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Real-Time Control of a 
Neuroprosthetic Hand by 
Magnetoencephalographic Signals 
from Paralysed Patients
Ryohei Fukuma1,2,3,*, Takufumi Yanagisawa1,2,4,*, Youichi Saitoh1,5, Koichi Hosomi1,5, 
Haruhiko Kishima1, Takeshi Shimizu1,5, Hisato Sugata1, Hiroshi Yokoi6, Masayuki Hirata1, 
Yukiyasu Kamitani2,3,7 & Toshiki Yoshimine1

Neuroprosthetic arms might potentially restore motor functions for severely paralysed patients. 
Invasive measurements of cortical currents using electrocorticography have been widely used for 
neuroprosthetic control. Moreover, magnetoencephalography (MEG) exhibits characteristic brain 
signals similar to those of invasively measured signals. However, it remains unclear whether non-
invasively measured signals convey enough motor information to control a neuroprosthetic hand, 
especially for severely paralysed patients whose sensorimotor cortex might be reorganized. We 
tested an MEG-based neuroprosthetic system to evaluate the accuracy of using cortical currents in the 
sensorimotor cortex of severely paralysed patients to control a prosthetic hand. The patients attempted 
to grasp with or open their paralysed hand while the slow components of MEG signals (slow movement 
fields; SMFs) were recorded. Even without actual movements, the SMFs of all patients indicated 
characteristic spatiotemporal patterns similar to actual movements, and the SMFs were successfully 
used to control a neuroprosthetic hand in a closed-loop condition. These results demonstrate that the 
slow components of MEG signals carry sufficient information to classify movement types. Successful 
control by paralysed patients suggests the feasibility of using an MEG-based neuroprosthetic hand to 
predict a patient’s ability to control an invasive neuroprosthesis via the same signal sources as the non-
invasive method.

Severely paralysed patients and amputees can activate their sensorimotor cortices by attempting to move their 
affected limb1. Invasively recorded signals, such as those taken from an electrocorticogram (ECoG), showed that 
a patient’s attempt to move his paralysed arm resulted in modulations in cortical potentials in the sensorimotor 
cortex that were substantial enough to control a prosthetic arm2. Interestingly, the characteristic features of the 
potentials needed to control the neuroprosthesis were similar to those of non-paralysed subjects: slow corti-
cal potentials (SCPs) and powers of the alpha (8–13 Hz), beta (13–30 Hz), and high-γ  (80–150 Hz) frequency 
ranges3–6. Moreover, these features are also observed in non-invasively recorded signals such as magnetoenceph-
alography (MEG) and electroencephalography7. Notably, even when taken from non-invasive signals, these fea-
tures can infer the intention8–10, types7,11, and even trajectory12,13 of upper limb movements of both paralysed 
patients and non-paralysed subjects. In fact, we have demonstrated that the slow components of MEG signals 
(SMFs), can infer the type and intention of actual hand movements of healthy subjects accurately enough to 
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control a prosthetic arm in real-time14. However, it has not yet been specifically determined whether the SMF can 
infer the attempted movements of paralysed patients precisely enough to control the neuroprosthesis, because the 
cortical potentials of the patients might be altered due to the paralysis.

Paralysis might affect the cortical potentials recorded over the motor cortex and, thus, the performance of a 
brain machine interface (BMI). Previous studies revealed that cortical reorganization took place in both hemi-
spheres in accordance with the degree of motor dysfunction15–26, and that cortical potentials of paralysed patients 
were affected in amplitude and latency from the onset of movement27. Moreover, it has been shown that the 
ECoG of paralysed patients deteriorates in response to different movements, resulting in decreased accuracy of 
decoding6. Thus, the cortical potentials of severely paralysed patients should be non-invasively evaluated before 
the invasive treatment to predict the performance of neuroprostheses. In particular, the information represented 
by the SCP and frequency features should be estimated over the whole brain to evaluate the effect of cortical 
reorganization after paralysis.

