 

idiopathic pulmonary fibrosis, and diabetes mellitus [67, 79, 80]. Animals heterozygous for 

Smad3 appear to be protected from diabetes-induced cardiac hypertrophy suggesting a dose-

dependent role of SMAD3-regulated TGFβ signaling [79]. Expression of the inhibitory 

SMAD7 is reduced in the infarcted rat heart, which is thought to relieve the repression of the 

TGFβ-Smad axis and promote fibroblast activation in vivo [81]. Indeed, overexpression of 

Smad7 in vivo prevented angiotensin (Ang) II-induced fibrosis and loss of contractility while 

overexpression in vitro prevented ROS-induced expression of MMP and collagen [82, 83].

The consensus SMAD binding element (SBE) consists of only four bases and is found in 

nearly every promoter. Thus, interactions between Smads and other transcriptional 
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activators or repressors, such as AP-1, SP1, TFE3, KLF15 and P300, confer the magnitude 

and specificity of target gene expression. Various points of intersection mediate a 

coordinated response to the TGF β-Smad axis and other signal transduction pathways. For 

example, AngII signaling induces the expression of the Kruppel-like transcription factor 

KLF5, which subsequently activates the expression of TGFβ, linking these signaling axes 

[84, 85]. Conversely, TGFβ activation in myofibroblasts attenuates the expression of 

KLF15, an inhibitor of SMAD3-dependent expression of connective tissue growth factor 

(CTGF) (Figure 2). Consistent with this finding, Klf15-null mice exhibit increased CTGF 

levels and fibrosis in response to pressure overload induced cardiac remodeling [86, 87]. 

Finally, a unique interaction exists between SMAD3 and the basic helix-loop-helix 

transcription factor scleraxis, which is induced by TGFβ-Smad activation and subsequently 

synergizes with SMAD3 to activate Col1a expression [88].

TGFβ activity is also mediated by the non-canonical pathway via TGFβ-activated kinase 

(TAK1) stimulation of mitogen activated protein kinases (MAPKs) including ERK1/2, c-Jun 

N-terminal kinase (JNK), and p38 (MAPK14) [89, 90] (Figure 2). TAK1/p38α has been 

specifically implicated in promoting myofibroblast activation; pharmacological inhibition of 

p38 blunts TGFβ-dependent Acta2 expression and the development of fibrosis in multiple 

organs, including the heart [91–94]. TGFβ stimulation of human dermal fibroblasts also 

triggers ERK phosphorylation and CTGF expression, which contributes to myofibroblast 

activation and cytoskeletal rearrangements [95, 96]. ERK also transduces mechanical 

tension through focal adhesion kinase (FAK) in fibroblasts [97, 98]. Finally, non-canonical 

TGFβ intersects with canonical TGFβ signaling to induce expression of TIMP-3 in human 

gingival fibroblasts in a synergistic manner [94].

3.3. MRTF/SRF/RhoA

Serum response factor (SRF) is an ubiquitously expressed and highly conserved 

transcription factor that is essential for life. SRF binds to and activates promoters harboring 

a DNA element called a CArG box (CC(A/T)6GG) [99, 100]. More than 8000 evolutionarily 

conserved CArG elements exist [101, 102] that are predicted to regulate the expression of 

thousands of protein coding genes [103]. SRF target gene selection and the magnitude of 

transcriptional activation depends upon interactions with various tissue-restricted or signal 

responsive co-factors.

The expression of genes encoding SMC contractile proteins, which are nearly always 

regulated by a CArG element, is potently stimulated by interactions between SRF and 

members of the myocardin family of transcriptional co-activators [104, 105]. The founding 

member of this family, myocardin is restricted to SMC and CMCs and constitutively 

induces the SMC gene program in vascular and visceral smooth muscle [106–110]. In 

contrast, myocardin-related transcription factor (MRTF)-A (also called MAL/MKL1/BSAC) 

and MRTF-B (MKL2) are broadly expressed, signal responsive transcription factors [111, 

112]. Under basal conditions, MRTFs interact with monomeric (G)-actin through an N-

terminal RPEL domain, masking a nuclear localization signal [113–115]. Polymerization of 

filamentous (F)-actin reduces the pool of G-actin, allowing MRTFs to enter the nucleus and 

bind to SRF, activating components of the SMC gene program such as Acta2 [116–120] 
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(Figure 2). Conversely, inhibiting F-actin polymerization with latrunculin B or other means 

blocks MRTF-dependent Acta2 expression [114]. Thus, MRTFs control fibroblast 

phenotypic plasticity by linking changes in the actin cytoskeleton to regulation of the SMC 

gene program [105, 121].

