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Lhx2 Is an Essential Factor for Retinal Gliogenesis and Notch
Signaling
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Müller glia (MG) are the only glial cell type produced by the neuroepithelial progenitor cells that generate the vertebrate retina. MG are
required to maintain retinal homeostasis and support the survival of retinal neurons. Furthermore, in certain vertebrate classes, MG
function as adult stem cells, mediating retinal regeneration in response to injury. However, the mechanisms that regulate MG develop-
ment are poorly understood because there is considerable overlap in gene expression between retinal progenitor cells and differentiated
MG. We show that the LIM homeodomain transcription factor Lhx2 is required for the development of MG in the mouse retina. Tempo-
rally controlled knock-out studies reveal a requirement for Lhx2 during all stages of MG development, ranging from the proliferation of
gliocompetent retinal progenitors, activation of Müller-specific gene expression, and terminal differentiation of MG morphological
features. We show that Lhx2 regulates gliogenesis in part by regulating directly the expression of Notch pathway genes including Notch1,
Dll1, and Dll3 and gliogenic transcription factors such as Hes1, Hes5, Sox8, and Rax. Conditional knock-out of Lhx2 resulted in a rapid
downregulation of Notch pathway genes and loss of Notch signaling. We further demonstrate that Müller gliogenesis induced by misex-
pression of the potently gliogenic Notch pathway transcriptional effector Hes5 requires Lhx2 expression. These results indicate that Lhx2
not only directly regulates expression of Notch signaling pathway components, but also acts together with the gliogenic Notch pathway to
drive MG specification and differentiation.
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Introduction
Gliogenesis in the mammalian CNS is tightly regulated by both
the intrinsic gene expression profile of gliogenic progenitors and

the extrinsic signals to which these cells are exposed. Although
gliogenesis typically occurs during or after the final wave of neu-
rogenesis, CNS neurons and glia originate from common pro-
genitors (Young, 1985; Turner and Cepko, 1987; McConnell,
1995; Stiemke and Hollyfield, 1995; Okano and Temple, 2009).
Notch signaling has been identified as a potent driver of glial
development in multiple CNS regions (Morrison et al., 2000;
Wang and Barres, 2000; Gallo and Deneen, 2014). Ligand-
dependent activation of Notch promotes glial differentiation by
activating the expression of intrinsic transcriptional effectors,
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Significance Statement

Müller glia (MG) are radial glial cells located in the vertebrate retina that are essential for the function and survival of retinal
neurons. We found the LIM homeodomain transcription factor Lhx2 to be expressed in both retinal progenitor cells and MG. Using
conditional knock-outs, we show that Lhx2 is required during all stages of MG development. We also show that Lhx2 regulates
directly the expression of components of the Notch signaling pathway, which promotes retinal Müller gliogenesis, as well as
multiple gliogenic transcription factors. We further demonstrate that Lhx2 is required for Hes5-dependent gliogenesis. This study
identifies Lhx2 as a central transcriptional regulator of both Notch-dependent and Notch-independent components of retinal
gliogenesis.
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notably the bHLH factors Hes1 and Hes5 (Kopan and Ilagan,
2009; Imayoshi and Kageyama, 2014). Interestingly, Notch sig-
naling is also required in neural progenitor cells for multipo-
tency, proliferation, and the generation of retinal neuronal
diversity (Imayoshi and Kageyama, 2014). It is not yet fully un-
derstood how Notch function transitions from retinal progenitor
cell (RPC) maintenance to proglial specification and glial differ-
entiation. It is likewise unclear how Notch-independent intrinsic
signals act to modulate the level or specificity of Notch signaling.

Retinal development closely parallels that of the broader CNS,
with neurogenesis proceeding in a temporally stereotyped man-
ner, followed by gliogenesis (Young, 1985; Turner and Cepko,
1987; Stiemke and Hollyfield, 1995). Müller glia (MG), a radial
glial subtype, are the only glial cells derived from RPCs. Molecu-
lar mechanisms of MG development parallel those of CNS glia
elsewhere. MG development is tightly controlled by Notch sig-
naling and is dependent on the action of Hes5 and the Hes targets
Sox8 and Sox9 (Furukawa et al., 2000; Hojo et al., 2000; Muto et
al., 2009). Notch signaling also acts to sustain multipotency and
proliferation in RPCs, much as it does elsewhere in the CNS
(Henrique et al., 1997; Jadhav et al., 2006).

The LIM homeodomain transcription factor Lhx2 is a candi-
date for regulating retinal gliogenesis. This gene plays a central
role in regulating development in multiple CNS regions (Man-
gale et al., 2008; Chou et al., 2009; Shetty et al., 2013; Roy et al.,
2014). It is required for development of the eye (Porter et al.,
1997), where it functions to maintain neuroretinal identity (Roy
et al., 2013), and is also required for neuronal competence pro-
gression (Gordon et al., 2013). Lhx2 is selectively expressed in
RPCs and becomes restricted to a small fraction of amacrine cells
and all MG in adulthood (Porter et al., 1997; de Melo et al., 2012).
In MG, Lhx2 suppresses hypertrophic reactive gliosis under non-
pathogenic conditions and is required to activate the expression
of glial-derived neuroprotective factors after injury (de Melo et
al., 2012).

The role of Lhx2 in controlling neuronal versus glial fate se-
lection is complex. Inactivation of Lhx2 in the mouse hippocam-
pus results in premature astrocyte differentiation, whereas
misexpression of Lhx2 blocks astrocyte formation (Subramanian
et al., 2011). These effects are spatially restricted because Lhx2
inactivation in the neocortex does not promote precocious astro-
cyte formation. The functional role of Lhx2 regarding the devel-
opment of retinal MG is also unclear. Putative MG were
identified after conditional loss of function of Lhx2 during late
embryonic retinal development (Gordon et al., 2013). However,
the reliance on the RPC-expressed gene Sox9 as a MG marker, the
persistent expression of the proliferation marker PCNA in Sox9-
expressing cells, and the displacement of putative MG into the
outer nuclear layer calls into question whether these cells were
MG or RPCs.

In this study, we observed that Lhx2 is an essential factor for
the development of retinal MG. Lhx2 is expressed selectively in
both late retinal progenitor cells and differentiating MG and is
required for Notch pathway gene expression and Notch-
mediated gliogenesis. Lhx2 also binds directly cis-regulatory se-
quences of multiple genes that are active in retinal progenitors
and differentiating MG. Knock-out experiments demonstrate
that Lhx2 is required for normal expression of these factors.

