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Abstract CRM1 is a highly conserved, RanGTPase-driven exportin that carries proteins and

RNPs from the nucleus to the cytoplasm. We now explored the cargo-spectrum of CRM1 in depth

and identified surprisingly large numbers, namely >700 export substrates from the yeast S.

cerevisiae, »1000 from Xenopus oocytes and >1050 from human cells. In addition, we quantified

the partitioning of »5000 unique proteins between nucleus and cytoplasm of Xenopus oocytes. The

data suggest new CRM1 functions in spatial control of vesicle coat-assembly, centrosomes,

autophagy, peroxisome biogenesis, cytoskeleton, ribosome maturation, translation, mRNA

degradation, and more generally in precluding a potentially detrimental action of cytoplasmic

pathways within the nuclear interior. There are also numerous new instances where CRM1 appears

to act in regulatory circuits. Altogether, our dataset allows unprecedented insights into the

nucleocytoplasmic organisation of eukaryotic cells, into the contributions of an exceedingly

promiscuous exportin and it provides a new basis for NES prediction.

DOI: 10.7554/eLife.11466.001

Introduction
The nuclear envelope (NE) separates the cell nucleus from the cytoplasm. Although its lipid bilayers

are impermeable for macromolecules, embedded nuclear pore complexes (NPCs) allow an exchange

of material between these compartments (Feldherr, 1962). The NPC permeability barrier controls

this exchange. It grants small molecules a free passage, but becomes increasingly restrictive as the

size of the mobile species approaches or exceeds a diameter of » 5 nm (Mohr et al., 2009). Shut-

tling nuclear transport receptors (NTRs) are not bound by this restriction (for review see:

Kimura and Imamoto, 2014). They can traverse NPCs by facilitated translocation and have the

capacity to ferry even large cargoes, such as newly assembled ribosomal subunits, across the barrier.

Active transport of cargoes against concentration gradients requires an intact NE and NPC-bar-

rier for retaining already transported cargoes in the destination compartment. In addition, it requires

an input of metabolic energy, typically by the RanGTPase system. The corresponding duty cycles

include not only a switch of Ran between its GDP- and GTP-bound states, but also one round of

Ran-shuttling between nucleus and cytoplasm. The energetic coupling occurs through a primary

RanGTP-gradient, which is generated through NTF2-mediated import of RanGDP, nucleotide

exchange by the nuclear RanGEF (RCC1) and cytoplasmic RanGTP-depletion by RanGAP and

RanBP1/RanBP2. This gradient then directly fuels importin- and exportin-mediated transport cycles.

Exportins (reviewed in Güttler and Görlich, 2011) bind their cargo molecules cooperatively with

RanGTP inside nuclei, carry them as trimeric RanGTP�exportin�cargo complexes to the cytoplasm,
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where GTP-hydrolysis triggers release of cargo and Ran. The free exportin can then re-enter nuclei

and export the next cargo.

CRM1, also called exportin 1 or Xpo1, is the most conserved nuclear export receptor

(Adachi and Yanagida, 1989; Fornerod et al., 1997a; Fukuda et al., 1997; Stade et al., 1997). It is

structurally well characterised, whereby structures of free CRM1, of certain cargo.CRM1.RanGTP

complexes as well as their assembly- and disassembly-intermediates have been solved (Dong et al.,

2009; Monecke et al., 2009; Güttler et al., 2010; Koyama and Matsuura, 2010; Monecke et al.,

2013; Saito and Matsuura, 2013; Koyama et al., 2014).

CRM1 recognises its cargoes through short linear nuclear export signals (NESs), which comprise

4–5 critical hydrophobic (F) residues with characteristic spacings (Wen et al., 1994; Fischer et al.,

1995; Dong et al., 2009; Monecke et al., 2009; Güttler et al., 2010). CRM1 is essential for viability

and is the target of the potentially lethal bacterial toxin leptomycin B (Nishi et al., 1994), which

blocks NES-binding by covalently modifying a conserved cysteine residue within the NES-binding

site (Kudo et al., 1999; Dong et al., 2009; Monecke et al., 2009; Sun et al., 2013). CRM1 is known

to carry multiple cargoes, including newly assembled 40S and 60S ribosomal subunits, the signal rec-

ognition particle SRP, U snRNAs, or the genomic RNA of HIV1 via the Rev protein (Moy and Silver,

1999; Ciufo and Brown, 2000; Ho et al., 2000; Ohno et al., 2000; Gadal et al., 2001;

Thomas and Kutay, 2003; Rouquette et al., 2005). It is also known to regulate key cellular events

by conditional export of transcription factors or cell cycle regulators from the nucleus (see e.g.

Hagting et al., 1998; Yan et al., 1998; Yang et al., 1998).

Cell nucleus and cytoplasm are prime examples for the division of labour in a eukaryotic cell. The

cytoplasm hosts the machineries of the secretory pathway, many metabolic activities as well as the

cytoskeletal structures that account for cell motility and long-range transport. It has also specialised

in protein synthesis and de novo protein folding.

eLife digest Animals, plants and other eukaryotic organisms subdivide their cells into

compartments that carry out specific tasks. For example, the cell nucleus hosts the genome and

handles the genetic information, whereas the surrounding cytoplasm is specialized in making

proteins. These proteins are then either used in the cytoplasm or transported to the nucleus and

other cell compartments. Since proteins are not made in the nucleus, all proteins in this

compartment must be imported from the cytoplasm.

Two layers of membrane separate the nucleus and cytoplasm from each other. Any exchange of

material must therefore proceed through channels called nuclear pore complexes, or NPCs for

short. The NPCs have filters that allow only small molecules a free transit, while larger ones are

typically rejected. However, larger proteins may also rapidly pass through the nuclear pore

complexes if loaded onto dedicated shuttle molecules; for example, “exportins” transport proteins

out of the nucleus.

Kırlı, Karaca et al. used an approach called proteomics to measure the levels of 5,000 different

proteins within the nucleus and the cytoplasm. Such a census helps to predict where a given protein

works and where it might cause problems. Further experiments also used proteomics to identify

which proteins are carried by an exportin called CRM1. This revealed that a remarkably large

number of different proteins (around 1,000) are exported by CRM1 from either yeast, human or frog

cell nuclei. Most of these “cargo” proteins were previously thought to never leave the cytoplasm. It

now seems, however, that these proteins can leak into the nucleus, but CRM1 recognizes them as

cytoplasmic proteins and expels them from the nucleus.

These findings suggest that the border control at NPCs is less perfect than was previously

believed. If not remedied, this would pose a serious problem for the cell, because the accumulation

of "wrong" proteins inside the nucleus would disturb the processes that occur there and could

destabilize the genome. Kırlı, Karaca et al. propose that the export of such accidentally displaced

proteins by CRM1 is a crucial measure to protect the nucleus.

DOI: 10.7554/eLife.11466.002
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The nucleus lacks protein synthesis and thus depends on protein import from the cytoplasm. It

has specialised in DNA replication and repair, nucleosome assembly, transcription, ribosome assem-

bly, as well as in mRNA splicing and processing. Such specialisation critically relies on a spatial sepa-

ration of interfering activities: Intranuclear protein synthesis, for example, would be a particularly

wasteful process, because ribosomes would then also translate unspliced or incompletely spliced

mRNAs, consequently read into introns, add inappropriate residues to the nascent chains, eventually

encounter premature stop codons and thus produce truncated protein fragments. Such aberrant

translation products would not only be non-functional, but probably also toxic, because they fail to

fold, or act in a dominant-negative fashion.

It is thus not very surprising that eukaryotic cells have implemented several lines of defence

against intranuclear translation, whereby the NE acts as a primary barrier to keep cytoplasmic trans-

lation activity out of nuclei. Likewise, even though the 40S and 60S ribosomal subunits assemble

inside the nucleus, they gain full translation competence only following late maturation steps in the

cytoplasm (reviewed in Panse and Johnson, 2010; Thomson et al., 2013).

A very general problem is, however, that the NPC barrier is not perfect. Instead, also objects

larger than the nominal exclusion limit can leak—albeit slowly—into the nucleus (Bonner, 1975;

Mohr et al., 2009). Such slow mixing of nuclear and cytoplasmic contents would become a problem

if the leaked-in proteins would interfere with nuclear functions or dysregulate cellular activities.

Countermeasures might be selective degradation or inhibition in the inappropriate compartment,

or, when mis-localised to the nucleus, recognition by an exportin and subsequent retrieval to the

cytoplasm.

Indeed, precedents for such exportin-mediated back-sorting of cytoplasmic proteins from the

nucleus are already known. Animal Xpo6, for example, keeps actin out of the nucleus (Stüven et al.,

2003), while Xpo4 and Xpo5 do the same for the translation elongation factors eIF5a (Lipowsky et al.,

2000) and eEF1A respectively (Bohnsack et al., 2002; Calado et al., 2002). CRM1 was shown to expel

several cytoplasmic factors from the nuclear compartment, including the RanGTPase system compo-

nents RanBP1 (Plafker and Macara, 2000) and RanGAP (Feng et al., 1999) as well as the translation

factor subunits eIF2b, eIF5, eIF2Be and eRF1 (Bohnsack et al., 2002). The full extent of active cyto-

plasmic confinement has, however, not yet been assessed.

We report here global scale analyses of nucleocytoplasmic partitioning in Xenopus oocytes and

of CRM1-mediated nuclear export. According to stringent criteria, we identified » 1000 potential

CRM1 cargoes from Xenopus laevis oocytes, » 1050, from human HeLa cells, and » 700 from the

yeast S. cerevisiae. We tested a subset of cargo candidates for CRM1-dependent nuclear export in

cultured human cells and thereby validated a majority of them as true cargoes. For a subset, we also

confirmed direct CRM1-interaction and mapped the corresponding NESs, some of which turned out

to have unusual features. The majority of identified CRM1 cargoes are proteins and protein com-

plexes with a very strong bias towards a cytoplasmic localisation, suggesting that their active back-

sorting from the nucleus is a major cellular activity. This applies to nearly all translation factors

(including the largest translation factor complexes like eIF2B), to factors involved in final ribosomal

maturation steps, which might prevent ribosomes from acquiring translation competence already in

the nuclear compartment, as well as to regulatory proteins, autophagy-linked factors, peroxisome

biogenesis factors and to centrosomal proteins, in both, humans and frogs. Another major functional

group of CRM1 cargoes with perfect nuclear exclusion is represented by vesicle coat proteins, which

points to a strong evolutionary pressure to preclude the budding of vesicles from the inner nuclear

membrane. We also identified numerous new instances, where CRM1 appears to act in regulatory

circuits. More generally, these data represent a very rich resource for other researchers seeking

information about nucleocytoplasmic distribution and CRM1-controlled localisation.

Results and discussion

Nucleocytoplasmic protein partitioning in Xenopus laevis oocytes
We were interested in a global view of how soluble proteins and protein complexes partition

between the nucleus and the cytoplasm. In order to tackle this question, we applied a deep prote-

ome analysis to the isolated compartments. A problem for such endeavour is that standard cell frac-

tionation procedures rely on shearing forces, often combined with hypotonic lysis or even treatment
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with detergents (see e.g. Blobel and Potter, 1966; Dignam et al., 1983). All these treatments com-

promise the integrity of the NE. Nuclear proteins, which are not firmly associated with solid struc-

tures like chromatin, will then leak out and contaminate the cytoplasmic fraction—just as the nuclear

fraction will be contaminated by cytoplasmic components.