Recent studies have uncovered a dominant role for SRF / MRTF-dependent transcriptional 

activation in regulating the myofibroblast phenotype [103, 122]. Exogenous expression of 

MRTF-A in fibroblasts or epithelial cells is sufficient to induce phenotypic transformation 

into migratory and contractile myofibroblasts [123–126]. Tomasek et al. first demonstrated 

in a dermal wound healing model that expression of Acta2 in granulation tissue fibroblasts 

requires binding sites for both SRF and Smads [74]. Induction of Acta2 in myofibroblasts 

was later shown to depend upon Rho/Rho kinase (ROCK1) signaling [127]. Consistent with 

this, myofibroblasts express higher levels of RhoA than quiescent fibroblasts [128]. Further 

evidence linking Rho to MRTF target genes comes from pharmacological inhibition of 

ROCK1 with fasudil or Y-27632, which prevents remodeling and fibrosis in vitro and in 

vivo [129–131]. We and others have since demonstrated overlapping functions of TGFβ and 

Rho-ROCK1 signaling in mediating F-actin polymerization and MRTF activation in 

myofibroblasts of various sources [120, 124, 130, 132–134]. Indeed, myocardin family 

members and SMAD3 synergistically activate SBE/CArG element-containing promoters in 

SMCs and during EMT or myofibroblast activation [73, 135, 136].

It is important to note the context-dependent role of Rho-ROCK1 activation in regulating 

MRTF activity and myofibroblast differentiation. Although the fibroblast phenotype is 

directly affected by substrate stiffness and growth factors, external factors such as cell 

density and contact inhibition are also important modulators of fibroblast activation. In cell 

culture, confluent monolayers of fibroblasts and epithelial cells form adherens junctions 

consisting of cadherins and β-catenin [137–140]. Disruption of adherens junctions leads to 

the release of β-catenin from the cell membrane, which is typically rapidly degraded. TGFβ 

stimulation is not only sufficient to prevent degradation of β-catenin, but stabilization of β-

catenin in cells with reduced intercellular contacts is required for TGFβ-induced Acta2 

expression [141–144]. Cytoplasmic β-catenin may indirectly promote nuclear localization of 

MRTFs by competing for GSK3β-mediated ubiquitination [145, 146]. Furthermore, 

stabilized β-catenin can function as a transcriptional activator of Wnt signaling, which 

promotes expression of ECM in epithelial cells and mouse embryonic fibroblasts (MEFs), 

pointing to a potential role of WNTs in modifying the fibroblast phenotype [147, 148] 

(Figure 2).

MRTF stability and activity is also influenced by post-translational modifications, including 

phosphorylation, sumoylation and ubiquitination [149, 150], and proteasome inhibitors lead 

to MRTF-A accumulation [124]. In line with these findings, the four-and-a-half LIM-only 

protein 2 (FHL2) protein, which is thought to inhibit MURF3-dependent ubiquitination, 

prevents proteosomal degradation of MRTF-A [151]. In contrast, FHL2 also competes with 

MRTF-A for SRF binding and inhibits expression of SRF target genes [151, 152]. 

Consistent with the latter data, FHL2-knockout animals treated with bleomycin had 

increased pulmonary fibrosis and expression of TNC [153]. It is interesting to note that SRF 
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induces Fhl2 expression in embryonic stem cells, suggesting the possibility of a negative 

feedback loop that limits myofibroblast activation [152].

The importance of regulating MRTFs in fibroblast activation is becoming increasingly clear. 