Materials and Methods
Animals. Timed pregnant female CD-1 mice were purchased from
Charles River Laboratories and pups of either sex were used for electro-
poration. Female R26-stop-EYFP (stock #006148) and Pdgfr�-Cre (stock

#013148) mice were purchased from the The Jackson Laboratory.
Lhx2 lox/lox mice (obtained from Dr. Edwin Monuki, University of Cali-
fornia, Irvine) have been described previously (Mangale et al., 2008).
Lhx2 lox/lox; Pdgfr�-Cre;R26-stop-EYFP and Lhx2 �/�;Pdgfr�-Cre;R26-
stop-EYFP mice were bred in the laboratory and mice of either sex were
used in experiments. Lhx2 lox/lox GLAST-CreER T2;R26-stop-EYFP and
Lhx2 �/�;GLAST-CreER T2;R26-stop-EYFP mice were available in our
laboratory and have been described previously (de Melo et al., 2012).
Rax-CreER T2;Ai9 (R26-stop-DsRed) mice were generated in the labora-
tory (Pak et al., 2014). Lhx2 lox/lox;Rax-CreER T2;Ai9 mice were bred in
the laboratory. Mice of either sex were used for studies involving GLAST-
CreER T2 or Rax-CreER T2 transgenes. All experimental procedures were
preapproved by the Institutional Animal Care and Use Committee
(IACUC) of the Johns Hopkins University School of Medicine.

Cell counts. All counts were performed blindly on whole retinal sec-
tions or dissociated retinas as described previously (de Melo et al., 2012).
Differences between two means were assessed by unpaired two-tailed
Student’s t test.

ChIP. CD1 mice of either sex were euthanized at postnatal day 2 (P2)
and P8 according to Johns Hopkins IACUC animal policies. ChIP was
performed as described previously (Shang et al., 2000). Whole dissected
retinas were dissociated in a collagenase I suspension, cross-linked in 1%
formaldehyde, and quenched in 125 mM glycine. The extracted nuclei
were sheared to produce 100 –500 bp fragments by means of probe son-
ication. Chromatin was immunoprecipitated with goat anti-Lhx2 (Santa
Cruz Biotechnology), rabbit anti-H3K27Ac (Abcam), or the correspond-
ing isotypic controls (Abcam); retained on agarose beads (Invitrogen;
washed; and purified by organic extraction. Candidate target genes that
demonstrated altered expression levels in Lhx2 conditional knock-out
retinas by RNA-Seq were screened for Lhx2 consensus binding sites in
evolutionarily conserved regulatory regions within 15 kb of the tran-
scriptional start site. Lhx2 consensus sequences were identified by que-
rying the JASPAR database and were derived from GSE48068 (Folgueras
et al., 2013). Amplicons corresponding to cis-regulatory regions that con-
tained putative Lhx2-binding sites, along with nearby regions that lacked
these sites, were amplified from chromatin immunoprecipitated with
both anti-Lhx2 and IgG by SYBR qRT-PCR (Agilent Technologies).

Electroporation. Electroporation of neonatal mice of either sex was
performed at P0 as described previously (de Melo and Blackshaw, 2011).
Electroporated retinas were harvested at P3 or P14 as required. DNA
constructs used for electroporation in this study were as follows:
pCAG-Cre [Addgene plasmid 13775, deposited by C. Cepko (Matsuda
and Cepko, 2007), pCALNL-GFP (Addgene plasmid 13770, deposited by
C. Cepko (Matsuda and Cepko, 2007), pCALNL-DsRed (Addgene plas-
mid 13769, deposited by C. Cepko (Matsuda and Cepko, 2007),
pCBFRE-GFP (Addgene plasmid 17705, deposited by N. Gaiano (Mizu-
tani et al., 2007), and pCAGIG-Hes5 (generated in our laboratory for this
study)].

Immunohistochemistry, retinal dissociation, and TUNEL staining. Flu-
orescent immunohistochemistry was performed on cryosectioned tissue
and retinal dissociates as described previously (de Melo et al., 2012).
Antibodies used for fluorescent immunohistochemistry were as follows:
rabbit anti-�-catenin (1:400, Ctnnb1; Sigma-Aldrich), sheep anti-Chx10
(1:200, Vsx2; Ex� Biologicals), mouse anti-Cralbp (1:200, Rlbp1;
Thermo Scientific), rabbit anti-DsRed (1:500; Clontech Laboratories),
mouse anti-Gfap (1:200; Sigma-Aldrich), goat anti-GFP (1:500; Rock-
land Immunochemicals), rabbit anti-GFP (1:1000; Invitrogen), mouse
anti-glutamine synthase (1:200, Glul; BD Biosciences), rat anti-glycine
(1:200; ImmunoSolution), mouse anti-Ki67 (1:200; BD Biosciences),
rabbit anti-Lhx2 (1:1500; generated in-house with Covance), mouse
anti-P27 (1:200; Invitrogen), mouse anti-Pax6 (1:200; Developmental
Studies Hybridoma Bank), rabbit anti-phosphohistone H3 (1:200,
PHH3; Millipore), rabbit anti-Sox9 (Millipore). Secondary antibodies
used were FITC-conjugated donkey anti-goat IgG (1:500), FITC-
conjugated donkey anti-rabbit IgG (1:500), Texas red-conjugated don-
key anti-goat IgG (1:500), Texas red-conjugated donkey anti-mouse IgG
(1:500), Texas red-conjugated donkey anti-rabbit IgG (1:500), and Texas
red-conjugated donkey anti-sheep IgG (1:500) (all from Jackson Immu-

2392 • J. Neurosci., February 24, 2016 • 36(8):2391–2405 de Melo et al. • Lhx2 Is Essential for Retinal Gliogenesis



noresearch). All section immunohistochemical data shown were imaged
and photographed on a Zeiss Meta 510 LSM confocal microscope.

In situ hybridization. Single color in situ hybridization was performed as
described previously (Blackshaw et al., 2004). Sequences for RNA probes
targeting Rax and Fgf15 have been described previously (Shimogori et al.,
2010). RNA probes were generated using the following EST sequences as
templates: Dll3 (GenBank accession #AW492425), Fgf15 (GenBank acces-
sion #BE952015), Hes5 (GenBank accession #AW244376), Lhx5 (GenBank
accession #BE943600), Notch1 (GenBank accession #BE981557), Otp
(GenBank accession #Y10413), Rax (GenBank accession #BC058757),
Sfrp2 (GenBank accession #AI851596), and Vsx2 (GenBank accession
#BF461223). Dll1, Lhx2, and Sox8 probe templates were amplified from
retinal cDNA. The sequences of these primers were as follows (listed 5� to 3�):
Dll1, 5�-GTACTGCACTGACCCAATC, 3�-GGTTATCTGAACATCGTC
CTC; Lhx2, 5�-ACCATGCCGTCCATCAGC, 3�-GGCGTTGTAAGCTGC
CAG; and Sox8, 5�-AGTACCCGCATCTCCATAA, 3�-GGGCAAGTACT
GGTCAAAT.