In this study, we applied an MEG-based neuroprosthesis to eight severely paralysed patients suffering from 
brachial plexus root avulsion and to one amputee (Table 1), to evaluate the cortical currents representing the 
attempted movements of their affected hands and the performances in controlling the neuroprosthesis. MEG 
signals were recorded during attempts to grasp with or open their affected hand, and during actual execution 
by their intact hand (open-loop session, Fig. 1a). The obtained signals were converted into SMFs and some 
frequency powers to elucidate the appropriate features for controlling the prosthetic hand and a signal source 
reconstruction technique (variational Bayesian multimodal encephalography; VBMEG)28 was used to reveal the 
activated brain areas. Moreover, five patients underwent another measurement with real-time MEG to control a 
neuroprosthetic hand under a closed-loop condition using SMFs evoked by the attempted movements of their 
affected hand (Fig. 1b).

Results
Movement-Related Activity during the Open-Loop Session.  The characteristic activation of MEG 
signals was observed similarly when subjects attempted to move their affected hands and when they actually 
moved their intact hands in the open-loop session. Figure 2a shows a representative mean contour map of the 

Subject ID Age (y)/Sex Diagnosis Hand MMT [0–5] Hand sensation Disease duration (y)

1 58/M R Avulsion 0 0 40

2 49/M R Avulsion 0 0 29

3 50/M R Avulsion 1 0 34

4 48/M R Amputation – – 1.5

5 51/M L Avulsion 0 0 6

6 56/M R Avulsion 0 0 10

7 51/M R Avulsion 0 0 11

8 56/M L Avulsion 0 0 13

9 38/M R Avulsion 0 0 20

Table 1.   Clinical profiles of participants. R, L: right, left; Avulsion: brachial plexus root avulsion; MMT: 
manual muscle test.

Figure 1.  Experimental paradigm and system overview. (a) Experimental paradigm of the open-loop 
session. To begin, one of the movement types, grasp or open, was presented on the screen in front of the patient, 
followed by two “timing cues” and an “execution cue” at an interval of 1 s. The patient then attempted to move 
the affected hand as instructed at the timing of the “execution cue.” Each movement type was repeated four 
times. (b) System overview of the real-time prosthetic hand control. MEG signals from 84 parietal sensors, 
denoted by red dots, were acquired in real-time and analysed on a single computer. The prosthetic hand was 
controlled according to decoders that inferred the timing of movement intention and types of performed 
movements. The patient controlled the prosthetic hand by watching the screen representing the prosthetic hand 
and following the instructions for movements.
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SMF, consisting of 500-ms, time-averaged and normalized MEG signals for each sensor (see Methods), at the time 
of execution cues for movement. For movements of both affected and intact hands, the map shows a dipole pat-
tern centred at the parietal region. Moreover, the SMFs during attempted movements gradually increased around 
the execution cue, peaking during the attempted movements, and their amplitudes depended on the movement 
type (Fig. 2b, lower panel). These spatiotemporal properties of the SMFs represent characteristic features of the 
movement-related cortical field (MRCF)29 during actual movement (Fig. 2c, lower panel), and were similarly 
observed in all subjects for both affected and intact hands. The time-frequency analysis also showed that the tem-
poral frequency pattern during attempted movement was similar to that during the actual hand movement, which 
is represented by event-related desynchronisation of the alpha and beta frequency range (Fig. 2b,c, upper panels).