Global knockout of Mrtfb or Srf results in embryonic lethality [154, 155]. In contrast, 

deletion of Mrtfa results in viable and fertile adults although female dams fail to nurse their 

young due to a defective mammary myoepithelial cell differentiation [156]. The contribution 

of MRTF-A in cardiac fibrosis was determined when MRTF-A-deficient animals were 

subjected to myocardial infarction; MRTF-A-null animals had reduced scar formation after 

MI [130]. Similarly, bleomycin-induced pulmonary fibrosis is reduced in MRTF-A-deficient 

animals [129, 157]. Taken together, this suggests that MRTF-A is central in promoting the 

myofibroblast phenotype.

Although therapeutic strategies typically target receptor-ligand interactions or intercellular 

kinases, manipulation of upstream signaling molecules can potentially have a wide range of 

off-target effects. Many of the studies mentioned previously demonstrate the efficacy and 

specificity of controlling MRTF expression and function in vitro and in vivo. In the adult, 

MRTFs are generally inactive and tethered in the cytoplasm, and can become precociously 

activated in response to pathological signals that lead to alterations in the actin cytoskeleton. 

In an attempt to harness the therapeutic potential of MRTF activity, recent studies have 

identified small molecules that specifically inhibit MRTFs. In an Acta2 promoter-based 

luciferase screen, Velasquez et al. identified N-cyclopropyl-5-(thiophen-2-yl)-isoxazole-3-

carboxamide (isoxazole/ISX) as a stimulator of fibroblast activation in a CArG-box and 

MRTF-dependent manner. These results were confirmed in human foreskin fibroblasts and 

in cutaneous wound healing experiments where isoxazole promoted more rapid wound 

healing compared to control-treated animals [132]. A similar screen for modulators of 

RhoA-mediated signaling led to the identification of CCG-1432 [158]. Compounds related 

to CCG-1432 bind the nuclear localization signal within the RPEL domain of MRTFs, 

inhibiting importin-dependent nuclear translocation [159]. Subsequent studies have revealed 

that inhibition of MRTF activity with this class of compound blocks dermal, colonic, and 

lung fibrosis in vivo [160–162]. Together, these studies demonstrate the potential of 

targeting signal responsive transcription factors, such as MRTF-A, to regulate the fibroblast 

response.

3.5. TRPC/Calcineurin/NFAT

Calcium influx into the CMC is critical for maintaining cardiac function in part by 

regulating nuclear factor of activated T-cells (NFAT)-dependent target genes implicated in 

cardiac hypertrophy. High intracellular levels of Ca2+ permits binding of a calcineurin (Cn) 

A/B heterodimer to calmodulin to induce a conformational change. This conformational 

change exposes the active site of CnA, leading to NFAT dephosphorylation and nuclear 

translocation, where it induces gene expression [163]. A number of factors, including 

mechanical tension, increase intracellular calcium levels and thus activate NFAT in 

fibroblasts. Activated Cn/NFAT signaling can then trigger the expression of the 

hypertrophic gene response in CMCs, Col3 and Mrtfa in fibroblasts, or Acta2 in SMCs [164, 

165] (Figure 2). Not only is CnA overexpression sufficient to induce myofibroblast 
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differentiation both in vivo and in vitro in an NFAT-dependent manner, but this activity can 

be blocked by Cn inhibitors [163, 166–168].

Recent work has focused on the transient receptor potential (TRP) family of proteins as 

mediators of myofibroblast differentiation [169]. TRP channels form heterotrimeric 

channels in vivo and control Ca2+ influx levels in response to various stimuli including 

mechanical signals and oxidative stress. Formation of the TRPC channel depends on the 

expression of TRPC1, which is strongly expressed in rat CMCs and transcriptionally 

upregulated in CFs in response to TGFβ stimulation [166, 170]. Several TRPC channels are 

upregulated in models of heart failure such as TRPC1, 3, 5, and 6 [171–173]. TRPC3 is 

sufficient to drive myofibroblast differentiation in atrial and renal fibroblasts in an NFAT- 

and ERK1/2-dependent manner, respectively, and may play a more important role in atrial 

function or fibrosis of other tissues [174, 175]. The most notable of the TRPC proteins in 

fibroblast plasticity is TRPC6, was identified using an in vitro overexpression screen in 

MEFs. Trpc6 expression is induced by non-canonical TGFβ signaling and SRF; SRF 

overexpression was sufficient to increase Trpc6 transcription, but this increase was blocked 

with a p38-specific inhibitor [166]. Overexpression of TRPC6 is specifically required to 

promote TGFβ- or AngII-dependent myofibroblast differentiation in cell culture and is 

required to prevent cardiac wall rupture after myocardial infarction [166].