qRT-PCR. qRT-PCR was performed on P0 RNA isolated from Lhx2 lox/lox;
Pdgfr�-Cre and Lhx2�/�; Pdgfr�-Cre mouse retinas obtained from mice of
either sex using a SYBR Green PCR Master Mix (Applied Biosystems).
Primer sets for genes examined are as follows: Dll1, Forward primer GAC
CTCGCAACAGAAAACCCA, Reverse Primer TTCTCCGTAGTAGT
GCTCGTC; Dll3, Forward primer CTGGTGTCTTCGAGCTACAAAT, Re-
verse primer TGCTCCGTATAGACCGGGAC; Fgf15, Forward primer
ATGGCGAGAAAGTGGAACGG, Reverse primer CTGACACAGACT
GGGATTGCT; Gapdh, Forward primer AGGTCGGTGTGAACGGA
TTTG, Reverse primer TGTAGACCATGTAGTTGAGGTCA; Hes1,
Forward primer CCAGCCAGTGTCAACACGA, Reverse primer AAT
GCCGGGAGCTATCTTTCT; Hes5, Forward primer AGTCCCAAG
GAGAAAAACCGA, Reverse primer GCTGTGTTTCAGGTAGCTGAC;
Notch, Forward primer CCCTTGCTCTGCCTAACGC, Reverse primer
GGAGTCCTGGCATCGTTGG; Rax, Forward primer TGGGCTTTAC
CAAGGAAGACG, Reverse primer GGTAGCAGGGCCTAGTAGCTT;
Sox8, Forward primer AATGCCTTCATGGTGTGG, Reverse primer GC
CTTGGCTGGTATTTGT; Vsx2, Forward primer CTGAGCAAGCCC
AAATCCGA, Reverse primer CGCAGCTAACAAATGCCCAG.

RNA sequencing. RNA-Seq was performed in collaboration with the
Johns Hopkins School of Medicine Deep Sequencing and Microarray
Core Facility. RNA was extracted using RNeasy kits (Qiagen, Hilden,
Germany) from 3 biological replicates each of Pdgfr�-Cre;Lhx2 lox/lox and
Pdgfr�-Cre;Lhx2 �/� mice of either sex. Libraries were prepared using
Illumina TruSeq RNA Sample kit (Illumina) following manufacturer’s
recommended procedure. The PCR amplified library was purified using
RNAClean XP magnetic beads (Agencourt, Beverley, MA) and run out
on a High Sensitivity DNA Chip (Agilent, Santa Clara, CA) for quality
check. We used STAR (Dobin et al., 2013) to align RNA-Seq reads onto
Ensembl mouse genome GRCm38, release 72. To generate the stand
attribute for alignments containing splice junctions, we used the out-
SAMstrandField intronMotif program. The spliced alignments without
strand definition were removed. Number of reads mapped to exons was
counted by htseq-count (Anders et al., 2015). Genes expressed at very low
levels were omitted from further analysis. Gene expression differences
between wild-type and mutant samples, significance (p-value) and false
discovery rate (FDR) were computed using the generalized linear models
based EdgeR (Robinson et al., 2010). Cellular expression data for retinal
genes was compiled from the literature, relying heavily on large-scale
gene expression profiling studies (Blackshaw et al., 2001; Blackshaw et al.,
2004; Siegert et al., 2012; Macosko et al., 2015). All data generated from
RNA-Seq studies including raw unprocessed datasets have been depos-
ited into the Gene Expression Omnibus repository of the NCBI and have
been released publicly under the series entry accession #GSE75889.

Results
Lhx2 is required for MG development
Lhx2 is selectively expressed in MG and a subset of amacrine cells
in adult retina (Fig. 1). Ocular Lhx2 RNA expression has been
reported as early as embryonic day (E)8.5, with Lhx2 expression

maintained in embryonic RPCs (Porter et al., 1997; Gordon et al.,
2013). Consistent with published reports, we detect Lhx2 protein
in the developing eye by E10 (Fig. 1a). Lhx2 is downregulated in
neuronal populations, but continues to mark mitotic progenitors
(Fig. 1f,g, yellow arrowheads, k,l) as well as a small cohort of
amacrine cells in the postnatal retina (Fig. 1f–j, white arrows; de
Melo et al., 2012; Balasubramanian et al., 2014). Lhx2 expression
in the medial inner nuclear layer (INL) of the retina is restricted
to MG by postnatal day (P)7 (Fig. 1h–j, red arrowheads, m–o),
confirming an unbroken temporal sequence of Lhx2 expression
from early optic cup progenitors to MG.

To remove Lhx2 from developing MG, we used the platelet
derived growth factor receptor � (Pdgfr�)-Cre mouse line,
which has been previously reported to be selectively active in
both late stage retinal progenitor cells and MG (Roesch et al.,
2008, Rattner et al., 2013). We crossed Pdgfr�-Cre mice with
the R26-stop-EYFP reporter line to confirm Cre activity in
developing MG (Fig. 1p–u). Expression of the Cre reporter
was observed in retinal progenitor cells at both P0 and P4. At
P21, MG labeled by P27 Kip1, Glul, Rlbp1, and Lhx2 coex-
pressed the YFP reporter, with 97.6% (SE � 0.33%; N � 4) of
P27 Kip1 expressing MG colabeled with YFP (Fig. 1r–v).

We bred the Pdgfr�-Cre;R26-stop-EYFP mice to Lhx2 lox/lox mice
to generate Pdgfr�-Cre;R26-stop-EYFP;Lhx2 lox/lox knock-out ani-
mals. Adult Pdgfr�-Cre;R26-stop-EYFP;Lhx2 lox/lox mice displayed a
loss of MG, as evidenced by the dramatic reduction in YFP-labeled
radial cells in the INL and a decrease in P27Kip1, Glul, Rlbp1, and
Sox9 expression in the INL (Fig. 2a–h). Pdgfr�-Cre;R26-stop-EYFP;
Lhx2 lox/lox animals also featured extensive tissue dysplasia in the
outer nuclear layer (ONL) of the retina. Some degree of mosaicism
was observed in Lhx2 deletion. Occasional widely spaced domains of
Lhx2-positive MG were observed. These were closely correlated with
normal lamination and lack of dysplasia (Fig. 2i,j). A significant de-
crease in the number of YFP-labeled cells was observed as early as P0
(Fig. 2k,l). Correspondingly, we observed a cell-autonomous reduc-
tion in expression of the proliferation marker Ki67 among YFP-
labeled Lhx2-deficient RPCs, but not in YFP-negative RPCs (Fig.
2m,n). Furthermore we identified a trend toward increased cell cell
death among YFP-positive cells in Pdgfr�-Cre;R26-stop-EYFP;
Lhx2 lox/lox retinas, although this did not reach statistical significance
(Fig. 2o).