To determine the signal source of the SMF, the cortical currents were estimated by VBMEG and time-averaged 
to obtain an estimated SCP (eSCP) in the same way as the SMF. As shown in Fig. 3a, when a patient attempted 
to move his completely paralysed right hand, eSCPs were clearly activated in the left sensorimotor cortex (con-
tralateral to the tested hand) and depended on the movement type, similar to the activation during movement of 
his intact left hand (Fig. 3b). The differences in the eSCPs between the two types of movements were evaluated 
by one-way analysis of variance (ANOVA). The F-values, colour-coded on the reconstructed surface of the nor-
malized brain, also show that the eSCP in the contralateral sensorimotor cortex varied significantly between the 
two movement types, similar to those during the actual hand movements (Fig. 3c). Notably, a significant F-value 
in the contralateral sensorimotor cortex was observed in all subjects for movements of their intact hand, and in 
eight of nine subjects (except subject 9) for attempted movements of their affected hands. These results suggest 
that, even during attempted movements of affected hands, the motor representations by cortical currents are pre-
served in the contralateral sensorimotor cortex, and are similar to those during actual movements of intact hands.

Figure 2.  Measured magnetic fields. (a) Normalized slow components of the MEG signals (SMF) of subject 
1 are shown during the attempts to use the completely paralysed (affected) right hand and during actual 
movements of the intact left hand. The SMFs were acquired from 0 to 500 ms relative to the execution cue for 
each sensor and colour-coded according to the colour bar at the location of each sensor. Black arrows indicate 
the sensors used in plots (b,c). R, right; L, left. (b,c) Upper panels show averaged power spectra of the MEG 
signals recorded during attempted hand grasping by the paralysed hand (b) or actual hand grasping by the 
intact hand (c) of subject 1; lower panels show the averaged SMFs during grasping and opening with green and 
red lines, respectively, and their respective standard errors as shaded areas. Time 0 ms denotes the execution cue 
time.
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Figure 3.  Measured cortical activity. (a,b) Normalized, estimated slow cortical potentials (eSCP) are colour-
coded on the normalized brain surface during the attempts of subject 1 to grasp with or open his paralysed right 
hand (a) or performing the same movement with his intact hand (b). The eSCPs were acquired from 0 to 500 ms 
relative to the execution cue. R, right; L, left. (c) The one-way ANOVA F-values for the two movements shown 
in plots (a,b) are colour-coded on the normalized brain surface only for values with significant differences of 
p <  0.05.
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Movement Decoding.  The motor information about movement type and movement intention was eval-
uated by decoding analysis. Classification accuracies were compared between SMFs and powers of the alpha, 
beta, and high-γ  bands. Movement type and intention features were extracted from the 84 parietal MEG sen-
sors (Fig. 1b) and the analysis was performed using a nested cross-validation technique30 and a support vector 
machine (SVM, see Methods).

Movement types were accurately classified using SMFs for both the affected and intact hands without sig-
nificant difference (affected hand, 68.1 ±  12.7% (mean ±  SD); intact hand, 71.8 ±  17.2%; paired two-tailed 
Student’s t-test, p =  0.5680; Fig. 4a). Notably, the classification accuracies varied significantly among different 
features for both affected and intact hands (affected hands: p =  0.0005, F(3,32) =  7.79, one-way ANOVA; intact 
hands: p =  0.0010, F(3,32) =  6.95). The classification accuracies using SMF were the highest among the tested 
features (affected hands: SMF vs. alpha band power, p =  0.0004, SMF vs. beta band power, p =  0.0060, SMF vs. 
high-gamma band power, p =  0.1790, post-hoc Tukey-Kramer test; intact hands: SMF vs. alpha band power, 
p =  0.0005, SMF vs. beta band power, p =  0.0277, SMF vs. high-gamma band power, p =  0.0564).