In order to avoid these problems, we turned to Xenopus laevis stage VI oocytes (Dumont, 1972).

These cells measure »1.3 mm in diameter and have nuclei of »450 mm. Such very large dimensions

allow for a manual oocyte dissection into nuclear and cytoplasmic fractions with exceptionally little

cross-contamination (see e.g. De Robertis et al., 1978). These oocyte nuclei are also special with

their volume being 100,000 times larger than that of average-sized cells with a G2 DNA contents.

The chromatin should therefore make no more than a negligible contribution to nuclear retention of

proteins. Instead, the nucleocytoplasmic distribution of a given protein or protein complex in these

cells should be solely determined by its passive diffusion properties and by their potential to access

active nuclear import and/or export pathways. In addition, oocytes are very long-lived cells that

grow over months to their final size, which implies that even slow partitioning processes are likely to

have reached a steady state.

As a standard experiment, we dissected 60 oocytes, cleared the cytoplasmic fractions off yolk,

normalised the nuclear and cytoplasmic fractions to their respective volumes, and identified proteins

in three biological replicates by mass spectrometry. Proteins of two replicates were separated by

SDS-PAGE (Figure 1A and 1B) and in-gel digested with trypsin. As a complementary approach, pro-

teins of the third replicate were digested in solution. Resulting peptides were separated by reverse

phase chromatography at pH 10 and obtained fractions analysed by LC-MS/MS. The raw data were

Figure 1. Spatial proteomics of Xenopus laevis oocytes. (A) Workflow for mass spectrometric analysis of cytosolic and nuclear proteins. For details, see

Materials and methods and main text. (B) Analysis of obtained cytosolic and nuclear fractions by SDS-PAGE and Coomassie-staining. The loads

correspond to 750 nanolitres of either yolk-free cytoplasm or nuclear contents. (C) Venn diagram of proteoforms (including all allelic variants of a given

gene product) that have been identified in the manually isolated cytoplasms and nuclei. (D) Venn diagram is similar to (C), but proteoforms

corresponding to a given gene (foremost allelic variants) have been merged down to ‘unique proteins’. Also, proteins were subtracted that just co-

purified with nuclei, but do not represent intranuclear proteins; this applied to constituents of the nuclear envelope (ER) and the nucleus-associated

mitochondrial cloud.

DOI: 10.7554/eLife.11466.003

The following figure supplement is available for figure 1:

Figure supplement 1. Estimation for the accuracy of mass spectrometric protein quantitation.

DOI: 10.7554/eLife.11466.004
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searched against a comprehensive Xenopus laevis database (Wühr et al., 2014). In this way, a total

of 9573 proteoforms (Smith et al., 2013) were identified, 7015 in isolated nuclei and 7036 in the

cytoplasmic fractions. The intersection set comprised 4478 proteoforms (Figure 1C).

Xenopus laevis is pseudotetraploid; thus it shows greater allelic diversity than other species

(Hellsten et al., 2007), which represents a challenge for peptide-based protein quantification. We

therefore treated allelic isoforms not as separate proteins, but mapped all recognizable allelic forms

down to unique protein species. This ‘mapping’ was guided also by comparisons to the human and

the (diploid) Xenopus tropicalis proteomes (see Materials and methods).

We aimed at a high-quality dataset for those proteins that can actually pass through NPCs and

partition between the nucleus and cytoplasm. We therefore tried to minimize the number of ‘con-

taminants’ in the list, which represent, for example, the endoplasmic reticulum (which co-purifies

with nuclei in the form of the NE) or the mitochondrial cloud (Heasman et al., 1984) that is tightly

associated with the outside of these nuclei. We subsequently tested which proteins disappeared

from the nuclear fraction when the NE was manually removed. Such proteins were discarded from

the list if their sequence features qualified them also as integral membrane, ER-luminal or mitochon-

drial proteins. This left us with a total of 5006 unique proteins. Of these, 1126 were identified only in

the nuclear fraction, 1059 only in cytosolic fraction and 2821 in both compartments (Figure 1D, and

Supplementary file 1).

In order to quantify each of these proteins in the nuclear and cytoplasmic compartments, we

employed the iBAQ strategy (Schwanhäusser et al., 2011) combined with an internal universal pro-

tein standard (UPS2; see Materials and methods). We estimate that our quantitation was reliable

over a range of 5 orders of magnitude in abundance and accurate within a factor of 2.3 (see Fig-

ure 1—figure supplement 1).

To validate the quality of the obtained nuclear and cytoplasmic fractions, we first evaluated the

partitioning of the previously described marker proteins nucleophosmin (also called B23 or NO38)

and gelsolin, which are localised exclusively to nucleus (Schmidt-Zachmann et al., 1987) or cyto-

plasm (Yin and Stossel, 1979; Samwer et al., 2013), respectively. We chose highly abundant pro-

teins, because these yield a larger number of unique, quantifiable peptides and thus allow for a

more precise quantification. For nucleophosmin (a histone chaperone), we measured a nuclear con-

centration of » 2.3 mM, a cytoplasmic concentration of 8 nM, and hence a nucleocytoplasmic (N:C)

partition coefficient of 300:1. For gelsolin (a factor that stabilizes cytoplasmic actin in its G-form) we

measured a nuclear concentration of » 0.01 mM, a cytoplasmic of » 4 mM, and thus an N:C ratio of

1:400. This suggests that the obtained nuclear and cytoplasmic fractions show only very limited

cross-contamination and also suggested what range of partition coefficients should be expected

also for other proteins.

Supplementary file 1 contains complete and simplified data sets for the nucleocytoplasmic distri-

bution of 5006 individual proteins and 9573 proteoforms. It lists the measured concentrations in

nucleus and cytoplasm as well as ratios on a log10 scale. To make the data as accessible as possible

to other researchers, we included not only unique identifiers for each protein hit, but also clickable

annotation links to the corresponding UniProt entries for the identified Xenopus proteins (X. laevis if

available, otherwise X. tropicalis) as well as to the human orthologues, where annotations as of now

are more complete.

When broken down to functional groups, it becomes evident that the various cellular processes

represent quite characteristic N:C distribution patterns. As these patterns are in many cases tightly

linked to the activity of CRM1, we will discuss these after describing our approach of mapping the

CRM1-dependent nuclear exportome.

Implications for energy supply of the oocyte nucleus
An apparently CRM1-independent aspect relates to the energy supply of the giant oocyte cell

nucleus. Efficient duty cycles of numerous enzymes, such as Ran, require a high NTP:NDP ratio,

which seems hard to maintain inside these nuclei if ATP were produced only outside (i.e. by mito-

chondria or cytosolic glycolysis). The problem arises from the short half-life of ATP in living cells (» 1

min), which is less time than an ATP molecule would typically need to diffuse into and across such

large nucleus. We now found evidence in the oocyte for two parallel solutions to this problem.

The first is a ‘creatine-creatine phosphate energy shuttle’, which uses diffusion of creatine phos-

phate (CP) instead of ATP for a long-range transport of energy equivalents (reviewed by
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Bessman and Carpenter, 1985). It exploits the »160 times higher phosphorylation potential of CP

as compared to ATP, and operates by creatine kinase (CK) synthesising CP from ATP near ATP sour-

ces and the reverse reaction at sites of ATP consumption. Oocytes enable such CP shuttle by main-

taining high CK concentrations in both, cytoplasm and nucleus (3 mM and 1.5 mM, respectively;

Supplementary file 1).

The second solution concerns the glycolysis pathway. The oocyte nucleus contains all glycolytic

enzymes, except for hexokinase and phosphofructokinase that catalyse the ATP-consuming prepara-

tory steps. The hexokinase level is generally very low in oocytes (because they produce glucose 6-

phosphate by other means; see Nutt et al., 2005 and Supplementary file 1), while 6-phosphofruc-

tokinase (PFK) is confined to the cytoplasm (N:C » 1:2000; Supplementary file 1). This enzyme distri-

bution predicts a directed flux of fructose 1,6 bisphosphate into the nucleus. It further suggests that

oocyte nuclei produce the high-energy compounds phosphoenolpyruvate and 1,3 bisphoglycerate

locally and use them for synthesizing ATP and other NTPs.

A large-scale data set for potential CRM1 cargoes from three species
The exportin CRM1 is known to be essential for viability and to account for nuclear export of numer-

ous targets (see e.g. Xu et al., 2012b; Thakar et al., 2013 for a comprehensive summary of so far

identified substrates). However, it has been unclear how broad the cargo spectrum really is and

which set of cellular processes are directly or indirectly controlled by CRM1-dependent nuclear

export.

In order to close this gap, we set out to identify cargoes in an unbiased manner from three differ-

ent species and types of cells, namely: the already-mentioned Xenopus laevis oocytes, human HeLa

cells and the yeast S. cerevisiae. We first prepared cellular extracts, used immobilised CRM1 as an

affinity matrix and asked which proteins and protein complexes would bind in a RanGTP-dependent

manner. As detailed below, CRM1 has many interaction partners of widely different abundance and

affinity, which implies that the majority of them bind to the immobilized exportin in a highly sub-stoi-

chiometric manner. The challenge thus is to cleanly distinguish such highly sub-stoichiometric bands

from non-specific interactors. To this end, we optimised several parameters, such as the way of

immobilisation, the exportin:extract ratios (to minimise competition between cargoes), buffer condi-

tions, incubation time, etc., in order to maximise the signal-to-noise ratio of the affinity chromatogra-

phy (for details see Materials and methods).

Figure 2A shows the starting extracts and CRM1-bound fractions of such affinity chromatogra-

phies, and it documents indeed a very large number of protein species that bound to CRM1 in a

RanGTP-dependent manner. Using the mass-spectrometric approaches mentioned above, we identi-

fied in the starting extracts »2800 (Xenopus), »3900 (human) and »2600 (yeast) proteins (Figure 2B).

In the ‘CRM1+RanGTP’ samples, »2300, 3000 and »2000 proteins were identified. About 14% of

these had not been detected in the total extracts and these probably represent low-abundance pro-

teins that had been highly enriched during CRM1 affinity chromatography.

The lists of proteins identified in the CRM1+RanGTP-bound fractions include not only true CRM1

binders and CRM1 export cargoes, but, for sure, also false-positive ones. To classify a given hit as a

promising candidate, we therefore relied not only on its mere identification in this fraction. We also

considered to which extent it became enriched from the input extract (‘input enrichment’), to which

extent its CRM1-binding had been stimulated by RanGTP (‘RanGTP-stimulation’), as well as its abso-

lute abundance in the ‘CRM1+RanGTP’-bound fraction (‘Molar fractions in CRM1+RanGTP’) (Fig-

ure 3), which affects the accuracy of quantification and thus the reliability of the first two numbers.

As a resource for other researchers, we organised the quantitative data in Excel sheets

(Supplementary files 2–4), which contain not only the just mentioned numbers, but also clickable

links to the corresponding UniProt entries, as well as cellular localisations derived either from data-

bases (human and yeast) or measured directly (Xenopus).