To confirm that the loss of MG was due to cell-autonomous
loss of function of Lhx2, we performed mosaic loss of function
experiments by electroporation of pCAG-Cre into P0 Lhx2 lox/lox

mice (Fig. 3). These experiments resulted in a selective and sig-
nificant loss of MG among electroporated cells as determined by
loss of the MG selective markers P27 Kip1, Glul, Rlbp1, and Sox9
(Fig. 3a–i). The number of cells expressing MG markers was
unchanged among the nonelectroporated fraction (Fig. 3j). Fur-
thermore, electroporation of pCAG-Cre did not significantly af-
fect the proportions of bipolar cells, amacrine cells (total
fraction), glycinergic amacrine cells (late-born subset), or photo-
receptors. Quantification of cell death among the electroporated
cell fraction did not detect a significant increase in apoptosis
(Fig. 3k). Areas of the retina with high electroporation efficiency
showed focal disruptions in the integrity of the ONL concurrent
with MG loss and displacement of photoreceptor soma into the
photoreceptor outer segment layer (Fig. 3b,d,f,h, arrows). The
disruption of ONL integrity was reminiscent of, though less se-
vere than the ONL dysplasia seen in the Pdgfr�-Cre;Lhx2 lox/lox

mice.
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Lhx2 is required for terminal differentiation of MG
We next investigated the role of Lhx2 during differentiation of
MG committed precursors. To address this, we generated condi-
tional MG-specific Lhx2 knock-out mice using either Rax-
CreER T2 or Glast-CreER T2. Induction of Rax-CreER T2 with

4-hydroxytamoxifen (4-OHTx) from P1-P3 activates Cre in MG-
committed precursors (Pak et al., 2014), while induction of Glast-
CreER T2 from P4-P8 activates Cre in differentiated MG. We
pulsed Rax-CreER T2;Ai9;Lhx2�/� mice with 4-OHTx daily from
P1-P3 to verify Cre activity in MG. Expression of the R26-CAG-

Figure 1. Expression pattern of endogenous Lhx2 and the Pdgfr�-Cre transgene during retinal development. a–j, Immunohistochemistry demonstrating expression of Lhx2 during retinal
development. a, b, Lhx2 is expressed throughout the retinal neuroepithelium and the retinal pigment epithelium at E10 and E12, but not in the lens or extraocular mesenchyme. The weak
fluorescence in the lens at E12 represents nonspecific and extra-nuclear background staining. c, Expression of Lhx2 is downregulated from newly generated retinal ganglion cells and amacrine cells
by E14. d, e, Lhx2 expression continues to be downregulated by newborn neurons as retinogenesis progresses from E16 to E18. f, g, k, l, In postnatal retina, Lhx2 is expressed in remaining mitotic
progenitors (f, g, yellow arrowheads) that coexpress Vsx2 and Ki67 (k, l ) and by a subset of amacrine cells (f, g, white arrows). h–j, m–o, By P7, Lhx2 is restricted to Glul, P27 Kip1, and Sox9 expressing
MG (h–j, red arrowheads, m–o) and a small subset of amacrine cells (h–j, white arrows). p, q, The Pdgfr�-Cre transgene is expressed in a subset of retinal progenitor cells at P0 and P4 in the retina.
r–u, Pdgfr�-Cre; R26-stop-YFP labels MG, which express the MG markers Lhx2, P27 Kip1, Glul, and Rlbp1 at P21. v, 97.6% (SE � 0.33%; n � 4) of P27 Kip1 expressing MG are colabeled with YFP,
demonstrating Pdgfr�-Cre activation in MG. GCL, Ganglion cell layer; INL, inner nuclear layer; NBL, neuroblastic layer; ONL, outer nuclear layer; E, embryonic day. 1.5� digital enlargements without
DAPI labeling are included for P21 data. Scale bars, 150 �m (a), 175 �m (b), 200 �m (c), 50 �m (d–u).
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stop-DsRed reporter (Ai9) was detected in MG, which coex-
pressed the MG markers P27 Kip1 and Glul, but not inVsx2 labeled
bipolar cells (Fig. 4a). Glast-CreER T2;R26-stop-YFP;Lhx2�/�

mice were treated with 4-OHTx daily from P4-P8 to verify the
MG expression of Glast-CreER T2. Cre activity in differentiated

MG was confirmed by colocalization of the YFP reporter with
P27 Kip1, Glul, and Rlbp1 (Fig. 4b).

Knock-out of Lhx2 in Glast-CreER T2;Lhx2 lox/lox mice resulted
in dramatic upregulation of the intermediate filament Gfap, in-
dicative of reactive gliosis. However, both MG and overall retinal

Figure 2. Retinal loss of function of Lhx2 disrupts MG development. a–h, Pdgfr�-Cre-mediated Lhx2 loss of function results in the loss of YFP � MG and severe retinal dysplasia by P30. b, d, f,
arrows, Staining of the MG markers P27 Kip1, Glul, and Rlbp1 is lost among the remaining YFP-labeled cells in the medial INL in the Pdgfr�-Cre;R26-stop-YFP;Lhx2 lox/lox animals, whereas Sox9
expression is reduced but not completely lost (h, arrows, asterisk). i, j, Identification of regions of normal histology correlates with failed Lhx2 loss of function and persistent Lhx2 expression. k,
Immunohistochemistry showing YFP and phosphohistone H3 (PHH3) colabeling at P0 in Pdgfr�-Cre;R26-stop-YFP;Lhx2 �/� and Pdgfr�-Cre;R26-stop-YFP;Lhx2 lox/lox animals. l, There is a signif-
icant ( p � 0.05) reduction of YFP-labeled cells in Pdgfr�-Cre;R26-stop-YFP;Lhx2 lox/lox animals, 24.2% (SE � 2.45%, n � 4) compared with controls Pdgfr�-Cre;R26-stop-YFP;Lhx2 �/�, 45.7%
(SE � 1.15%, n � 4) at P0. m, Retinal dissociates showing YFP and Ki67 colabeling at P0 in Pdgfr�-Cre;R26-stop-YFP;Lhx2 �/� and Pdgfr�-Cre;R26-stop-YFP;Lhx2 lox/lox animals. n, There is a
significant ( p � 0.05) reduction of YFP-labeled cells coexpressing Ki67 in Pdgfr�-Cre;R26-stop-YFP;Lhx2 lox/lox animals, 24.2% (SE � 1.81%, n � 4) compared with 42% (SE � 4.28%, n � 4) in
controls at P0. No significant proportional change in coexpression of Ki67 in YFP-ve cells in conditional knock-outs compared with controls was seen (o). The number of TUNEL/YFP-labeled apoptotic
cells in Pdgfr�-Cre;R26YFP;Lhx2 lox/lox animals is elevated at P0 but not statistically significant (n � 0.05) (n). *Significant change by two-tailed Student’s t test. 1.5� digital enlargements without
DAPI labeling are included for b, d, f, and h. Scale bars: 50 �m (a, c, e, g, i–k), 100 �m (m).
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morphology in Glast-CreER T2;Lhx2 lox/lox mice was grossly nor-
mal (Fig. 4c). This phenotype is identical to that seen after Glast-
CreER T2-mediated knock-out of Lhx2 in adult (P21) MG (de
Melo et al., 2012). In contrast, Rax-CreER T2;Lhx2 lox/lox mice
showed major alterations in MG marker expression as well as MG
and retinal morphology (Figs. 4d–h, 5a). MG in Rax-CreER T2;
Lhx2 lox/lox mice robustly expressed Gfap, much like what was
observed in Glast-CreER T2;Lhx2 lox/lox mice. However, the la-