Similarly, movement intentions were accurately classified using SMFs for both the affected and intact 
hands without significant difference (affected hand, 93.8 ±  3.6% (mean ±  SD); intact hand, 92.1 ±  7.6%; paired 
two-tailed Student’s t-test, p =  0.4407; Fig. 4b). The classification accuracies varied significantly among the 
decoding features (affected hands: p <  0.0001, F(3,32) =  28.70, one-way ANOVA; intact hands: p <  0.0001, 
F(3,32) =  23.52). The classification accuracies using SMF were significantly superior to those of other tested fea-
tures (affected hands: SMF vs. alpha band power, p <  0.0001, SMF vs. beta band power, p =  0.0001, SMF vs. 
high-gamma band power, p <  0.0001, post-hoc Tukey-Kramer test; intact hands: SMF vs. alpha band power, 
p =  0.0001, SMF vs. beta band power, p =  0.0263, SMF vs. high-gamma band power, p <  0.0001). These findings 
demonstrate that the SMFs were capable of extracting motor information about movement type and intention 
with significantly higher accuracy than other frequency features of MEG signals. Moreover, using the SMFs, 
information about hand movements was successfully extracted from MEG signals during the attempted move-
ments of even the affected hands with accuracy comparable to that during the actual movements of intact hands.

Timing of Onset Detection in Open-Loop Session.  To control the neuroprosthetic hand, we used 
an onset detection algorithm14 to infer the timing of movement intention using the SMFs (see Methods). The 
accuracy of the algorithm was evaluated for the MEG signals from − 2000 to 1000 ms of the open-loop ses-
sion (see Methods). The initial time of the inferred movement onset was evaluated in each trial by the nested 
cross-validation technique (see Methods). The algorithm successfully inferred the movement onset to be around 
the peak of the classification accuracy of movement type (0 ms, Fig. 5). Notably, the detected time of movement 

Figure 4.  Classification accuracies for different features. (a,b) Blue and red bars show averaged classification 
accuracy of movement type (a) or movement intention (b) for affected and intact hands, respectively. Error 
bars show 95% confidence intervals of classification accuracy. Dotted lines denote chance level. *p <  0.05 and 
**p <  0.01 significant difference among tested hands (one-way ANOVA with post-hoc Tukey-Kramer).
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onset peaked at − 200 ms for both affected and intact hands. Moreover, the onset was selectively inferred 
within ±  500 ms in 63.0 ±  15.6% (mean ±  SD) and 63.1 ±  16.0% of trials, for affected and intact hands, respec-
tively. Thus, the proposed algorithm succeeded in detecting the point in time at which the classification accuracy 
of the performed movement type was high.

Online Control of the Prosthetic Hand.  Finally, using the algorithm to detect the timing of movement 
intention and the trained decoder to infer movement types, five subjects were tested for their ability to control 
the prosthetic hand in a closed-loop condition (Fig. 1b). The prosthetic hand was controlled to form the inferred 
hand posture at the predicted onset of the attempted movement. The subjects successfully controlled the pros-
thetic hand by attempting to move their affected hands following the instructions to grasp with or open the 
prosthetic hand (see Methods, Fig. 1b). For example, subject 1 succeeded in achieving 10 correct inferred move-
ment types out of 12 detected onsets within specific periods in which they were instructed to initiate movements 
(83.3%) and without any actual body movements (Supplementary Video 1). The accuracy to infer movement 
type was significant for two of the five subjects (Table 2; p <  0.05, one-tailed Fisher’s exact test). Moreover, the 
movement onset was selectively detected during the specific periods to initiate movements, with a statistical sig-
nificance for two subjects (Table 3; p <  0.05, one-tailed Fisher’s exact test). Notably, to move the prosthesis into the 
instructed posture, the subjects needed, on average, only a few onset detections (1.28 ±  0.57 times, mean ±  SD). 
Thus, we demonstrated that severely paralysed subjects successfully controlled the non-invasive neuroprosthetic 
hand in the closed-loop condition using attempted movement of their paralysed hands.