We divided the identified proteins into several categories, using as a criterion species-specific

thresholds (Supplementary files 2–4, and Figure 3). These thresholds had been adjusted to best

match the behaviour of proteins, whose specific CRM1-interaction is already established beyond

doubt, as well as of proteins that are known not to interact with the exportin (see Materials and

methods). CRM1-binders of the category A1 not only had to pass the most stringent thresholds in

terms of RanGTP-stimulation of CRM1-binding (�500-fold in the case of Xenopus) and enrichment

from the input extract (�3-fold), but also belong to the most abundant proteins in the ‘CRM1
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+RanGTP’-bound fraction (Note that the threshold of a 500 times stronger signal than in the nega-

tive (minus RanGTP) control is far more stringent than the standard of ‘2-fold’, which is used in most

proteomics studies). A2 had an even stricter threshold for ‘input enrichment’ (�100), but a relaxed

one for the apparent RanGTP-stimulation. It includes cargoes like snurportin, which bind CRM1 so

strongly that the affinity is still high even in the absence of RanGTP (Paraskeva et al., 1999). In cate-

gory B, one of the three criteria was relaxed, while the category ‘low abundant’ includes proteins

that were only detected in the ‘CRM1+RanGTP’-bound fraction, but were not sufficiently abundant

to qualify for category A.

Figure 2. Identification of potential CRM1 cargoes from 3 species. (A) Mouse (mm) or yeast (sc) CRM1 were immobilised through a biotinylated Avi-tag

to streptavidin agarose, and incubated with indicated extracts (1 ml), without or with the addition of 5 mM RanQ69L5-180GTP. The beads were

thoroughly washed and subsequently eluted at 45˚C with SDS sample buffer (which leaves the biotin-streptavidin interaction largely intact). Analysis of

indicated samples was by SDS-PAGE and Coomassie-staining. 1/200 of the starting extracts and 1/5 of eluates were loaded. (B) Starting extracts, CRM1

w/o Ran, and CRM1+RanGTP samples were analysed by mass spectrometry. Venn diagrams represent identified unique proteins. Numbers in

parenthesis include also proteins that were not identified in a total Xenopus extract or the ‘CRM1+RanGTP’ sample, but in the isolated nuclear and

cytoplasmic fractions; these proteins extend the list of ‘CRM1-non-binders’.

DOI: 10.7554/eLife.11466.005
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We assume that most identified proteins from the categories A, B and ‘low abundant’ are direct

CRM1 interactors that either carry a functional NES or occur in stable complexes with NES-contain-

ing proteins. Thus, we identified »1000 probable cargoes each in Xenopus and human as well as

»700 in yeast. This is far more than identified for any other NTR (see e.g. Kimura et al., 2013), and

represents »20% of all detectable nuclear or cytosolic proteins, only a small fraction of which (» 10%)

had been proposed to be associated with CRM1 before (see Supplementary file 5). This suggests

that CRM1 serves a far larger number of cargoes than previously assumed. To estimate our positive

discovery rate of direct CRM1 cargos, we tested a subset of these candidates below.

Of course, nucleoporins, and FG Nups in particular, were also identified as CRM1 ligands. We

consider them, however, as part of the transport machinery and not as cargoes. Some of them bind

CRM1 very strongly, for example, the human or Xenopus Nup214.88.62 complex or Nup358 (see

Figure 3b, and e.g. Fornerod et al., 1997b; Engelsma et al., 2004).

Figure 3. Categories of CRM1-binders from HeLa cells. For each identified CRM1-binder, we calculated or estimated three parameters from measured

iBAQ intensities: its abundance (molar fraction) within the ‘CRM1+RanGTP’-bound sample, the RanGTP-stimulation of its CRM1-binding, and how

strongly it became enriched by the ‘CRM1+RanGTP’-affinity chromatography. These numbers where then used to group binders into distinct

categories, ranging from ‘A’ (the most probable cargoes) to ‘non-binders’. (A) Venn diagrams representing the indicated cargo classes with respect to

their identification in the starting extract, ‘CRM1 w/o Ran’- and/or ‘CRM1+RanGTP’-bound samples. (B) Scatter plot representing ‘CRM1+RanGTP’-

binders from HeLa cells, using the parameters ‘RanGTP-stimulation’ and ‘input-enrichment’ as coordinates. Colouring is according to classification.

Most ‘non-binders’ had not been identified in the ‘CRM1+RanGTP’ sample; they are therefore also not plotted. Measurement of the parameters

‘RanGTP-stimulation’ and ‘input-enrichment’ required the identification a given candidate in input, ‘CRM1 w/o Ran’, as well as in the ‘CRM1+RanGTP’-

sample. If undetected in either ‘input’ or ‘CRM1 w/o Ran’, then the missing parameter was estimated as a lower bound (based on the detection

sensitivity of our MS setup). Candidates detected only in ‘CRM1+RanGTP’ were not plotted (because for them, both parameters would have to be

estimated). (C) Scatter plot is as in (B), but colour code is used to indicate the abundance in the ‘CRM1+RanGTP’-bound sample.

DOI: 10.7554/eLife.11466.006
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On the other end of the distribution, we identified »700 proteins in Xenopus, »900 in human and

»600 in yeast, which were strongly selected against in the ‘CRM1+RanGTP’-bound fractions

(Supplementary files 2–4, Figure 3). These represent proteins, whose nucleocytoplasmic
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Figure 4. Validation of Xenopus CRM1-cargo candidates and identification of NESs. HeLa cells were transfected to express GFP- or GFP-NLS-fused

candidate proteins, then incubated with or without the CRM1 inhibitor leptomycin B (LMB), fixed, and analysed by confocal laser scanning microscopy

(CLSM). The co-transfected RFP-NLS-NES was detected in a separate channel as a control for the LMB-effect. Tested candidates: eukaryotic peptide

chain release factor eRF3a (Q91855), subunit 1b of the ARP2/3 complex (Q6GNU1), Septin-2 (B7ZR20), Ap1-gamma subunit of the clathrin-associated

adapter complex (Q6GPE1), the cAMP-dependent kinase type II-alpha regulatory subunit pRKAr2a (F7CZT8), and the regulator of nonsense transcripts

UPF2 (Q498G1). UniProt entry names are given in parentheses. Figure also shows sequences of identified NESs, and their validations as transfected

GFP-NLS-fusions with an LMB-sensitive cytoplasmic localisation.
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partitioning is probably not directly affected by CRM1. Metabolic enzymes (of e.g. glycolysis, the

pentose phosphate pathway etc.), protein folding factors, and exclusively nuclear proteins are over-

represented in this ‘non-binder’ category.

In between, we found a broad zone of ‘ambiguous’ proteins, which actually represent a contin-

uum. Some of them bound still very specifically to the export-form of CRM1 (according to the ‘minus

RanGTP’-control); yet, the binding was weak. We assume that these proteins become only transiently

CRM1 cargoes (e.g. in response to the addition or removal of a post-translational modification) or

that they only transiently associate with bona fide CRM1-cargoes. On the other end of the ‘ambigu-

ous’ category, there are proteins, which appear to be ‘CRM1 non-binders’. However, their low abun-

dance in the starting extract precluded any reliable judgement of how strongly they were selected

against in the ‘CRM1+RanGTP’-bound fraction.

Validation of identified CRM1 cargo candidates
The data set contains most of the previously well-validated CRM1 cargoes, such as the nuclear

import adapter snurportin, or the nuclear export adapters NMD3 (Ho et al., 2000) and PHAX

(Kitao et al., 2008). The vast majority of hits (� 90%), however, were so far not linked to CRM1-

mediated nuclear export. We therefore decided to verify a sample of candidates according to a

common scheme.

The first was the Xenopus translation termination factor eRF3a. Its GFP-fusion was exclusively

cytoplasmic in transfected HeLa cells (Figure 4), which is consistent with its experimentally deter-

mined localisation in Xenopus oocytes (Supplementary file 1). A CRM1-block by 10 nM leptomycin

B, however, caused the fusion to equilibrate between nucleus and cytoplasm, suggesting a signifi-

cant nuclear entry rate and rapid CRM1-dependent retrieval in undisturbed cells.

We also transfected a fusion that included an SV40 nuclear localisation signal (GFP-NLS-eRF3a) to

enforce a faster nuclear entry, which made the fusion indeed exclusively nuclear following Leptomy-

cin B-treatment. In undisturbed cells, however, we observed a still nearly exclusively cytoplasmic

localisation, suggesting that the eRF3a NES confers a considerably faster export from nuclei than

nuclear import mediated by the (very strong) SV40 NLS. We identified this NES within the N-terminal

unstructured region of eRF3a and confirmed its nuclear export activity by transfection assays as well

(Figure 4).

eRF3a binds also purified CRM1 in a RanGTP-dependent manner (Figure 5), suggesting that the

interaction is direct and not bridged by another factor. Due to its efficient binding from Xenopus

oocyte extract to CRM1, eRF3a was classified as a ‘category A’ cargo. Next, we also confirmed a far

lower scoring ‘category B’ candidate, namely the 1b subunit of the Arp2/3 complex, as a directly-

binding, bona fide CRM1 export cargo with an NES at its extreme C-terminus. In the light of the

Figure 5. Identification of cargo candidates as direct CRM1-binders. The H14-ZZ-Sumo tagged candidate proteins ARP2/3 1b (Q6GNU1), eRF3a

(Q91855), Haus1 (Q3B8L5), pRKAr2a (F7CZT8), Septin-2 (B7ZR20) were expressed in E. coli, purified, immobilised on anti-zz beads, and incubated with

CRM1 in the absence or presence of RanGTP. Immobilised candidate proteins were released, after washing, by Sumo-protease cleavage and co-eluting

materials were analysed by SDS-PAGE (Note that Septin-2 elution was less efficient than the others). An unfused H14-zz-Sumo module served as a

negative and a fusion with a PKI-NES as a positive control for CRM1-binding.

DOI: 10.7554/eLife.11466.008
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rather weak CRM1-binding of Arp2/3-1b (Supplementary file 2), its NES turned out to be surpris-

ingly strong. When fused to GFP, it behaved like a supraphysiological NES (Engelsma et al., 2004)

and produced pronounced transport intermediates at NPCs (best visible in weakly expressing cells).

This difference is, however, plausible in the context of the Arp2/3 complex structure (pdb 1K8K;

Robinson et al., 2001), which shows this NES packing against the rest of the chain. The rather loose

packing and high local B-factor suggest, however, that this NES region is sufficiently mobile to get

transiently exposed for subsequent CRM1-binding.

In total, we tested 29 candidates from Xenopus, human and yeast, and validated 23 of them posi-

tive (Figures 4, 6, 7 and 8), suggesting that the majority of hits represent indeed CRM1 cargoes.

Negative cases where, for example, the exclusively nuclear replication factor C (subunit 3) or xDDX6.

Explanations could be an issue with NES-modulating post-translational modifications, a transport-

independent interaction with CRM1 or that another subunit in a larger complex accounts for CRM1-

binding.

We reasoned that the latter scenario might apply to xDDX6, which has been reported to interact

with Lsm14 (isoforms a and b; Tanaka et al., 2006; Arthur et al., 2009). Indeed, the transfected

Lsm14b-GFP fusion was exclusively cytoplasmic, but shifted upon leptomycin B treatment to a

nuclear localisation. Given that Lsm14 had even better CRM1-binding scores than xDDX6 and that

the two factors were recovered in »1:1 stoichiometry within the ‘CRM1+RanGTP’-bound fraction

(Supplementary file 2), it is most likely that Lsm14 is the direct CRM1-binder, while xDDX6 piggy-

backs. Similar considerations will probably apply to numerous other cargo candidates that occur in

complexes with other proteins. Supplementary files 2–4 provide the information for interpreting

such cases, because they list not only the already mentioned binding-scores, but also estimate the

molar ratios in which cargo candidates were recovered in the ‘CRM1+RanGTP’-bound fractions.