beled MG were tortuous (Fig. 4d), their apical processes extended
into the photoreceptor outer segment layer (Figs. 4d, arrows, 5a)
and failed to correctly terminate at the outer limiting memb-
rane (OLM), a morphological hallmark of differentiated MG
(Reichenbach, 1989). Rax-CreER T2;Lhx2 lox/lox mice showed de-
creased expression of the MG markers Rlbp1 and Glul (Fig.
4e–h). Rlbp1 expression was notably reduced at the outer plexi-
form layer and at the apical OLM (Fig. 4e,f, arrows). Glul expres-

Figure 3. Mosaic loss of function of Lhx2 by electroporation disrupts MG development. a–h. Electroporation of pCAG-Cre into Lhx2 lox/lox mice at P0 disrupts the development of MG as shown by
multiple molecular markers. Regions of high electroporation efficiency show ONL dysplasia (b, d, f, h, white arrows). i, The proportion of electroporated cells expressing the MG markers P27 Kip1, Glul,
Rlbp1, and Sox9 is significantly ( p � 0.05, n � 6) decreased from 4.9%, 5.6%, 4.4%, and 5%, respectively, in Lhx2 �/� to 0.98%, 0.82%, 1%, and 1.5%, respectively, in Lhx2 lox/lox retinas. j, No
change was detected in the proportion of MG generated among nonelectroporated cells (P27 Kip1 or Glul �GFP �/DAPI). k, We detected no significant increase in cell death by activated caspase-3
labeling ( p � 0.05, n � 3). l–p, There was no significant change in the fraction of bipolar cells (identified by Vsx2 expression), photoreceptors (identified by morphology), amacrine cells (identified
by Pax6 expression and morphology), or the glycinergic amacrine cell subset (identified by glycine expression and morphology) after electroporation of pCAG-Cre into control or Lhx2 lox/lox retinas.
*Statistical significance. 1.5� digital enlargements without DAPI labeling are included for a–h. Scale bars, 50 �m (a, c, e, g, l–o).
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sion was also notably reduced at these regions (Fig. 4g,h, arrows),
and could not be easily distinguished in apical MG processes (Fig.
4g,h, asterisks), in contrast to controls. Closer analysis revealed a
failure to form normal apical OLM adherens junctions that co-
expressed Ctnnb1 (also known as �-catenin), which contrasted

with MG in Glast-CreER T2;Lhx2 lox/lox knock-outs that showed
normal apical structures, despite the extensive Gfap activation
indicative of gliosis (Fig. 5a–c). Rax-CreER T2;Lhx2 lox/lox knock-
out retinas showed significant dysplasia of the ONL (Fig. 4d,
arrows). This ONL dysplasia was again reminiscent of, but milder

Figure 4. Conditional loss of function of Lhx2 in MG results in specific deficits in MG differentiation and/or reactive gliosis. a, Conditional activation of the Rax-CreER T2 transgene by
intraperitoneal administration of tamoxifen from P1 to P3 shows that Cre expression is restricted to MG precursors. b, Activation of the Glast-CreER T2 transgene by intraperitoneal
administration of tamoxifen from P4 –P8 showing that Cre expression is restricted to MG. c, Glast-CreER T2-mediated Lhx2 loss of function resulted in upregulation of Gfap expression but
no changes in morphology. d, Rax-CreER T2-mediated Lhx2 loss of function in MG precursors results in dysmorphic MG at P14, upregulation of Gfap, and retinal dysplasia (d, arrows). e–h,
Rax-CreER T2-mediated Lhx2 loss of function results in decreased expression of the MG markers Rlbp1 (e, f, arrows) and Glul (g, h, arrows, asterisks). 1.5� digital enlargements without
DAPI labeling are included for a, b, and e–h. Scale bars, 50 �m (all panels).
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than the dysplasia seen in the Pdgfr�-Cre;Lhx2 lox/lox knock-outs
(Fig. 2b,d,f,h). Rax-CreER T2;Lhx2 lox/lox retinas also lacked a
clearly defined OLM (Figs. 4d, 5a). These results show that selec-
tive loss of Lhx2 function in MG precursors results in extensive
disruption of MG differentiation.

Lhx2 is required for Notch signaling and Notch-mediated
Müller gliogenesis
Previous studies have shown that MG specification is regulated
by Notch signaling, and is dependent on the action of the tran-
scriptional Notch effector Hes5, and its downstream target genes

Sox8 and Sox9 (Furukawa et al., 2000; Hojo et al., 2000; Muto et
al., 2009). To determine whether MG defects after Lhx2 loss of
function were in part due to perturbed Notch signaling, we co-
electroporated three different plasmid constructs—the Notch re-
porter pCBFRE-GFP, pCAG-Cre, and the Cre-activated reporter
construct pCALNL-DsRed—into both Lhx2�/� and Lhx2 lox/lox

retinas at P0. Reporter expression was analyzed in DsRed-
positive electroporated cells at P3 (Fig. 6a,b). In Lhx2�/� mice
75% of DsRed labeled cells demonstrated GFP expression off the
pCBFRE-GFP Notch reporter (Fig. 6b). The proportion of cells
displaying Notch reporter expression in Lhx2 lox/lox mice was sig-

Figure 5. Conditional loss of function of Lhx2 results in disruption of the MG component of the apical outer limiting. a, Rax-CreER T2;Lhx2 lox/lox MG-like cells do not terminate at the apical outer
limiting membrane (white arrows) and do not colabel Ctnnb1 (also known as �-catenin). b, c, Glast-CreER T2;Lhx2 lox/lox MG form normal apical termini that colabel with Ctnnb1 (white arrows).
4-OHTx, 4-hydroxytamoxifen. Scale bars, 50 �m (all panels).
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nificantly reduced to 32%. Furthermore, the cellular levels of
GFP expression were substantially weaker in the Lhx2 lox/lox cells
compared with the Lhx2�/� cells (Fig. 6a).