Discussion
We previously developed and tested on healthy subjects a novel neuroprosthetic hand that used real-time MEG 
signals for movement14. Here, we tested this neuroprosthetic hand on severely paralysed patients and an amputee 
to evaluate their ability to control the prosthesis through the slow components of the MEG signals. We demon-
strated that the slow components conveyed enough information about the affected hands to infer the timing 
and type of the attempted movements and to control a neuroprosthetic hand in real-time. Moreover, the slow 

Figure 5.  Offline evaluation of onset detection. Blue and red lines denote average of first onset detection 
rate in each time bin for movement of affected and intact hands, respectively. The shaded area shows standard 
deviation. The N.D. (not detected) bars denote rate of trials in which no onsets were detected. The error bars of 
the N.D. bars show their standard deviations. For each trial, first onset was searched beginning at − 2000 ms. 
Time 0 ms denotes target time to detect, which is the training time of the class decoder in the training dataset.

Subject ID Accuracy (%)

Movement instruction / Inferred movement

p-valueGrasp/Grasp Grasp/Open Open/Grasp Open/Open

1 83.3 4 1 1 6 0.046

2 66.7 8 1 8 10 0.033

3 42.9 1 2 6 5 0.904

4 42.9 4 2 6 2 0.825

5 42.3 4 11 4 7 0.831

Table 2.   Summary of movement type decoding results in closed-loop prosthetic hand control. p-values are 
of one-sided Fisher’s exact test.
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components of the MEG signals appear to reflect the slow components of the cortical potentials in the sensorimo-
tor cortex related to motor information. Although further studies are required, these results suggested that this 
MEG-based BMI might estimate the ability of paralysed patients to control an invasive neuroprosthesis using the 
slow cortical potentials of the ECoG signals.

Characteristic activations of the cortical potentials were observed in the sensorimotor cortex during the 
attempted movements of affected hands. Some invasive studies using ECoG or intracortical signals have reported 
that, in the sensorimotor cortex, the characteristic features of movement-specific activities such as evoked activity 
of alpha, beta and high-γ  frequency ranges are preserved even in severely paralysed patients2,6,31. This is the first 
report in which a non-invasive whole brain study showed significant modulation of cortical currents depend-
ing on movement type. The characteristic time course of the SMF and the cortical distribution of the eSCP 
estimated from MEG signals suggest that the SMFs originated from the movement-related cortical potentials 
(MRCPs)29,32,33, which gradually increased prior to the movement onset, peaked during the movement, and were 
predominantly observed in the sensorimotor cortex contralateral to the movements. Our results show that even 
attempted movements of affected hands elicited significant MRCPs in the sensorimotor cortex contralateral to the 
hand and specifically depended on the attempted movement type. Actually, the requested movement type for the 
affected hand was inferred without significant difference in accuracy compared to that for the intact hand; how-
ever, even a small decrement in accuracy might be due to the lower amplitude of the MRCFs during the attempts 
to move the affected hand compared to that during actual movement.

In contrast to the similar activation in contralateral sensorimotor cortex, our results also showed that the 
ipsilateral sensorimotor cortex was differently activated during movements of intact and paralyzed hands. A 
previous study using transcranial magnetic stimulation suggested that there was cortical reorganization in the 
ipsilateral sensory motor cortex after amputation26. Our results are consistent with asymmetric brain activations 
for the intact and paralyzed hands. Notably, the current estimation technique from MEG signals demonstrated 
its potential for imaging brain activity related to the reorganization. Classification analysis using the estimated 
cortical currents would reveal cortical reorganization in the ipsilateral sensorimotor cortex in terms of neural 
information.

The MEG-based neuroprosthesis examined here is the first non-invasive BMI controlled by severely para-
lysed patients by combining motor information about both movement type and intention. Our previous study 
using ECoG revealed that motor information about movement intention was preserved even among severely 
paralysed patients, whereas motor information about movement type varied widely6. Most of the previously 
reported non-invasive BMIs controlled the prosthesis based on preserved motor information about movement 
intention extracted using alpha and beta frequency powers in the sensorimotor cortex8–10,34–36. However, as shown 
in our results, these features are not good at distinguishing multiple movement types and can only discriminate 
a moving (movement imaging) state from a resting state. By contrast, our MEG-controlled neuroprosthetic hand 
inferred not only movement timing, but also movement type. It enabled the paralysed patients more natural and 
sophisticated control of the prosthesis to perform multiple movements. Moreover, as the amount of motor infor-
mation varies from patient to patient6, the proposed BMI can be adapted for individual patients based on how 
much motor information can be derived from their brain signals, thereby maximising performance by inferring 
movement timing in those patients without movement-type information.