Leakage of large ‘CRM1 non-binders’ into the nucleus
The sheer number of CRM1 cargoes already suggests a very broad impact of this nuclear export

pathway on cellular physiology. Yet, there is a remarkable bias towards or against individual func-

tional categories (Figure 9). Highly abundant metabolic enzymes (including glycolytic enzymes), for

example, are greatly under-represented amongst the CRM1 cargoes. Here, it is remarkable that

many of these CRM1 non-cargoes, including enzymes that are part of large complexes, show a

rather even distribution between cytoplasm and nucleus of the Xenopus oocyte without having a

detectable NLS (Supplementary file 2, sheets ‘glycolysis’ and ‘metabolic enzymes’). This suggests

that a large size alone cannot guarantee a cytoplasmic confinement.

CRM1 and translation
Translation initiation factors represent the other extreme (Supplementary files 2–4, sheets ‘Transla-

tion factors’; Figure 9B). eIF2, eIF2B, eIF4B, eIF4G, eIF5 and eIF5B all behaved like high-scoring car-

goes in either Xenopus, human or yeast, which coincides nicely with their complete exclusion from

the nuclei of Xenopus oocytes. We assume that CRM1 serves here the purpose of suppressing intra-

nuclear translation and possibly also avoiding an interference with ribosome biogenesis if translation

factors bound pre-maturely to ribosomal assembly intermediates.

Leakage from the cytoplasm into the nuclear compartment should be fast for small individual pro-

teins, but slow for large entities. It is therefore remarkable that even very large translation factor

complexes behaved like nuclear export substrates, examples being the 125 kDa eIF2abg complex

(150 kDa with tRNA) or the 270 kDa eIF2Babgde complex (Supplementary files 2–4, sheets ‘Transla-

tion factors’). This suggests that even the presumably slow leakage of large cytoplasmic assemblies

into nuclei can be so deleterious that countermeasures are required.

None of the translation elongation factors appeared to be a convincing CRM1 cargo, possibly

because appending an NES to the elongation factors might be incompatible with efficient transla-

tion. Nevertheless, they are also subject to exportin-mediated nuclear export. Human EF1A was pre-

viously identified as the most prominent export cargo of Xpo5, while the elongation factor for

proline-rich regions, eIF5A, is exported by Xpo4 (Lipowsky et al., 2000; Bohnsack et al., 2002;

Calado et al., 2002). It is thus well possible that other translation factors that fail to interact with

CRM1 also use a more specialized nuclear export pathway.
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The translation termination factor eRF3a is again a bona fide CRM1 cargo (see Figure 4), as is eRF1

(Supplementary file 2 and Bohnsack et al., 2002). Furthermore, CRM1-dependent nuclear depletion

also applies to several translation-associated factors, such as the signal recognition particle SRP, where

SRP54 appears to be the NES-carrying component (Figure 7), or the human start-methionine amino-

peptidase MetAP2, which binds translating ribosomes and cleaves the start methionine from nascent

polypeptides. The normally strictly cytoplasmic MetAP2 accumulates upon leptomycin B treatment in

nucleoli (Figure 7), not only validating it as a true CRM1 cargo, but also suggesting that it can bind to

assembling ribosomal subunits prematurely and possibly interfere with the maturation process.

CRM1 and ribosome biogenesis
CRM1 is known to be essential for ribosome biogenesis. It exports pre-60S ribosomal subunits (rSUs)

through the export adapter Nmd3 (Ho et al., 2000), while Ltv1 and Rio2 behave like export adapt-

ers for yeast 40S rSUs (Seiser et al., 2006; Fischer et al., 2015). Yeast Arx1 and the Mex67.Mtr2

dimer also bind pre-60S rSU subunits and promote export through direct interactions with FG

repeats (Bradatsch et al., 2007; Yao et al., 2007). Furthermore, Ecm1, Bud20, Alb1, Tif6, Rlp24,

Nog1, and Mtr4 are known to escort 60S rSUs, while Nob1 and Enp1 have been shown to accom-

pany 40S rSUs to the cytoplasm, without remaining a constituent of mature ribosomes (reviewed in
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Figure 6. Validations of additional CRM1 cargo candidates from Xenopus. Analysis was as in Figure 4. (A) Tested candidates that behave like true

CRM1 cargoes: Asn-tRNA ligase (Q6DD18), LSM14b (L14BB), COP beta’ (Q7ZTR0), and Haus1 (Q3B8L5). (B) Tested candidates that are not CRM1

cargoes: the peroxisomal 2,4-dienoyl-CoA reductase DECR2 (Q6GR01), the RNA helicase DDX6, dynactin 6 (Q6IRC3) and the replication factor complex

subunit RFC 3 (Q4QQP4). DDX6 had been in cargo category A, but probably requires Lsm14 (see panel A and main text) for CRM1 interaction. We

assume an analogous scenario for DECR2. Dynactin 6 is in category ‘ambiguous’ and was therefore not considered a CRM1 cargo in the first place.
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Panse and Johnson, 2010; Thomson et al., 2013). We now found that yeast Enp1 (essential nuclear

protein 1) behaves like an autonomous CRM1 substrate (Figure 8), suggesting that it might actually

act as yet another adapter for CRM1-mediated export of 40S rSUs. The use of multiple export

adapters, as in here, might not just be an issue of robustness and redundancies, but a more funda-

mental requirement for making such large cargoes sufficiently ‘soluble’ in the gel-like permeability

barrier of NPCs (Ribbeck and Görlich, 2002; Schmidt and Görlich, 2015).

Furthermore, our analysis revealed that additional predominantly nuclear, ribosomal biogenesis

factors behave like CRM1 cargoes, namely: Brx1, Pno1, Tsr1, Rpf1, Rlp7, Ytm1, Tsr3, Rix7, Erb1,
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Figure 7. Validation of human CRM1 cargo candidates. Analysis was as in Figure 4. UniProt identifiers correspond either to abbreviated protein names

or are given in parentheses. (A) Positively tested CRM1 cargoes: the co-translational methionine aminopeptidase MetAP2 (MAP2), PEX5, SRP54, PEX19,

the Ser-tRNA ligase (SYSC), CDC37L (CD37L), and ATG3. (B) The Cys-tRNA ligase (SYCC) was classified as a ‘CRM1-non-binder’ and accordingly shows

a CRM1-independent nuclear exclusion.

DOI: 10.7554/eLife.11466.010

The following figure supplement is available for figure 7:

Figure supplement 1. Validation of human CRM1 non-binders.

DOI: 10.7554/eLife.11466.011
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Nsa1, Ssf1, Dim1, Nol10, Loc1, and Rpf2 (see Supplementary file 4 sheet ‘Ribosome biogenesis’).

Thus, they might also escort rSUs to the cytoplasm, and possibly facilitate the export process by pro-

viding additional binding sites for CRM1.

Newly exported 40S and 60S rSUs acquire translation competence only after a series of matura-

tion steps in the cytoplasm. In the case of yeast 60S rSUs, this involves the activities of Drg1/ Afg2,

Rei1, Reh1, Jjj1, Yvh1, Lsg1, Efl1/ Ria1 as well as of Sdo1 (reviewed in Panse and Johnson, 2010;

Thomson et al., 2013). While some of these might get loaded already inside the nucleus, it appears

that Drg1, Rei1, Reh1, Lsg1, and Ria1 act exclusively in the cytoplasm. All these factors showed a

strong and strictly RanGTP-dependent interaction with CRM1 (Supplementary file 4 sheet ‘Ribo-

some biogenesis’). This suggests that CRM1 keeps them cytoplasmic, possibly to avoid the occur-

rence of translation-active ribosomes inside the nucleus (at least Lsg1 and Rei1 behave like true

CRM1 cargoes, see Figure 8). A cytoplasmic confinement of these factors appears crucial for yet

another reason: They displace the export mediators Arx1, Nmd3, Mex67, and Mtr2 from newly

exported 60S species (Loibl et al., 2014). A premature intra-nuclear displacement by mis-localized

cytoplasmic maturation factors could thus abort ribosomal export.

Cytoplasmic maturation also involves the incorporation of additional ribosomal proteins, a promi-

nent example being rpS3. rpS3 is highly abundant in the ‘CRM1+RanGTP’-bound fraction, and thus

perhaps hindered (directly or indirectly) by CRM1 to bind 40S rSUs prematurely already inside nuclei.

The samemight apply to rpL24a.

Aminoacyl tRNA ligases
These enzymes are essential for translation, and a cytoplasmic confinement of tRNA-charging would

also contribute to the exclusion of intranuclear translation. Nevertheless, nuclear aminoacylation has

been proposed as a proof-reading step for correct pre-tRNA processing and maturation prior to

export (Lund and Dahlberg, 1998; Sarkar et al., 1999). This proposal was based on the observa-

tions that blocking aminoacylation in yeast results in nuclear accumulation of tRNA and that a similar
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Figure 8. Validation of CRM1 cargo-candidates from S. cerevisiae. Analysis was as in Figure 4 and included: the translation initiation factor eIF3j, the

ribosome biogenesis factors LSG1, REI1, and ENP1, the a-subunit of the Phe-tRNA ligase (SYFA), as well the peroxisome biogenesis factor PEX19. This

positive validation of yeast cargoes in HeLa cells also emphasises the extreme conservation of NES-recognition by CRM1.
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treatment in Xenopus oocytes prevents tRNAs, which had been injected into the nucleus, from

reaching an exclusively cytoplasmic steady state distribution. There are, however, also arguments

against this scenario, foremost that a loss of cytoplasmic retention of tRNA by translation elongation

factor eEF1A (which binds only aminoacylated tRNA) would explain the phenotypes as well. Further-

more, a structural and functional analysis of tRNA.Xpo-t.Ran export complexes revealed that this

exportin proof-reads a correct 3’-CCA end (Arts et al., 1998; Lipowsky et al., 1999), but cannot

sense aminoacylation (Cook et al., 2009). The latter applies also to the alternative tRNA exporter

Xpo5 (Bohnsack et al., 2002; Calado et al., 2002).

To clarify this issue at least for Xenopus oocytes, we analysed the nucleocytoplasmic distribution

of the aminoacyl tRNA ligases and found a strong cytoplasmic bias (Figure 9C; Supplementary file

2, sheet ‘Aminoacyl tRNA ligases’). The cytoplasmic concentration exceeded the nuclear one by

more than a factor of 100 in most cases, and even the least excluded ones had »10 times higher lev-

els in the cytoplasm than in the nucleus. This makes is rather unlikely that nuclear aminoacylation is a

general proof-reading criterion prior to tRNA export. At least the Ser, Thre, and Asn tRNA-ligases

showed a strong RanGTP-dependent interaction with CRM1. We tested the Xenopus Asn tRNA

ligase by transfection assays and observed a perfect CRM1-dependent nuclear exclusion (Figure 6).

Human Ser tRNA ligase and the a-subunit of the yeast Phe tRNA ligase behave the same way (Fig-

ures 7 and 8), suggesting that cells make a true effort to keep tRNA aminoacylation cytoplasmic.

Figure 9. Correlation between functional groups, nucleocytoplasmic partitioning and CRM1-interaction. (A) Panel shows a ‘density plot’ to illustrate

how many unique proteins (see Figure 1D) show a given N:C partition coefficient in Xenopus oocytes. The yellow area covers all proteins, the blue area

only proteins that belong to CRM1 cargo categories ‘A’-‘C’. (B–L) Density plots are analogous to (A), but each panel represents just one functional

group and the curves were re-scaled to account for the smaller number of proteins in a given group. Functional groups were initially defined by KEGG

BRITE hierarchies and then manually refined (see Supplementary file 2 for included proteins).