These results suggest that the loss of MG in Lhx2 lox/lox mice
may in part result from a disruption of Notch signaling in
RPCs. We next explored whether electroporation of the po-
tently gliogenic Notch effector Hes5 (Hojo et al., 2000) was
sufficient to rescue the loss of gliogenesis in Lhx2 lox/lox ani-
mals. Electroporation of Hes5 with Cre in wild-type retinas

resulted in a dramatic overproduction of MG compared with
electroporation of Cre alone (pCAG-Cre: 4.9% and 5.6% vs
pCAG-Cre/-Hes5: 18% and 15%, P27 Kip1 and Glul � respec-
tively; Fig. 6c). However, co-electroporation of Hes5 with
Cre did not rescue MG development in Lhx2 lox/lox mice
(Fig. 6d–k). The proportion of P27 Kip1, Glul, and Rlbp1-
positive MG generated after electroporation of Hes5 and Cre
into Lhx2 lox/lox mice was nearly identical to that after electro-
poration of Cre alone (Figs. 3i, 6l ). Though significantly

Figure 6. Lhx2 loss of function perturbs Notch signaling and blocks Hes5-mediated gliogenesis. a, b, Co-electroporation of pCAG-Cre with pCBFRE-GFP at P0. Expression of the Notch reporter is
significantly ( p � 0.05; n � 5) decreased among electroporated cells at P3 in Lhx2 lox/lox mice. c, d, f, h–j, l, Electroporation of Hes5 at P0 significantly induces the formation of MG by P14 ( p � 0.05;
n � 6 for all of p27 Kip1; Glul; Rlbp; Sox9). d–l, Electroporation of pCAG-Cre with pCAGIG-Hes5 into Lhx2 lox/lox vs Lhx2 �/� mice shows that the effect of Hes5 is blocked by concurrent Lhx2 loss of
function ( p � 0.05; n � 6; for all of p27 Kip1; Glul; Rlbp; Sox9). 1.5-fold digital enlargements without DAPI labeling are included for d–k. ˆ Significant increase; *significant decrease. Scale bars, 50
�m (all panels).

de Melo et al. • Lhx2 Is Essential for Retinal Gliogenesis J. Neurosci., February 24, 2016 • 36(8):2391–2405 • 2399



reduced, Sox9 expression remained ele-
vated in Lhx2 lox/lox mice after Hes5 and
Cre co-electroporation. The proportion
of Sox9-positive cells dropped from
20.6% in control mice to 10%, but these
data suggest that Hes5 may be sufficient
to activate Sox9 in the absence of Lhx2
to a limited extent. These results dem-
onstrate that Hes5-induced Müller glio-
genesis requires Lhx2.

To determine whether expression of
Notch pathway genes and Notch pathway
regulators were disrupted upon Lhx2 loss
of function, we performed RNA-Seq on
P0.5 Pdgfr�-Cre;Lhx2 lox/lox and control
Lhx2 lox/lox retinas (Fig. 7). The full dataset
including raw data has been deposited to
the Gene Expression Omnibus (GEO) re-
pository of NCBI (series accession #
GSE75889). Analysis of RNA-Seq data re-
vealed a high proportion of RPC and
MG-enriched genes among transcripts
downregulated after loss of Lhx2, whereas
genes associated with neuronal popula-
tions were enriched among upregulated
transcripts (Fig. 7a,b). We also observed a
significant upregulation of hypothala-
mic-expressed genes after Lhx2 loss of
function, replicating results previously
observed (Roy et al., 2013). Analysis of
Gene Ontology (GO) terms identified the
Notch pathway as the signaling pathway
that is most highly enriched among genes
downregulated by loss of Lhx2 (Fig. 7c).

We selected Notch pathway genes that
demonstrated decreased expression by
RNA-Seq and then performed a combina-
tion of qRT-PCR and in situ hybridization to validate the results
(Fig. 8, Table 1). We observed a significant reduction in expres-
sion of Notch pathway genes including Notch1 (Fig. 8a,c, Table
1); the Notch ligands Dll1 and Dll3 (Fig. 8a,d,e, Table 1); the
gliogenic Notch effector genes Hes1, Hes5, Id1, and Sox8 (Fig.
8a,f,g, Table 1); and the Müller-gliogenic factor Rax (Fig. 8a,h,
Table 1). We likewise observed a significant reduction in the
expression of progenitor-specific genes such as Vsx2 and Fgf15
(Fig. 8a,i,j, Table 1). A decrease in the expression of early-onset
glial markers, such as Crym, Spon1, and Car2, was also observed
(Table 1). Finally, we confirmed that the hypothalamic and tha-
lamic eminence-enriched genes Sfrp2, Otp, and Lhx5 showed in-
creased expression (Fig. 8k–m). In situ hybridization confirmed
that altered expression of all of these genes corresponded to re-
gions in which Lhx2 loss of expression was observed (Fig. 8b–m).

Lhx2 regulates transcription of Notch pathway genes and
other genes required for progenitor proliferation and
gliogenesis directly
The previously described data imply that Lhx2 is necessary for
activating expression of Notch pathway components and other
MG-expressed genes. We performed ChIP-qPCR, and investi-
gated whether Lhx2 bound directly candidate cis-regulatory se-
quences located upstream of genes with expression that was
reduced in Lhx2 knock-outs (Hu et al., 2009; Nelson et al., 2011),

which we identified as active enhancers by conducting ChIP-
qPCR for H3K27Ac (Creyghton et al., 2010; Fig. 9a,a�).

At P2, when the vast majority of Lhx2 is expressed in RPCs, we
observed that Lhx2 was directly bound to cis-regulatory regions
associated with the progenitor expressed Müller gliogenic home-
odomain factor Rax in retinas (Fig. 9b). Lhx2 also bound to the
gliogenic bHLH factor Hes5 and the early glial markers Slc1a3 and
Car2 (Blackshaw et al., 2004) directly at this time point (Fig. 9b).
We also identified direct Lhx2 binding to regulatory regions of
the RPC-enriched genes Vsx2 and Fgf15 at P2 (Fig. 9c). However,
Lhx2 was not bound to nearby sequences that lacked predicted
Lhx2 binding sites.