4. Fibroblast resolution and reprogramming

Resolution of fibrosis typically culminates in fibroblast apoptosis, however, a subset of CFs 

are resistant to apoptosis and remain within the scar [176–178]. A recent study revealed that 

P53+COL1A2+ cells express the endothelial cell (EC) marker VE-cadherin 3 days after IR 

injury [21]. Loss of p53 in CFs is correlated with decreased cardiac function due to reduced 

mesenchymal – endothelial transformation and capillary density. This not only suggests that 

there are inherent transcriptional differences between the types of CFs that become activated 

in disease, but that CFs that escape P53-dependent gene regulation may transdifferentiate 

into ECs [21] (Figure 1). CF-EC transdifferentiation in disease may improve cardiovascular 

function by both promoting neovascularization within a fibrotic infarct and reducing the 

number of activated fibroblasts. These studies may have further implications as a recent 

study demonstrated that ECs comprise up to 63% of cardiac cells and suggested that the role 

of ECs in cardiac physiology may be underappreciated [3]. Further support of this 

hypothesis demonstrates that some CFs can spontaneously adopt a proliferative 

myofibroblast phenotype in vitro whereas others adopt a non-proliferative TGFβ-induced 

myofibroblast phenotype [177]. Cells that retain a proliferative phenotype regress to a more 

quiescent fibroblast transcriptional profile after removing the TGFβ stimulus, including a 

decrease in Mrtfa transcription and susceptibility to apoptosis. Conversely, non-proliferative 

myofibroblasts remain activated after removal of TGFβ stimulation [177]. Further support of 

this comes from recent data from D'Souza et al, who demonstrate reduced activation in CFs 

isolated from rats treated with ACE inhibitors. One proposed mechanism is apoptosis of 

activation-prone CFs and survival of more quiescent CFs [179, 180]. These data suggest that 

a subpopulation of CFs may retain the ability to revert back into a quiescent state or undergo 

apoptosis. Taken together, these studies challenge the previously held notion that CFs are 
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terminally differentiated and further emphasize the need to identify novel methods of 

manipulating transcriptional regulators of the myofibroblast state.

In line with the intrinsic plasticity of CFs, reprogramming strategies might be utilized as a 

means to repopulate lost myocardial tissue with functioning CMCs. Recent studies have 

defined transcription factor cocktails that can coax CFs into a beating CMC-like cell. Albeit 

a small percentage of cells, mouse and human CFs can be transformed into CMCs with viral 

overexpression of the core set of transcription factors: Gata4, Mef2c, and Tbx5 (called 

GMT) [181]. Other early cardiac transcription factors, such as Nkx2.5, Mesp1, and 

myocardin are less critical, or even inhibit reprogramming whereas Hand2 can increase the 

percentage of cells transformed into atrial, ventricular, and pacemaker CMCs [182–184]. 

Similar reports have used small molecules in combination with the pluripotency factor 

OCT4 to produce CMC-like cells from fibroblasts [185, 186]. Importantly, cellular 

reprogramming strategies have proven efficacious in blunting cardiac dysfunction and 

remodeling in rodent models of MI [182, 187, 188]. It is interesting to speculate that forced 

expression of reprogramming factors may lead to improved cardiac performance by 

diverting CFs away from the pro-fibrotic phenotype in addition to stimulating CMC 

production [189]. Of note, suppression of pro-fibrotic signaling with ROCK or TGFβ 

inhibitors dramatically improves CF transdifferentiation into CMCs in vitro, implying a 

potential mutual antagonism between reprogramming factors and pro-fibrotic signaling 

[184]. This study also suggests an intriguing similarity between embryonic stem cell-derived 

CMCs and CF reprogramming strategies, which are both inhibited by TGFβ signaling, and 

adds further support to the concept of fibroblast multipotency. Indeed, fibroblasts seem 

uniquely capable of re-programming, given current reports that ECs or other non-myocyte 

cell types do not efficiently transdifferentiate into CMCs [188]. Defining the genomic 

occupancy of GMT during fibroblast reprogramming or in response to inhibitors of 

reprogramming such as pro-fibrotic signals or Nkx2-5 might provide clues as to the 

combinatorial interactions that control fibroblast plasticity. Altogether, these studies provide 

a foundation for developing potential therapeutic strategies to promote cardiac repair.