DOI: 10.7554/eLife.11466.013
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We also tested the human Cys tRNA ligase that failed to interact with CRM1 (Supplementary file

3). Nevertheless, the transfected GFP-fusion protein showed a perfect nuclear exclusion, which was

also not impaired by leptomycin B-treatment (Figure 7B). How this cytoplasmic confinement is main-

tained is still unclear, but the formation of larger complexes or alternative export pathways are plau-

sible possibilities. In contrast to a CRM1-dependent confinement, the cytoplasmic localisation can,

however, not be maintained against a fused SV40-type NLS. These transfection experiments also

exemplify the validation of a ‘CRM1-non-binder’ (for more such validations, see below).

CRM1 and mRNA degradation
We identified several high-scoring CRM1 cargoes amongst cytoplasmic mRNA degradation factors,

components of P-bodies and stress granules. These include Upf1, Upf2 and Upf3

(Supplementary files 2–4 and Figure 5), which function in nonsense-mediated decay (NMD) of

incorrectly spliced mRNA during a pioneering round of translation (reviewed by Popp and Maquat,

2013), as well as the de-capping enzymes (DCP1 and DCP2) and enhancers of de-capping (EDC pro-

teins), which typically reside within P-granules and initiate mRNA degradation (reviewed by

Parker and Sheth, 2007). Thus, CRM1 probably enables cells to control nuclear and cytoplasmic

RNA turnover independently from each other. This CRM1 function appears very well conserved from

yeast to human.

CRM1, vesicular transport and autophagy
So far, no connection has been made between CRM-mediated nuclear export and vesicle formation

along the secretory pathway (reviewed by Kirchhausen, 2000). Yet, we observed that COPI and

COPII coat proteins as well as, e.g., the AP-1 and AP2 adapter complexes or the AP180 clathrin coat

assembly protein behave like CRM1 cargoes (Supplementary files 2–3, sheets ‘Vesicle coat pro-

teins’; as well as Figures 4 and 6). They are also extremely well excluded from the oocyte nucleus

(Figure 9E). A formation of intranuclear vesicles was so far observed only in oocytes of rather exotic

species, such as the ascidian Botryllus schlosseri (Manni et al., 1994). The absence in other cell types

can now be explained by an active depletion of the vesicular budding machineries from the nuclear

interior.

The data also suggest an unanticipated connection of CRM1 to autophagy (reviewed in

Reggiori and Klionsky, 2013). Atg1, Atg13, Atg17, and Vps30 are all required for autophagy in

yeast and all of them are high-scoring CRM1 cargoes (Supplementary file 4, sheet ‘Autophagy’). It

thus appears as if CRM1 counteracted an initiation of autophagy from the nuclear interior. The situa-

tion is very similar in human cells, though the spectrum of CRM1-interacting autophagy components

is slightly different (Supplementary file 3 sheet ‘Autophagy’). For example, here the ATG8-conju-

gating enzyme ATG3 is a major CRM1-cargo (Figure 7).

CRM1 and post-translational transport to peroxisomes
Our data set also revealed high-scoring CRM1 cargoes that make an unexpected link between

nuclear export and protein import into peroxisomes (reviewed in Ma et al., 2011): The peroxisomal

targeting (PTS1) receptor Pex5 was not only identified as a high-scoring CRM1-binder, but also

showed a strictly CRM1-dependent nuclear exclusion (Figure 7). This connection might point to a

general challenge for post-translational transport from the cytosol, namely that diffusive transport

will not necessarily lead to the destination organelle, but also to and possibly into nuclei. In the case

of peroxisomal proteins, this poses a particular danger as many of them produce reactive oxygen

species that might damage the genome. A first line of defence against such incidents is a trapping

of peroxisomal proteins by dedicated targeting receptors. The resulting receptor.substrate com-

plexes, however, still need to reach peroxisomes by diffusive transport. If this fails and the complex

ends up inside nuclei, then CRM1-mediated export can rectify the problem and give the targeting

complex another chance to reach its correct destination.

PEX19 from yeast or human is another example, which behaves like a perfect CRM1 cargo and

shows a CRM1-dependent nuclear exclusion (Figures 7 and 8). PEX19 targets membrane proteins to

peroxisomes and allows pre-peroxisomes to bud from the ER (reviewed in Ma et al., 2011). A mis-

targeting of PEX19 to nuclei by a fused NLS causes interesting consequences, namely nuclear
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accumulation of newly synthesised peroxisomal membrane proteins (Sacksteder et al., 2000). It

now seems very likely that a loss of CRM1-mediated export would have the same effect.

CRM1, cytoskeleton and centrosomes
Apart from a cytoplasmic confinement of e.g. VASP or the Arp2/3 complex (Supplementary file 3,

Figure 5), it appears that CRM1 has only little direct impact on the actin cytoskeleton, which is con-

sistent with the fact that metazoans possess a dedicated exportin (Xpo6) to deplete actin from their

nuclei (Stüven et al., 2003).

Xenopus and human septins, in contrast, are highly abundant amongst the CRM1-bound proteins.

We validated Septin 2 and found that leptomycin B treatment of transfected cells caused indeed a

shift from a cytoplasmic to a nuclear localisation (Figure 5). Septins interconnect actin and microtu-

bule networks, function in cytokinesis, formation of cilia and defence against pathogens

(Mostowy and Cossart, 2012), and it appears that their nuclear accumulation needs to be actively

suppressed.

The data also suggests some contribution of CRM1 to nuclear exclusion of a- and b-tubulin in

metazoan cells (Supplementary files 2 and 3). We further found high-scoring CRM1 cargoes

amongst the components of the centrosomes (Figure 9F), which function as microtubule organizing

centres (reviewed by Bornens, 2012). These strong CRM1 interactors include the HAUS augmin

complex, g-tubulin and g-tubulin complex components as well as a number of additional centriolar

proteins (e.g. CEP41, CEP55, and CEP170). This could point not only to an active suppression of

microtubule nucleation in metazoan interphase nuclei, but also to additional mitotic function of

CRM1 (see Arnaoutov et al., 2005)—namely at centrosomes.

CRM1 and regulatory proteins
Almost every aspect of cellular physiology is under the control of protein kinases, phosphatases or

the ubiquitin/ proteasome system. Our data now suggest that CRM1 is more heavily involved in such

regulatory circuits than previously thought. Alone in HeLa cells, we found » 70 kinases as high-scor-

ing CRM1 cargoes (Supplementary file 3), only a fraction of which had been described as such

before. The new cargoes include heavily studied kinases such as protein kinase A, the interleukin-1

receptor-associated kinase 1, the pro-apoptotic serine/ threonine kinase 3, the tank-binding kinase

1, Raf-1, and several isoforms of casein kinase I and II. In addition, we identified numerous kinase

regulators as new CRM1 cargoes, examples being the already mentioned regulatory subunit of PKA

(PRKAr2a; Figures 4 and 5) or the TSC1.TSC2 complex (Supplementary file 2), which is a key com-

ponent of the mTOR signalling pathway (Laplante and Sabatini, 2009). Such action of CRM1 will

contribute to compartment-specific phosphorylation patterns, but in many cases also exert control

by granting or denying those kinases access to their substrates.

Likewise, numerous phosphatases and components of the ubiquitin or the ubiquitin-like modifier

system showed up as potential new CRM1 cargoes, alone in human cells 22 and 57, respectively

(Supplementary file 3, Figure 9H and 9K).

Identification of new NESs and impact on NES prediction
CRM1-dependent nuclear export signals are usually short (9–15 residues long) peptides with 4–5

hydrophobic F residues that are spaced according to characteristic patterns (Wen et al., 1994;

Fischer et al., 1995; Güttler et al., 2010; Xu et al., 2012a). The most common one is a PKI-type

NES. Several other spacings are also allowed, which can be explained either by such NESs binding in

a different conformation to CRM1 (snurportin-type or Rev-type NES) or by skipping one F-residue in

a 5F NES. A functional NES also needs to be solvent-exposed and not buried in a globular fold.

We applied these criteria to identify NESs in a set of validated, new CRM1 cargoes. We were suc-

cessful in six cases (Figure 5), but failed with some others (e.g. Pex5, rpS3, Haus1, Cop beta’,

MetAP2, CDC37L, Enp1, Phe tRNA ligase a). These negative cases illustrate how difficult a reliable

NES prediction still is. These difficulties originate from at least two problems. First, many published

NESs turned out to be incorrect (see e.g. Xu et al., 2012b and discussion therein). NES prediction

will therefore remain unreliable and produce frequent false-positive hits as long as it is based on an

unreliable list of positive cases. Second, we probably miss true NESs, because we do not yet know

all NES patterns.
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Our study should now provide solutions to these limitations. First, we provide large test sets for

benchmarking current and future NES predictions, first of all a total of »1300 ‘category A cargoes’,

which should contain an NES (in the case of oligomers at least one per complex). The subset of such

true CRM1 cargoes, which lack a so far recognizable export signal, provides an ideal starting point

for identifying NESs that conform to new patterns. We also found »2200 clear non-CRM1-binders

that can serve as a negative control group for NES prediction.

The just mentioned non-binders include several cases (11) that have been listed as CRM1-cargoes

in the NESdb (Supplementary file 5; Xu et al., 2012b). This could now point to the false-positives

in the NESdb or to contaminating false-negatives in our dataset. To address this issue, we analysed

seven of these conflicting cases and tested the behaviour of the corresponding GFP fusions in the

HeLa cell transfection assay (Figure 7—figure supplement 1). All of them showed a considerable

nuclear signal already in untreated cells and this nuclear signal did not further increase upon block-

ing CRM1 by leptomycin B. These seven re-tested candidates thus behaved as predicted from their

classification as CRM1 non-binders, at least for the tested protein isoforms (cloned from HeLa cell

cDNA), for the tested cell type (human HeLa cells) and under standard cell culture conditions.

An interesting twist to CRM1-mediated export is that it can be regulated by post-translational

modifications. Cyclin B, for example, is kept cytoplasmic by CRM1 until prophase, when the NES

gets inactivated by phosphorylation of adjacent serine residues and the protein suddenly accumu-

lates inside nuclei (Yang et al., 1998). PHAX, the export adapter for U snRNAs, on the other hand,

requires phosphorylation for an efficient interaction with CRM1 (Kitao et al., 2008). Given these

examples, it will now be very interesting to obtain a global view on how phosphorylation impacts

individual cargo-CRM1 interactions, for example, by testing in how far CRM1 selects for or against

the corresponding phosphoforms.

What necessitates an active sorting of obligatory cytoplasmic proteins?
Surprising outcomes of our study not only were the sheer number of CRM1 cargoes (» 1/4 of all

detectable cytoplasmic and nuclear proteins), but also that the majority of cargoes are actually exclu-

sively cytoplasmic proteins (Figure 9A; Supplementary files 2–4). This poses the questions of why

there is a need to actively maintain a cytoplasmic localization and why evolution has not come up

with a better barrier system?

The perhaps best answer is that is impossible to preclude nuclear entry of unwanted proteins in

the first place, because there are several leakage routes into the nucleus. First, the NPC permeability

barrier is per se probably imperfect and allows leakage: It is based on the sieving effect of reversibly

crosslinked FG repeat domains and probably represents compromise in the sense that a tighter bar-

rier would also restrict facilitated transport (see Schmidt and Görlich, 2015 and discussions therein).