We next investigated whether Lhx2 was bound differentially
to the identified target regions of interest as MG development
proceeded. From P7 onward, the majority of Lhx2-positive cells
are MG rather than RPCs (Fig. 1h–j,m–o). We performed ChIP-
qPCR at P8 and found that, for all sequences, the relative level of
Lhx2 binding was reduced relative to P2. This was is consistent
with the sevenfold decrease in the total fraction of Lhx2-
expressing retinal cells, RPCs, or MG at P8 relative to P2 (Young,
1985; Fig. 9d). Surprisingly, binding of Lhx2 to regulatory regions
of the gliogenic transcription factor Hes5 and the MG-specific
genes Slc1a3 and Car2 showed decreases between P2 and P8
much like that observed for enhancers associated with the RPC-
specific genes Vsx2 and Fgf15 (Fig. 9b,c). These results imply that
Lhx2 may be required for activation of MG-specific genes upon

Figure 7. Retinal cell class enrichment and gene ontology analysis of RNA-Seq data generated from Pdgfr�-Cre-mediated Lhx2
knock-outs. a, b, Retinal cellular enrichment analysis for downregulated and upregulated genes using a cutoff of p � 0.05 and fold
change �1.6 or ��1.6. x-axis represents the proportion of genes falling into a retinal cell type class. Gene expression may occur
in more than one cell type, so proportions do not sum to 1. c, Gene ontology enrichment for downregulated genes identified by
RNA-Seq ranked by p-value. Hyp/EmThal, Hypothalamus/ eminentia thalami; GC, ganglion cells; AC, amacrine cells; BC, bipolar
cells; HC, horizontal cells.
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Figure 8. Expression of Notch pathway, gliogenic, RPC-enriched, and hypothalamic-enriched genes in the Lhx2-deficient retina. a, qRT-PCR analysis of P0.5 Pdgfr�-Cre;Lhx2 lox/lox and
control Lhx2 lox/lox mice. Bars on the graph represent the mean relative quantity (RQ) of expression of the gene target, with error bars representing the minimum and maximum value of
RQ observed in the study. *Statistical significance. b–m, In situ hybridization performed on P0.5 Pdgfr�-Cre;Lhx2 lox/lox and control Lhx2 lox/lox mice. Arrows indicate regions of loss or gain
of expression in Pdgfr�-Cre;Lhx2 lox/lox mice. Scale bars, 500 �m (5� low magnification), 200 �m (20� high magnification).
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initiation of gliogenesis, but may not be necessary to maintain
their expression in mature glia.

Discussion
We have identified the LIM homeodomain transcription factor
Lhx2 as an essential regulator of Müller gliogenesis. Loss of func-
tion of Lhx2 in Pdgfr�-Cre;Lhx2 lox/lox knock-out mice resulted in
decreased RPC proliferation and loss of expression of the MG
markers P27 Kip1, Glul, Rlbp1, and Sox9. Loss of MG was sup-
ported by R26-stop-EYFP labeling, which confirmed a dramatic
reduction in radial MG. Electroporation of pCAG-Cre into P0
retinas also showed that the development of MG was disrupted
selectively upon postnatal loss of function of Lhx2. By contrasting
the phenotypes generated by temporally controlled conditional
loss of function of Lhx2 in differentiated MG (Glast-CreER T2;
Lhx2 lox/lox, P4-P8 4-OHT induction) and MG precursors (Rax-
CreER T2;Lhx2 lox/lox, P1-P3 4-OHT induction), we show that
Lhx2 is required for terminal differentiation of MG, expression of
multiple MG-specific markers, development of characteristic
apical MG structures, and active suppression of reactive gliosis.
Finally, we demonstrate that Lhx2 loss of function results in the
downregulation of Notch signaling and decreased expression of
Notch-pathway-dependent gliogenic effector genes. Lhx2 loss of
function was sufficient to block the formation of differentiated
MG induced by the potently gliogenic Notch effector Hes5.

The functional role played by Lhx2 in the development of CNS
glia is complex and context dependent. Previous work demon-
strated that loss of Lhx2 in hippocampal radial glial progenitors
resulted in cell cycle dropout and premature astrocyte formation
(Subramanian et al., 2011). The same study showed that Lhx2
misexpression blocks astrogliogenesis and can override the
proastroglial effects of both Notch activation and misexpression
of Nfia. Conversely, Lhx2 is essential for development of the cor-
tical glial wedge (GW) (Chinn et al., 2015). Here, loss of function
of Lhx2 in neocortical radial glial progenitor cells near the onset
of cortical neurogenesis resulted in a cell cycle exit similar to that
seen in the hippocampus, but with premature formation of neu-
rons and a loss of the stellate astrocytes that comprise the GW.

Both studies strongly indicate a shared and essential role for
Lhx2 among radial glial cell populations. In the hippocampus and
neocortex, radial glial cells function as progenitors that give rise
to neurons and astrocytes (Subramanian et al., 2011). Intrigu-
ingly, three specialized adult radial glial populations have also
been identified: hypothalamic tanycytes, cerebellar Bergmann
glia, and retinal MG (Sild and Ruthazer, 2011). Our study shows

that Lhx2 is essential for the development of retinal MG. By using
multiple temporal and cell-specific knock-out models, we have
demonstrated a requirement for Lhx2 function at every stage of
MG development. Pdgfr�-Cre-mediated loss of function in reti-
nal progenitor cells demonstrated that Lhx2 is required for the
proliferation and expansion of gliocompetent progenitors. Rax-
CreER T2-mediated loss of function in MG precursors from P1
demonstrated that Lhx2 was required for differentiation of MG
and development of specialized MG histological features. Glast-
CreER T2-mediated loss of function in newly differentiated MG
from P4 demonstrated that Lhx2 is required for the active sup-
pression of reactive gliosis, confirming previously published re-
ports (de Melo et al., 2012). The functional requirement for Lhx2
in the development of adult radial glial populations may be uni-
versal. Hypothalamic tanycytes also express Lhx2 and condi-
tional inactivation of Lhx2 produces a variety of defects during
tanycyte differentiation. These include the loss of expression
of tanycyte-specific genes such as Rax and Gpr50, the ectopic
expression of Foxj1, and, ultimately, the formation of dysmor-
phic multiciliated tanycytes (Salvatierra et al., 2014).

We have shown that Lhx2 function is necessary for Notch
signaling in the developing retina and may activate a wide array of
Notch pathway genes. Knocking out Lhx2 in RPCs resulted in a
corresponding loss of RNA expression of both Notch1 and the
gliogenic Notch pathway transcriptional effectors Id1, Sox8, and
Hes5 by P0.5. Co-electroporation of pCAG-Cre with the
pCBFRE-GFP Notch signaling reporter into Lhx2 loxl/lox animals
also revealed a rapid loss of Notch signaling. This was demon-
strated by a reduction in the number of electroporated cells
showing Notch reporter activity and by the qualitative decrease of
GFP signal among those few cells in which Notch reporter activity
could still be detected.