The performance of our system showed comparable accuracy to recent MEG-based BMI study. It is difficult 
to compare our results to other studies, because our system is the first non-invasive BMI combining motor infor-
mation about both movement type and intention. However, from the point of view of onset detection, Foldes  
et al. reported that paralysed patients succeeded to keep the BMI-controlled hand open for 5s in 28− 64% of trials, 
with successful grasping in 63.3− 76% of trials, using movement intention37. These accuracies are comparable to 
the performance in this study.

Moreover, the performance of our system might be improved, however, by refining the hardware and training 
the patients to use the prosthetic hand. Previous studies reported that the delay of visual feedback deteriorated 
tracking performance38–40. In our system, an intention required a delay of approximately 830 ms to control the 
prosthesis. The performance of the real-time control might be increased by improving the processing speed of 
the system. In addition, the results of this study indicated that some frequency features also contain information 
about movements. By improving the speed, the system may be able to handle these features, whose calculations 
are time-consuming. Moreover, previous studies revealed that the performance of the BMI was improved by 
training with feedback8,41. By combining minimisation of the delay and training, the performance of the pros-
thetic hand control is expected to improve.

Subject ID Accuracy (%) TP FP FN TN p-value

1 58.3 11 7 8 10 0.253

2 64.0 21 14 4 11 0.031

3 74.2 13 6 2 10 0.006

4 63.6 12 7 5 9 0.114

5 62.5 17 12 3 8 0.078

Table 3.   Summary of movement onset detection results in closed-loop prosthetic hand control. p-values 
are of one-sided Fisher’s exact test; TP, FP, FN, TN: numbers of – true positive, false positive, false negative, true 
negative – detections.
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The performance of our MEG-based neuroprosthesis might reflect a patient’s ability to control an invasive 
BMI using the SCPs in the sensorimotor cortex. The source localization analysis showed that the observed SMFs 
had characteristics of the MRCFs and originated from the SCPs in the sensorimotor cortex, which are used in the 
ECoG-based BMI6,42. Moreover, previous studies revealed that appropriate feedback using a real-time BMI was 
able to enhance cortical function43,44 and to improve the BMI performance itself 8,36. By using signals common to 
both the invasive and the non-invasive BMI, the proposed non-invasive BMI might possibly be used to evaluate 
and train a patient’s individual ability to control an invasive BMI.

Methods
Subjects.  Eight brachial plexus root avulsion patients (Subject 1–3, 5–9) and one amputee (Subject 4) (nine 
men; mean age 50.8 years, range 38–58 years) participated in this study. All subjects were right-handed. Their 
clinical profiles are listed in Table 1. All subjects were informed of the purpose and possible consequences of this 
study, and written informed consent was obtained. All experimental procedures were performed in accordance 
with protocols approved by the ethics committee of Osaka University Hospital (# 12107).

Task.  Open-loop session.  Subjects were instructed to grasp with or open the intact hand or to attempt these 
movements with the affected hand once at the time of the execution cues given visually and aurally every 5.5s, 
40 times for each movement type (Fig. 1a). To reduce motion artefacts, the subjects were instructed to perform 
the attempt or actual movement without moving any other body part. The type of movement to perform was 
presented visually with either the Japanese word for “grasp” or “open.” After the movement type instruction, four 
execution cues were given to the subject. The order of the movement type instructions was randomized.