In addition, there are situations, where even the most perfect NPC barrier gets bypassed. The

open mitosis in metazoans, for example, leads to a complete mixing of nuclear and cytoplasmic con-

tents and requires an unmixing following reformation of the nuclear envelope. Nuclear proteins

require re-import, while obligatory cytoplasmic proteins, such as translation factors, components of

the vesicular transport machinery and many others, are obviously subject to active nuclear export.

Another source of leakage might be NPC assembly, where inner and outer nuclear membrane might

already fuse to a pore, before all FG Nups are in place to maintain a permeability barrier.

Finally, cells should survive a temporary damage of their nuclear envelope, which is known to

occur rather frequently in certain cultured cancers cells (Hatch et al., 2013), but might also happen

in normal cells, in particular when exposed to mechanical stress. Such incidents not only require a

repair of the NE, but also a rapid unmixing of nuclear and cytoplasmic contents by active import as

well as by active export. Thus, the barriers of the NE alone cannot maintain the compartment identi-

ties. Instead, a robust separation of nuclear and cytoplasmic contents requires active corrective

mechanisms, whereby the exportin CRM1 appears to play a very central role.

Materials and methods

Microdissection of Xenopus laevis oocytes
Manual microdissection of the oocytes was performed in ‘5:1/HEPES buffer’ (10 mM HEPES/ KOH

pH 7.5, 83 mM KCl, 17 mM NaCl, supplemented with Roche complete protease inhibitor (EDTA-
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free) as previously described (Liu and Liu, 2006). Isolated nuclei were gently washed several times,

and proteins were recovered by ethanol precipitation.

The respective cytoplasmic fractions were diluted with ‘5:1/HEPES buffer’ and homogenized with

a pestle. Pigments, yolk and membranes were removed from the extract by two rounds of centrifu-

gation (17,000 g, 15 min, 4˚C). Note that thereby also insoluble protein complexes, such as interme-

diate filaments were removed, and that our analysis explicitly aimed at the nucleocytoplasmic

partitioning of soluble complexes and proteins. We therefore also excluded proteins that co-purified

with nuclei through their association with the nuclear envelope (NE). Such proteins were identified

and ‘flagged’ by a manual dissection of nuclei into nuclear interiors and crude NEs (kindly performed

by Volker Cordes) and by asking which ‘nuclear’ proteins did not fractionate with the nuclear

interiors.

A total of 775 unique proteins (see below) were flagged as possibly not being cytosolic or intra-

nuclear, 748 of them were removed from the list of Supplementary file 1, while 27 were kept in the

final list because they were manually qualified as cytosolic or intranuclear proteins according to pre-

vious literature, or according to their subcellular localization at Human Proteome Atlas (Uhlén et al.,

2015).

Quantitative mass spectrometric analysis of the obtained nuclear and cytosolic fractions involved

three biological replicates with two technical replicates each. For quantification of nucleocytoplasmic

partitioning, we considered that a nucleus is 10-fold smaller in volume than a yolk-free cytoplasm.

Therefore, we compared for each analysis »60 nuclei with »6 cytoplasms.

CRM1 affinity chromatography
In these experiments, we used biotinylated CRM1 versions carrying an Avi-tag, which is an optimised

biotin-acceptor sequence for enzymatic biotinylation by BirA (Schatz, 1993).

HeLa S100 extract (Abmayr et al., 2006) and Saccharomyces cerevisiae whole cell extract

(Gottschalk et al., 1999) were kindly supplied by the group of Reinhard Lührmann. Xenopus laevis

oocyte extract was prepared as described (Leno et al., 1996).

Xenopus laevis oocyte, Saccharomyces cerevisiae and cytosolic HeLa extracts were diluted 1:5 in

binding buffer (20 mM HEPES/ NaOH pH 7.5, 90 mM KAc, 2 mM MgOAc, 250 mM Sucrose, 5 mM

DTT) and cleared by a 1 hr centrifugation step in a S55A rotor at 4˚C and 37,000 rpm. Supernatants

were incubated with Phenyl-Sepharose (low substitution) for the selective depletion of endogenous

nuclear transport receptors as described previously (Ribbeck and Görlich, 2002). The flow-throughs

were incubated with 0.1 mg/ml RNAse A for 20 min on ice (to detach ‘indirect’ cargoes that interact

through RNA with direct ones) and then 100 units/ml RNasin (Promega) were added.

1 ml of a such treated extract was supplemented with 5 mM RanGTP (hsRanQ69L5-180), centri-

fuged in a S45A rotor for 1 hr at 4˚C at 37,000 rpm. 500 pmoles mmCRM1 or scCRM1 were immobi-

lized on 20 ml streptavidin agarose beads (Sigma Aldrich). Free biotin-binding sites were quenched

thereafter with 1 mM biotin, and the beads were rotated for 3 hr at 4˚C with the RanGTP-supple-

mented extract. Beads were then washed three times with 500 ml binding buffer. Bound material

was eluted with 60 ml SDS sample buffer at 45˚C. Minus CRM1 and minus RanGTP controls were

processed analogously. Input extracts as well as elutions were analysed by SDS-PAGE followed by

Coomassie-staining and/or analysed by mass spectrometry as described below.

Sample preparation for mass spectrometry
An overview of the sample preparation for mass spectrometry and LC-MS/MS instrumentation:

Analysis of CRM1
binders (all species)

Analysis of nucleocytoplasmic partitioning

Replicate 1 Replicate 2 Replicate 3

Sample preparation SDS-PAGE,
digestion with
trypsin

SDS-PAGE,
digestion with
trypsin

SDS-PAGE,
digestion with
trypsin

Digestion with
Lys-C and trypsin,
reverse phase HPLC at pH 10

LC-MS instrumentation Dionex Ultimate
3000 HPLC
Q-Exactive HF

EASY nLC-1000
Q-Exactive

Dionex Ultimate
3000 HPLC
Q-Exactive HF

Dionex Ultimate
3000 HPLC
Orbitrap Fusion
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To estimate absolute protein concentrations, Universal Proteomics Standard-2 (UPS2; Sigma-

Aldrich) was added to the analysed samples (at a 1:10 (w/w) ratio between the standards and the

total sample protein). Since UPS2 is based on human proteins, this standard was only employed for

the non-human samples.

In one workflow, proteins were first separated by SDS-PAGE (4-12% Bis/Tris gradient mini-gel,

NuPAGE, Novex) and visualized by colloidal Coomassie-staining. Proteins were then in-gel digested

as described before (Shevchenko et al., 2006) with minor modifications. Briefly, proteins were

reduced with 10 mM DTT for 30 min at 55˚C, and then alkylated with 55 mM iodoacetamide (IAA) in

50 mM ammonium bicarbonate (BC) for 20 min at 26˚C in the dark. Protein digestion was performed

overnight at 37˚C at a 1:50 (w/w) trypsin (Promega #V5111) to protein ratio. Following digestion,

peptides were extracted from the gel pieces, and concentrated by vacuum evaporation of the sol-

vent in a SpeedVac to near dryness. Dried peptides were dissolved in 20 ml of 1% (v/v) formic acid,

and 6 ml were analysed LC-MS/MS for each technical replicate.

In the second workflow, ethanol-precipitated proteins were dissolved in 1% (v/v) RapiGest SF sur-

factant (Waters # 186002122) at 70˚C for 10 min. Proteins were then reduced with 5 mM DTT in 50

mM BC for 30 min at 50˚C, and alkylated with 10 mM IAA in 50 mM BC for 20 min. Excess IAA was

reacted with an additional 5 mM DTT at RT for 20 min. Proteins were first digested with Lys-C

(Roche, 1:100 enzyme to protein ratio) for 4 hr at 37˚C, then overnight with trypsin at a final Rapi-

Gest concentration to 0.1%. Following digestion, the samples were acidified with trifluoroacetic acid

(final concentration of 1%, v/v, 37˚C, 1 h) to break down the RapiGest surfactant, the resulting by-

products were pelleted by centrifugation (13,000 rpm, 15 min, RT), and the supernatant containing

the digested peptides was transferred to a new tube. Peptides were desalted on reversed phase-

C18 solid-phase extraction cartridges (SPE; SepPak, Waters) and concentrated in a SpeedVac to

near dryness. Then, peptides were resuspended in 10 mM ammonium hydroxide (pH 10) and loaded

onto a reverse phase HPLC column (XBridge C18, Waters, 3.5 mm, 1.0 mm x 150 mm) and eluted in

a 5-35% (v/v) acetonitrile gradient at a flow rate of 60 ml/min. 45 initial fractions were collected,

which were combined into 17 peptide pools. Each pool was concentrated as described above and

dissolved in 20 ml 1% FA (v/v). 6 ml each were then analysed by LC-MS/MS for a technical replicate.

LC-MS/MS Q-Exactive analysis
First, extracted peptides were loaded onto an in-house packed C18 ‘trapping’ column (0.15 mm x

20 mm, Reprosil-Pur 120 C18-AQ 5 mm, Dr. Maisch GmbH, Germany). Then a second C18 column

was connected in tandem (an analytical C18 capillary column; 0.075 mm x 250 mm column self-

packed with 3 mm Reprosil-Pur 120 C18-AQ). Peptides were then eluted using a 105 min linear gra-

dient (5– 35% acetronitrile in 0.1% FA at 300 nl/min) on an EASY nLC-1000 system in-line coupled to

a Q Exactive hybrid quadrupole/orbitrap mass spectrometer (Thermo Scientific, Dreieich). The instru-

ment was operated in data-dependent acquisition mode with a survey scan resolution of 70,000 at

m/z 200 and an AGC target value of 1 x 106. Up to 15 of the most intense precursor ions with charge

state 2 or higher were sequentially isolated at an isolation width of 2.0 m/z for higher collision disso-

ciation (HCD) with a normalized collision energy of 25%. Dynamic exclusion was set to 30 s to avoid

a repeating sequencing of the same precursor ion.

Q-Exactive HF and Orbitrap Fusion analysis
The LC setup was as described above, but a Dionex Ultimate 3000 HPLC (Thermo Scientific,

Dreieich) and a 350 mm capillary C18 column were used.

Both mass spectrometers were operated in data-dependent acquisition mode with a survey scan

resolution of 120 000 (for Orbitrap Fusion) or 60 000 (for Q-Exactive HF) at m/z 200, with an AGC

target of 1 x 10e6. Up to 30 of the most intense precursor ions with charge state 2 or higher were

sequentially isolated for HCD with normalized collision energy of 27% (Q Exactive HF) or 30% (Orbi-

trap Fusion), respectively. MS/MS scans were recorded in the Orbitrap for Q Exactive HF, and in the

LTQ ion trap for the Orbitrap Fusion. Dynamic exclusion was set to 50 s.
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Data analysis for nucleocytoplasmic partitioning
MS raw files were processed with the MaxQuant software package (version 1.5.0.30) and peak lists

were searched with the in-built Andromeda search engine (Cox and Mann, 2008; Cox et al., 2011).

FASTA Sequence Databases: for X. laevis samples an mRNA derived X. laevis protein database

with 79,214 entries (Wühr et al., 2014) was used, for human samples a human UniProt FASTA data-

base (download date: June 2014, 20,258 entries), and for yeast samples a S. cerevisiae Uniprot

FASTA database (download date: June 2014, 6743 entries). These databases were supplemented

with common contaminants (e.g. keratins, serum albumin) and with the reverse sequences of all

entries for false discovery rate estimations.