5. Conclusion

Fibroblasts are no longer relegated to merely structural and supportive roles and are now 

appreciated as a highly plastic cell type that contributes to maintaining tissue homeostasis 

and wound repair. Interactions between CFs and CMCs, inflammatory cells, and other cell 

types promote a balanced environment that can quickly respond to the changing needs of a 

healthy heart. However, it has become increasingly clear that CFs also play a central role in 

the progression of heart failure. Resolution of activated myofibroblasts at the culmination of 

the cardiac injury response is an inefficient process that often leads unchecked fibrosis. 

Myofibroblast activation is rapidly induced by a growing number of signaling pathways that 

converge on a limited number of transcription factors. Targeting TGFβ/Smad/scleraxis or 

Rho-ROCK/MRTF/SRF pathways has already proven efficacious in blocking the 

progression of fibrosis in animal models of disease. Recently, fibroblasts were coaxed into 

beating CMC-like cells with exogenous expression of select transcription factors, both in 

vitro and in vivo. Additional therapeutic strategies that harness fibroblast phenotypic 

plasticity may stem from studies that better define CF origin and heterogeneity. While major 
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hurdles include the development of better markers of fibroblast identity and improved tools 

that specifically target the fibroblast, manipulating the CF phenotype in disease is certainly a 

challenging yet attainable goal.
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Highlights

• Cardiac fibroblasts are a uniquely plastic cell type.

• The myofibroblast is a primary source of extracellular matrix during cardiac 

repair.

• Excessive stimulation of the myofibroblast phenotype leads to cardiac fibrosis.

• Transcriptional regulators of fibroblast plasticity are reviewed.

• Diverting the fibrotic gene program may contribute to the benefits of 

reprogramming.
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Figure 1. Fibroblast and myofibroblast origins
Multiple cell types have been hypothesized to differentiate or transdifferentiate into 

myofibroblasts including pericytes/vascular smooth muscle cells (VSMC), circulating 

monocytes and fibrocytes, endothelial cells, epicardial and mesenchymal cells, and 

quiescent fibroblasts. In development, quiescent fibroblasts primarily differentiate from 

epicardial and mesenchymal cells in a mechanism known as epithelial-to-mesenchymal 

transition (EMT). EMT is largely governed by TGFβ signaling through SMAD proteins and 

the MRTF and TCF21 transcription factors. Disease can cause fibroblasts to differentiate 

into myofibroblasts and cause tissue fibrosis. Resolution of fibrosis can occur through two 

mechanisms: apoptosis or dedifferentiation. Myofibroblasts that dedifferentiate into 

quiescent fibroblasts may also further transdifferentiate into endothelial cells in a p53-

dependent manner. Chronic disease often results in cardiomyocyte death, and 

reprogramming fibroblasts into cardiomyocytes may offer potential therapies to reduce 

fibrosis.
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Figure 2. Major signaling pathways that promote fibroblast activation
Multiple pathways converge on the myofibroblast phenotype. Mechanical stress or ligand 

mediated receptor activation can induce TGFβ signaling, GPCR activation, or calcium 

influx. TGFβ signaling plays a central role where the canonical arm results in nuclear 

localization of SMAD2/3/4. Inhibitory SMADs 6/7 or KLF15 can block SMAD2/3/4-

dependent transcription whereas angiotensin/KLF5 signaling can enhance canonical TGFβ 

signaling. Non-canonical TGFβ signaling not only promotes MAPK/p38/JNK/ERK-

dependent transcription, but can feed into the Rho/ROCK signaling pathway to promote 

MRTF nuclear localization. Rho/ROCK can also be activated by G-protein coupled 

receptors (GPCRs). Finally, mechanical tension can also disrupt β-catenin localization in the 

adherens junctions to prime the cell for further stimulation or cause calcium influx which 

activates calcineurin/NFAT signaling.
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