Notch signaling is an essential regulator of glial development
in the CNS. Multiple studies have demonstrated that temporally
controlled loss of function of retinal Notch expression results in
progenitor dropout, compromised neurogenesis, and a loss of
gliogenesis. The specific neurogenic deficits that result vary with
both the timing of the loss of function and the animal model in
which it was investigated, but the negative impact on MG devel-
opment appears universal. Generally, early embryonic loss of
Notch function results in an overproduction of cone photorecep-
tors and retinal ganglion cells at the expense of all other cell types
(Austin et al., 1995; Maurer et al., 2014), whereas late embryonic
or early postnatal loss of function yields rod photoreceptors at the
expense of bipolar interneurons and MG (Furukawa et al., 2000;
Hojo et al., 2000; Satow et al., 2001; Jadhav et al., 2009; Nelson et
al., 2011; Mizeracka et al., 2013). These results parallel, but do not
precisely phenocopy, the effects of selective loss of Lhx2 in early-
stage RPCs (Gordon et al., 2013) and late-stage RPCs, as reported
here. This could be because loss of function of Lhx2 dramatically
reduces Notch signaling in late-stage RPCs, but may not elimi-
nate it altogether. After electroporation of Cre into Lhx2 lox/lox

retinas at P0, we saw a result that parallels late Notch disruption,
with MG selectively lost. Bipolar cell numbers were also reduced,
although counts did not reach statistical significance, whereas a
trend toward increased rod photoreceptor number was also seen.

Although Lhx2 activation and maintenance of Notch signal-
ing is essential for appropriate MG development, we found that
Lhx2 may not regulate MG development exclusively via Notch
activation. The downstream bHLH Notch effector Hes5 is a po-
tent inducer of MG development in the mouse retina (Hojo et al.,
2000). We confirmed that electroporation of Hes5 in Lhx2�/�

retinas was sufficient to promote a nearly fourfold increase in

Table 1. Selected RNA-Seq data from P0 retinas

Gene Function Control cKO* Ratio

Notch1 Notch pathway 218.2 184.8 0.85
Dll1 Notch pathway 61.8 46.2 0.74
Dll3 Notch pathway 34.1 26.4 0.77
Hes1 Notch pathway 55.6 25.6 0.46
Hes5 Notch pathway 83 41.9 0.5
Id1 Gliogenic factor 60.4 15 0.25
Sox8 Gliogenic factor 78.4 38.2 0.49
Rax Gliogenic factor 123.8 39.4 0.32
Car2 Early glial marker 79.4 47.8 0.6
Crym Early glial marker 79 24.3 0.31
Spon1 Early glial marker 53.3 18.5 0.35
Vsx2 Pluripotency/proliferation 338.5 143.2 0.42
Fgf15 Pluripotency/proliferation 75.1 24.7 0.33

*cKO represents P0 Pdgfr�-Cre; Lhx2 lox/lox mice. Values in control and cKO columns are expressed as reads per
kilobase of transcript per million mapped reads (RPKM).
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MG. However, electroporation of Hes5 with pCAG-Cre into
Lhx2 lox/lox retinas was insufficient to rescue the loss of MG result-
ing from Lhx2 loss of function. Lhx2 may thus cooperate directly
with Hes5 to activate expression of the genes necessary for MG
differentiation and function. In such a model, the two factors
may operate in a common transcriptional protein complex or,
conversely, may bind common gene targets at distinct regula-
tory loci. Alternatively, Lhx2 may be required for the activa-
tion of a distinct set of Hes5-independent gene targets
essential for the development of MG. In either model, Hes5 is
insufficient to activate a Müller gliogenic program in the ab-
sence of Lhx2.

Currently, interest in MG is high due to their intrinsic capacity
for cellular reprogramming in response to retinal lesions (Gold-
man, 2014; Lenkowski and Raymond, 2014). In teleost fish, MG
dedifferentiate and proliferate to produce RPCs that regenerate
the retina after injury (Bernardos et al., 2007). The regenerative
potential of mammalian MG in situ is extremely limited com-
pared with fish, but mammalian MG can reactivate expression
of RPC-specific genes and proliferate in response to injury
(Osakada et al., 2007; Karl et al., 2008). Strategies that target MG

in regenerative therapies must overcome MG quiescence. We
show here that Lhx2 is essential for the differentiation of RPCs
into mature MG and that expression of Lhx2 is maintained in
mature MG. It is possible that the developmental mechanism by
which Lhx2 promotes MG differentiation must be reversed for
MG to become proliferative and contribute to regeneration. Cur-
rently, the mechanistic role for Lhx2 in the regenerating fish ret-
ina is unknown. However, our demonstration that Lhx2 is
required for Notch signaling during development is intriguing.
Notch signaling stabilizes MG identity in postmitotic precursor
cells in the mouse (Nelson et al., 2011; Mizeracka et al., 2013).
Furthermore, blocking Notch signaling in both chick and ze-
brafish enhances the proliferative and regenerative capacity of
progenitor cells generated by MG (Hayes et al., 2007; Conner et
al., 2014). Lhx2-mediated activation of Notch signaling may
therefore contribute to MG quiescence.

We have demonstrated previously that conditional loss of
function of Lhx2 in adult MG was sufficient to trigger hypertro-
phic reactive gliosis and that Lhx2 was required for injury-
induced expression of neuroprotective factors in these same MG.
We show in this work that Lhx2 is required for the proliferation of

Figure 9. ChIP analysis of Lhx2 in the developing retina. a, Relative percentages of input recovery for the H3K27Ac and isotype control fractions in the retina at P2. Bars represent SEM (n � 3,
minimum degrees of freedom � 9). a�, Fold enrichment for the H3K27Acetylated IP on indicated promoter sites. The target regions are all significantly enriched ( p � 0.0001) by t test assuming
unequal variances between Lhx2 ChIP and Ig control fractions. b, c, Lhx2 ChIP was performed on retinal tissue collected at P2 and P8. Graphs show the mean percentages of input recovery for the
immunoprecipitated fractions and the isotype controls compared by two-tailed t test. *Statistical significance ( p � 0.05). Error bars represent the SE (n �� 3). Target regions were inferred from
a computational analysis of Lhx2 consensus sequences near the genes of interest. d, Ratio of Lhx2 occupancy at target promoters, P2 versus P8. P2 and P8 occupancy levels were normalized to isotypic
controls before ratio calculation.
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gliocompetent progenitors. The regulation of the cell cycle by
Lhx2 has also been noted previously in neurogenic RPCs of the
retina and in cortical progenitors (Chou and O’Leary, 2013; Gor-
don et al., 2013). Finally, we show that Lhx2 is necessary for
normal differentiation of MG. These diverse, temporally dy-
namic, and context-dependent functions of Lhx2 are likely me-
diated by changes in both Lhx2 binding patterns and cofactor
usage. Identifying these biochemical mechanisms of action will
be the next major challenge in understanding the role played by
Lhx2 in MG development and function in the healthy and dis-
eased retina.
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