The Andromeda search engine parameters were: carbamidomethylation of cysteine was set as a

fixedmodification, whereas oxidation ofmethionine andN-terminal protein acetylationwere set as vari-

able modifications; tryptic specificity was considered with proline restriction; up to two missed clea-

vages were allowed; and theminimumpeptide length was set to seven amino acids. TheMS survey scan

mass tolerance was set to 6 ppm, andMS/MSmass tolerances to 20 ppm (Orbitrap) and 0.5 Da (LTQ ion

trap), respectively. The false discovery ratewas set to 1%at both the peptide and the protein level.

Several levels of criteria were applied for confident estimation of protein concentrations. First,

peptides having posterior error probability (PEP) above 0.01 were excluded from the estimation of

protein concentrations in the cytosolic and the nuclear fractions of X. laevis samples. Second, pro-

teins identified with single ‘only identified by site’ peptides in only one compartment were excluded

from the calculation of protein concentrations. The absolute protein concentration of proteins in the

cytosolic and the nuclear fractions were estimated by correlation with the absolute concentrations of

UPS2 standard proteins and their respective iBAQ intensities (Schwanhäusser et al., 2011), assum-

ing volumes of 50 nl for the nucleus and 500 nl for the yolk-free cytosol. A regression curve of the

absolute amount of UPS2 standard proteins were plotted against their measured iBAQ intensity (log

10 scale) in each biological replicate to generate linear regression equations. These equations were

then used to estimate protein concentrations in each biological replicate. Then, the nuclear-to-cyto-

solic (N:C) ratio was calculated from average protein concentration in the nucleus and the cytosol.

Data annotation
Annotations were largely based on the UniProt database (UniProt Consortium, 2015). For each hit,

relevant UniProt data were fetched. These data were simplified to ‘simplified localization’ (Cyto-

plasm, Nucleus or Both) and Flags (transmembrane, mitochondrial, ER proteins).

UniProt annotations of X. laevis proteins are still sparse. Therefore, human and X. tropicalis

entries were used as additional references. Appropriate orthologues were mapped by blasting iden-

tified X. laevis contigs against human and X. tropicalis databases (with an E value cut-off of 10-11).

Functional protein groups were acquired from the Kyoto Encyclopedia of Genes and Genomes

(KEGG) database (Kanehisa et al., 2004) if not stated otherwise.

For assessment of protein complexes in Xenopus laevis oocyte and HeLa cells, human data sets from

Ruepp et al., 2010 and Havugimana et al., 2012 were used. Yeast protein complexes were assigned

according to Gavin et al., 2006. For previous CRM1 interaction data, BioGRID (Chatr-

Aryamontri et al., 2015), theNESdb (Xuet al., 2012b), and data from Thakar et al., 2013were used.

Data processing for identification of CRM1 cargoes
Proteins identified with ‘only identified by site’ (MaxQuant version 15.0.30) within the ‘CRM1

+RanGTP’ sample were excluded from further analysis. For X. laevis samples, these additional

parameters were applied: peptides with PEP values higher than 0.01 were excluded, and a minimum

of two unique peptides were required to consider a protein for quantification.

For calculating the molar fraction of a given protein in the ‘CRM1+RanGTP’ sample, its iBAQ

intensity was divided by the sum of iBAQ intensities of all proteins detected in this sample.

‘Enrichment from input’ for a given protein was obtained by dividing its molar fraction within the

‘CRM1+RanGTP’ sample by its molar fraction in the input extract.

The ‘RanGTP-stimulation’ for a given protein was calculated by dividing its iBAQ intensities in the

’CRM1+RanGTP’ and the ‘CRM1 w/o Ran’ samples.

When a protein was not identified in the ‘CRM1 w/o Ran’ or ‘Input’ sample, then its iBAQ inten-

sity was replaced by a conservative estimate, namely a baseline intensity for detectability (the
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median of iBAQ intensities of the least 30 abundant proteins in this sample). This was to avoid in the

calculation of parameters divisions by zero and to avoid over-estimating the significance of low

abundance cargo candidates.

Based on these three parameters, distinct significance categories were constructed for three spe-

cies as summarized in the ‘Category thresholds’ tables (Supplementary files 2–4). For proteins that

are part of the nuclear transport machinery (Importins, exportins, Nups and related factors) separate

categories (NUPs, NTRs, NPC, CRM1 cofactor) were assigned.

Recombinant protein expression and purification
mmCRM1, scCRM1 and hsRanQ69L5-180 were expressed with an N-terminal His14-ZZ-bdSUMO tag

and purified by (i) immobilisation via Ni2+ chelate chromatography, (ii) on column bdSENP1 protease

elution (Frey and Görlich, 2014) and (iii) gel filtration. Candidate cargoes and controls were expressed

asHis14-ZZ-bdSUMO fusions and purified viaNi2+ chelate chromatography and imidazole elution.

Binding assays for validation of direct binding to CRM1
250 pmoles of His14-ZZ-bdSUMO tagged cargo candidates and controls were immobilized on 20 ml

anti-ZZ beads, and incubated with 300 pmoles mmCRM1 either in the presence or absence of 1500

pmoles RanGTP (hsRanQ69L5-180) in a volume of 500 ml. After 3 hr incubation at 4˚C, bound material

was eluted by adding bdSENP1 protease, and eluted fractions were analysed by SDS-PAGE and

Coomassie-staining.

Transient HeLa cell transfections and fluorescence microscopy
Cargo and NES candidates were cloned behind either GFP or a GFP-NLS (SV40) module in modified

pEGFP-C1 (Invitrogen) vectors. Also a control vector coding for a RFP-NLS-NES fusion was prepared

for cotransfection with the GFP/GFP-NLS constructs. HeLa Kyoto cells were grown on coverslips in

24-well plates, and transiently cotransfected with FuGENE6 (Promega) according to manufacturer’s

instructions. After 24 hr, cells were incubated with either 10 nM Leptomycin B (LMB, dissolved in

DMSO) or DMSO alone for 3 hr. They were then fixed for 30 min with 3% paraformaldehyde and

0.1% glutaraldehyde, and the aldehydes were quenched with 1 mg/ml NaBH4. Fluorescence signals

were recorded on an SP5 confocal laser scanning microscope (Leica), using sequential scans with

excitations at 488 and 561 nm.

Database depositions
The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium

(Vizcaı́no et al., 2014) via the PRIDE partner repository with the dataset identifier PXD002899. The

dataset of high confidence CRM1 interactions (cargo categories A, B, and ‘low abundance’) has

been submitted to the IntAct databases (Orchard et al., 2014) with the identifier IM-24624.
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Hantschel O, Wiesner S, Güttler T, Mackereth CD, Rix LL, Mikes Z, Dehne J, Görlich D, Sattler M, Superti-Furga
G. 2005. Structural basis for the cytoskeletal association of bcr-abl/c-abl. Molecular Cell 19:461–473. doi: 10.
1016/j.molcel.2005.06.030

Hatch EM, Fischer AH, Deerinck TJ, Hetzer MW. 2013. Catastrophic nuclear envelope collapse in cancer cell
micronuclei. Cell 154:47–60. doi: 10.1016/j.cell.2013.06.007

Havugimana PC, Hart GT, Nepusz T, Yang H, Turinsky AL, Li Z, Wang PI, Boutz DR, Fong V, Phanse S, Babu M,
Craig SA, Hu P, Wan C, Vlasblom J, Dar VU, Bezginov A, Clark GW, Wu GC, Wodak SJ, Tillier ER, Paccanaro A,
Marcotte EM, Emili A. 2012. A census of human soluble protein complexes. Cell 150:1068–1081. doi: 10.1016/
j.cell.2012.08.011

Heasman J, Quarmby J, Wylie CC. 1984. The mitochondrial cloud of xenopus oocytes: the source of germinal
granule material. Developmental Biology 105:458–469. doi: 10.1016/0012-1606(84)90303-8

Hellsten U, Khokha MK, Grammer TC, Harland RM, Richardson P, Rokhsar DS. 2007. Accelerated gene evolution
and subfunctionalization in the pseudotetraploid frog xenopus laevis. BMC Biology 5:31. doi: 10.1186/1741-
7007-5-31

Ho JH-N, Kallstrom G, Johnson AW. 2000. Nmd3p is a Crm1p-dependent adapter protein for nuclear export of
the large ribosomal subunit. The Journal of Cell Biology 151:1057–1066. doi: 10.1083/jcb.151.5.1057

Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. 2004. The KEGG resource for deciphering the genome.
Nucleic Acids Research 32:277D–280. doi: 10.1093/nar/gkh063

Kimura M, Imamoto N. 2014. Biological significance of the importin-b family-dependent nucleocytoplasmic
transport pathways. Traffic 15:727–748. doi: 10.1111/tra.12174

Kimura M, Kose S, Okumura N, Imai K, Furuta M, Sakiyama N, Tomii K, Horton P, Takao T, Imamoto N. 2013.
Identification of cargo proteins specific for the nucleocytoplasmic transport carrier transportin by combination
of an in vitro transport system and stable isotope labeling by amino acids in cell culture (sILAC)-based
quantitative proteomics. Molecular & Cellular Proteomics 12:145–157. doi: 10.1074/mcp.M112.019414

Kirchhausen T. 2000. Three ways to make a vesicle. Nature Reviews. Molecular Cell Biology 1:187–198. doi: 10.
1038/35043117

Kitao S, Segref A, Kast J, Wilm M, Mattaj IW, Ohno M. 2008. A compartmentalized phosphorylation/
dephosphorylation system that regulates u snRNA export from the nucleus. Molecular and Cellular Biology 28:
487–497. doi: 10.1128/MCB.01189-07

Kosugi S, Hasebe M, Tomita M, Yanagawa H. 2009. Systematic identification of cell cycle-dependent yeast
nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proceedings of the National Academy
of Sciences of the United States of America 106:10171–10176. doi: 10.1073/pnas.0900604106

Koyama M, Matsuura Y. 2010. An allosteric mechanism to displace nuclear export cargo from CRM1 and
RanGTP by RanBP1. The EMBO Journal 29:2002–2013. doi: 10.1038/emboj.2010.89

Kırlı et al. eLife 2015;4:e11466. DOI: 10.7554/eLife.11466 25 of 28

Tools and resources Biochemistry Cell biology

http://dx.doi.org/10.1016/0092-8674(95)90436-0
http://dx.doi.org/10.1016/0092-8674(95)90436-0
http://dx.doi.org/10.7554/eLife.05745
http://dx.doi.org/10.1016/S0092-8674(00)80371-2
http://dx.doi.org/10.1093/emboj/16.4.807
http://dx.doi.org/10.1016/j.chroma.2014.02.029
http://dx.doi.org/10.1038/36894
http://dx.doi.org/10.1128/MCB.21.10.3405-3415.2001
http://dx.doi.org/10.1128/MCB.21.10.3405-3415.2001
http://dx.doi.org/10.1038/nature04532
http://dx.doi.org/10.1093/emboj/18.16.4535
http://dx.doi.org/10.1038/emboj.2011.287
http://dx.doi.org/10.1038/nsmb.1931
http://dx.doi.org/10.1093/emboj/17.14.4127
http://dx.doi.org/10.1016/j.molcel.2005.06.030
http://dx.doi.org/10.1016/j.molcel.2005.06.030
http://dx.doi.org/10.1016/j.cell.2013.06.007
http://dx.doi.org/10.1016/j.cell.2012.08.011
http://dx.doi.org/10.1016/j.cell.2012.08.011
http://dx.doi.org/10.1016/0012-1606(84)90303-8
http://dx.doi.org/10.1186/1741-7007-5-31
http://dx.doi.org/10.1186/1741-7007-5-31
http://dx.doi.org/10.1083/jcb.151.5.1057
http://dx.doi.org/10.1093/nar/gkh063
http://dx.doi.org/10.1111/tra.12174
http://dx.doi.org/10.1074/mcp.M112.019414
http://dx.doi.org/10.1038/35043117
http://dx.doi.org/10.1038/35043117
http://dx.doi.org/10.1128/MCB.01189-07
http://dx.doi.org/10.1073/pnas.0900604106
http://dx.doi.org/10.1038/emboj.2010.89
http://dx.doi.org/10.7554/eLife.11466