Closed-loop session.  Visual feedback was given to subjects with a screen fixed in front of them, showing a picture 
of the prosthetic hand in real-time and the instruction monitor (Fig. 1b). The instruction monitor displayed either 
the Japanese word for “grasp” or “open” alternately every 7s for a total of 22 instructions. Subjects were told to 
control the prosthetic hand by following the instruction (grasp or open), using the same attempts to move their 
affected hand as in the open-loop session.

Experimental Procedure.  Subjects participated in one open-loop session in which they were instructed 
to move their intact hand, and in another open-loop session to attempt movements of their affected hand. Five 
subjects (subjects 1–5) joined one closed-loop session after the open-loop session for the affected hand to perform 
the online control of a prosthetic hand. In the closed-loop sessions, a real-time decoder, which was trained with 
decoding features calculated from the previous open-loop session, controlled the prosthetic hand. To control the 
prosthetic hand, the subjects were instructed to perform the same movements performed in the open-loop ses-
sions. In the beginning of each closed-loop session, the experimenter modulated the thresholds of the real-time 
decoder to detect movement intention. Then, the subjects controlled the prosthesis with a fixed threshold to eval-
uate the performance of the prosthesis. To avoid fatigue, each subject participated in only one closed-loop session 
for evaluation, and did not have enough time to be trained with the prosthetic hand control.

Recording Method and Data Collection.  Figure 1b shows an overall schematic of the system. The sub-
jects lay in a supine position with a cushion placed under their elbow to reduce artefacts caused by shoulder 
movements. A projection screen fixed in front of their face presented visual stimuli using a presentation system 
and a liquid crystal projector. Neuromagnetic brain activity was measured by a 160-channel whole-head MEG 
housed in a magnetically shielded room. The MEG signals were sampled at 1000 Hz with an online low-pass filter 
at 200 Hz and acquired online by FPGA DAQ boards after passing through an optical isolation circuit. Subjects 
were instructed not to move their head to avoid motion artefacts. The head position was measured by five marker 
coils attached to the subject’s face to estimate cortical currents before each session.

Real-Time Decoding and Prosthetic Hand Control.  Using an algorithm we developed previously14, a 
prosthetic hand was controlled by neuromagnetic activity evoked by the patient’s attempts to move their affected 
hands. MATLAB R2013a (Mathworks, Natwick, MA, USA) was used to calculate decoding features and to control 
the prosthetic hand in real-time. In the open-loop session, MEG signals from 84 parietal sensors (Fig. 1b) were 
averaged over 500 ms and were z-scored using the mean and standard deviations estimated from the initial 50s of 
the session to acquire the SMF. The SMF was calculated with its time window beginning at − 2000 and continuing 
to 1000 ms with respect to the time of the execution cue, shifting by 100 ms. To control the prosthesis in the subse-
quent closed-loop sessions, a real-time decoder was trained using the SMFs from the previous open-loop session. 
In the closed-loop session, the real-time decoder estimated the confidence values of movement intention via the 
radial basis function (RBF) kernel SVM in LIBSVM toolbox45 and the Gaussian process regression46 in the GPML 
toolbox47, using the latest SMF every 200 ms (see Supplementary Fig. S1). We used an onset detection algorithm 
combining these two confidence values to detect the timing of the patient’s intention to move their affected hands. 
In the algorithm, an onset was detected when both of the confidence values exceeded their respective thresholds, 
which were set manually. To avoid multiple detections in a single intention, onsets detected within 1.5s from the 
first detection were ignored. At the time of the detected onset, the attempted movement type (grasp or open) was 
inferred by another RBF kernel SVM, and the prosthesis was controlled to form the hand shape of the inferred 
movement type. The prosthetic hand used in this study was developed by Dr. Hiroshi Yokoi to imitate the human 
distal upper limb. Ten servo motors controlled the joints in each finger, which had 2 degrees of freedom, using 
flexible wires in a coordinated manner to form a grasping or opening hand shape. The overall delay from the 
MEG system to the visual feedback of the prosthetic hand was around 830 ms in total: real-time data acquisition, 
~20 μ s; data processing, ~70 ms; the time window for the SMF, 500 ms; prosthetic hand control, ~150 ms; projec-
tion to screen in MEG room including video recording, ~110 ms.
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Analysis of Offline Data.  Cortical current estimation by VBMEG.  A reconstruction of the cortical sur-
face was constructed based on MR structural images using FreeSurfer image analysis48. Using the VBMEG, we 
estimated 4004 single-current dipoles that were equidistantly distributed on and perpendicular to the cortical 
surface. The method calculated an inverse filter to estimate the cortical current for each dipole from the selected 
MEG sensor signals. The hyperparameters m0 and γ 0 were set to 100 and 10, respectively. The inverse filter was 
estimated using MEG signals from 0 to 1000 ms relative to the execution cue, with a baseline of the current vari-
ance estimated from the signals from − 1500 to − 500 ms. The filter was then applied to sensor signals in each trial 
to calculate cortical currents.