Koyama M, Shirai N, Matsuura Y. 2014. Structural insights into how Yrb2p accelerates the assembly of the Xpo1p
nuclear export complex. Cell Reports 9:983–995. doi: 10.1016/j.celrep.2014.09.052

Kudo N, Matsumori N, Taoka H, Fujiwara D, Schreiner EP, Wolff B, Yoshida M, Horinouchi S. 1999. Leptomycin b
inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region.
Proceedings of the National Academy of Sciences of the United States of America 96:9112–9117. doi: 10.1073/
pnas.96.16.9112

Kunzler M, Gerstberger T, Stutz F, Bischoff FR, Hurt E. 2000. Yeast ran-binding protein 1 (yrb1) shuttles between
the nucleus and cytoplasm and is exported from the nucleus via a CRM1 (xPO1)-dependent pathway. Molecular
and Cellular Biology 20:4295–4308. doi: 10.1128/MCB.20.12.4295-4308.2000

Laplante M, Sabatini DM. 2009. MTOR signaling at a glance. Journal of Cell Science 122:3589–3594. doi: 10.
1242/jcs.051011

Leno GH, Mills AD, Philpott A, Laskey RA. 1996. Hyperphosphorylation of nucleoplasmin facilitates xenopus
sperm decondensation at fertilization. The Journal of Biological Chemistry 271:7253–7256.
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Monecke T, Güttler T, Neumann P, Dickmanns A, Görlich D, Ficner R. 2009. Crystal structure of the nuclear
export receptor CRM1 in complex with Snurportin1 and RanGTP. Science 324:1087–1091. doi: 10.1126/
science.1173388

Monecke T, Haselbach D, Voß B, Russek A, Neumann P, Thomson E, Hurt E, Zachariae U, Stark H, Grubmüller H,
Dickmanns A, Ficner R. 2013. Structural basis for cooperativity of CRM1 export complex formation.
Proceedings of the National Academy of Sciences of the United States of America 110:960–965. doi: 10.1073/
pnas.1215214110

Mostowy S, Cossart P. 2012. Septins: the fourth component of the cytoskeleton. Nature Reviews. Molecular Cell
Biology 13:183–194. doi: 10.1038/nrm3284

Moy TI, Silver PA. 1999. Nuclear export of the small ribosomal subunit requires the ran-GTPase cycle and certain
nucleoporins. Genes & Development 13:2118–2133. doi: 10.1101/gad.13.16.2118

Nishi K, Yoshida M, Fujiwara D, Nishikawa M, Horinouchi S, Beppu T. 1994. Leptomycin b targets a regulatory
cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and
gene expression. The Journal of Biological Chemistry 269:6320–6324.

Nutt LK, Margolis SS, Jensen M, Herman CE, Dunphy WG, Rathmell JC, Kornbluth S. 2005. Metabolic regulation
of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. Cell 123:89–103. doi: 10.
1016/j.cell.2005.07.032

Ohno M, Segref A, Bachi A, Wilm M, Mattaj IW. 2000. PHAX, a mediator of u snRNA nuclear export whose
activity is regulated by phosphorylation. Cell 101:187–198. doi: 10.1016/S0092-8674(00)80829-6

Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, Campbell NH, Chavali G, Chen C, del-
Toro N, Duesbury M, Dumousseau M, Galeota E, Hinz U, Iannuccelli M, Jagannathan S, Jimenez R, Khadake J,
Lagreid A, Licata L, Lovering RC, Meldal B, Melidoni AN, Milagros M, Peluso D, Perfetto L, Porras P, Raghunath
A, Ricard-Blum S, Roechert B, Stutz A, Tognolli M, van Roey K, Cesareni G, Hermjakob H. 2014. The MIntAct
project–IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Research
42:D358–D363. doi: 10.1093/nar/gkt1115

Panse VG, Johnson AW. 2010. Maturation of eukaryotic ribosomes: acquisition of functionality. Trends in
Biochemical Sciences 35:260–266. doi: 10.1016/j.tibs.2010.01.001

Paraskeva E, Izaurralde E, Bischoff FR, Huber J, Kutay U, Hartmann E, Lührmann R, Görlich D. 1999. CRM1-
mediated recycling of snurportin 1to the cytoplasm. The Journal of Cell Biology 145:255–264. doi: 10.1083/jcb.
145.2.255

Parker R, Sheth U. 2007. P bodies and the control of mRNA translation and degradation. Molecular Cell 25:635–
646. doi: 10.1016/j.molcel.2007.02.011

Plafker K, Macara IG. 2000. Facilitated nucleocytoplasmic shuttling of the ran binding protein RanBP1. Molecular
and Cellular Biology 20:3510–3521. doi: 10.1128/MCB.20.10.3510-3521.2000

Popp MW, Maquat LE. 2013. Organizing principles of mammalian nonsense-mediated mRNA decay. Annual
Review of Genetics 47:139–165. doi: 10.1146/annurev-genet-111212-133424

Kırlı et al. eLife 2015;4:e11466. DOI: 10.7554/eLife.11466 26 of 28

Tools and resources Biochemistry Cell biology

http://dx.doi.org/10.1016/j.celrep.2014.09.052
http://dx.doi.org/10.1073/pnas.96.16.9112
http://dx.doi.org/10.1073/pnas.96.16.9112
http://dx.doi.org/10.1128/MCB.20.12.4295-4308.2000
http://dx.doi.org/10.1242/jcs.051011
http://dx.doi.org/10.1242/jcs.051011
http://dx.doi.org/10.1017/S1355838299982134
http://dx.doi.org/10.1093/emboj/19.16.4362
http://dx.doi.org/10.1093/emboj/19.16.4362
http://dx.doi.org/10.1007/978-1-59745-000-3_3
http://dx.doi.org/10.1007/978-1-59745-000-3_3
http://dx.doi.org/10.1074/jbc.M113.536110
http://dx.doi.org/10.1126/science.282.5396.2082
http://dx.doi.org/10.1083/jcb.201010022
http://dx.doi.org/10.1016/0040-8166(94)90023-X
http://dx.doi.org/10.1038/emboj.2009.200
http://dx.doi.org/10.1126/science.1173388
http://dx.doi.org/10.1126/science.1173388
http://dx.doi.org/10.1073/pnas.1215214110
http://dx.doi.org/10.1073/pnas.1215214110
http://dx.doi.org/10.1038/nrm3284
http://dx.doi.org/10.1101/gad.13.16.2118
http://dx.doi.org/10.1016/j.cell.2005.07.032
http://dx.doi.org/10.1016/j.cell.2005.07.032
http://dx.doi.org/10.1016/S0092-8674(00)80829-6
http://dx.doi.org/10.1093/nar/gkt1115
http://dx.doi.org/10.1016/j.tibs.2010.01.001
http://dx.doi.org/10.1083/jcb.145.2.255
http://dx.doi.org/10.1083/jcb.145.2.255
http://dx.doi.org/10.1016/j.molcel.2007.02.011
http://dx.doi.org/10.1128/MCB.20.10.3510-3521.2000
http://dx.doi.org/10.1146/annurev-genet-111212-133424
http://dx.doi.org/10.7554/eLife.11466


Reggiori F, Klionsky DJ. 2013. Autophagic processes in yeast: mechanism, machinery and regulation. Genetics
194:341–361. doi: 10.1534/genetics.112.149013

Ribbeck K, Görlich D. 2002. The permeability barrier of nuclear pore complexes appears to operate via
hydrophobic exclusion. The EMBO Journal 21:2664–2671. doi: 10.1093/emboj/21.11.2664

Robinson RC, Turbedsky K, Kaiser DA, Marchand JB, Higgs HN, Choe S, Pollard TD. 2001. Crystal structure of
Arp2/3 complex. Science 294:1679–1684. doi: 10.1126/science.1066333

Rouquette J, Choesmel V, Gleizes PE. 2005. Nuclear export and cytoplasmic processing of precursors to the 40S
ribosomal subunits in mammalian cells. The EMBO Journal 24:2862–2872. doi: 10.1038/sj.emboj.7600752

Ruepp A, Waegele B, Lechner M, Brauner B, Dunger-Kaltenbach I, Fobo G, Frishman G, Montrone C, Mewes
HW. 2010. CORUM: the comprehensive resource of mammalian protein complexes-2009. Nucleic Acids
Research 38:D497–D501. doi: 10.1093/nar/gkp914

Sacksteder KA, Jones JM, South ST, Li X, Liu Y, Gould SJ. 2000. PEX19 binds multiple peroxisomal membrane
proteins, is predominantly cytoplasmic, and is required for peroxisome membrane synthesis. The Journal of
Cell Biology 148:931–944. doi: 10.1083/jcb.148.5.931
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Bartolomé S, Apweiler R, Omenn GS, Martens L, Jones AR, Hermjakob H. 2014. ProteomeXchange provides

Kırlı et al. eLife 2015;4:e11466. DOI: 10.7554/eLife.11466 27 of 28

Tools and resources Biochemistry Cell biology

http://dx.doi.org/10.1534/genetics.112.149013
http://dx.doi.org/10.1093/emboj/21.11.2664
http://dx.doi.org/10.1126/science.1066333
http://dx.doi.org/10.1038/sj.emboj.7600752
http://dx.doi.org/10.1093/nar/gkp914
http://dx.doi.org/10.1083/jcb.148.5.931
http://dx.doi.org/10.1016/j.jmb.2012.11.014
http://dx.doi.org/10.1038/emboj.2013.108
http://dx.doi.org/10.1073/pnas.96.25.14366
http://dx.doi.org/10.1038/nbt1093-1138
http://dx.doi.org/10.1038/nbt1093-1138
http://dx.doi.org/10.7554/eLife.04251
http://dx.doi.org/10.1038/nature10098
http://dx.doi.org/10.1534/genetics.106.062117
http://dx.doi.org/10.1038/nprot.2006.468
http://dx.doi.org/10.1038/nmeth.2369
http://dx.doi.org/10.1016/S0092-8674(00)80370-0
http://dx.doi.org/10.1093/nar/gkj109
http://dx.doi.org/10.1093/emboj/cdg565
http://dx.doi.org/10.1073/pnas.1217203110
http://dx.doi.org/10.1074/jbc.M609059200
http://dx.doi.org/10.1074/mcp.M112.024877
http://dx.doi.org/10.1074/mcp.M112.024877
http://dx.doi.org/10.1093/nar/gku989
http://dx.doi.org/10.1242/jcs.00464
http://dx.doi.org/10.1242/jcs.111948
http://dx.doi.org/10.1126/science.1260419
http://dx.doi.org/10.7554/eLife.11466


globally coordinated proteomics data submission and dissemination. Nature Biotechnology 32:223–226. doi:
10.1038/nbt.2839

Wen W, Harootunian AT, Adams SR, Feramisco J, Tsien RY, Meinkoth JL, Taylor SS. 1994. Heat-stable inhibitors
of cAMP-dependent protein kinase carry a nuclear export signal. The Journal of Biological Chemistry 269:
32214–32220.
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