Classification accuracy in the open-loop session.  MEG signals from 84 parietal sensors were converted to SMF 
by averaging over 500 ms and normalizing to a z-score from a 50-s period at the beginning of the session in the 
same way as the online-acquired features. The powers of three frequency bands (alpha: 8− 13 Hz; beta: 13− 30 Hz; 
high-γ : 80− 150 Hz) were calculated by the fast Fourier transform from the same signal used to obtain the SMF, 
and likewise converted to frequency-domain features. Classification accuracy to infer movement type was esti-
mated with decoding features that were calculated at each 500-ms time window starting at − 500 and continuing 
to 500 ms relative to the execution cue, shifting by 100 ms. Nested cross-validation was adopted for classification 
to avoid overestimation of the decoding accuracy49. Each test dataset was classified by a decoder trained with the 
RBF kernel SVM using decoding features at a certain time window and the hyperparameters gamma and cost of 
the SVM (see Supplementary Fig. S2). The time window and hyperparameters were selected only based on the 
training dataset; thus, they were always selected independently from the test dataset.

The movement intention was also inferred by nested cross-validation, optimizing the hyperparameters with 
combined decoding features of 11 time windows from − 2500 to − 1000 ms as resting and those from − 500 to 
1000 ms as features during intention. All decoding analyses were performed in MATLAB R2007b using the RBF 
kernel SVM.

Offline evaluation of onset detection.  The algorithm of the real-time decoder was adapted to the SMFs in the 
open-loop session using ten-fold cross-validation to evaluate timing of the onset detection. The real-time decoder 
was trained with a training dataset, and the time of the first onset detection was pinpointed in each trial within 
the test dataset. The search started at − 2000 ms relative to the time at which the classification accuracy of the 
movement types peaked within the training dataset, and continued until 1000 ms. During the searched period, 
the SMFs were tested at an interval of 200 ms.

Analysis of Online Performance
To evaluate the selectivity of onset detection in the closed-loop session, the session was divided into two sections 
depending on the instruction relative to the current state of the prosthetic hand: “same-state” in which instruc-
tion and current state were the same (no need to move the prosthetic hand) and “different-state” in which they 
differed (need to move the prosthetic hand). Each section was classified by the detection of onset within the 
section (true positive: different-state section with onset detection; false positive: same-state section with onset 
detection; false negative: different-state section without onset detection; true negative: same-state section without 
onset detection; for an illustration of this evaluation method, see Supplementary Fig. S3). The recorded times of 
onset detections were corrected by subtracting 70 ms, the system delay required to detect onset. Selectivity of the 
onset detection in the closed-loop session was tested using a one-tailed Fisher’s exact test based on the classified 
sections. The decoding performance of movement types in the closed-loop session was evaluated by the number 
of correctly inferred movement types at all onset detections during which the patients intended to move their 
affected hands (different-state sections). Selectivity of the movement types in the closed-loop session was tested 
using a one-tailed Fisher’s exact test.
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