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Abstract

Movement, the fundamental component of behavior and the principal extrinsic action of the brain, 

is produced when skeletal muscles contract and relax in response to patterns of action potentials 

generated by motoneurons. The processes that determine the firing behavior of motoneurons are 

therefore important in understanding the transformation of neural activity to motor behavior. Here, 

we review recent studies on the control of motoneuronal excitability, focusing on synaptic and 

cellular properties. We first present a background description of motoneurons: their development, 

anatomical organization, and membrane properties, both passive and active. We then describe the 

general anatomical organization of synaptic input to motoneurons, followed by a description of the 

major transmitter systems that affect motoneuronal excitability, including ligands, receptor 

distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is 

the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through 

ionotropic receptors. These amino acids signal the principal motor commands from peripheral, 

spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and 

neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate 

motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second 

messenger systems, their actions converge on common effectors, e.g., leak K+ current, cationic 

inward current, hyperpolarization-activated inward current, Ca2+ channels, or presynaptic release 

processes. Together, these numerous inputs mediate and modify incoming motor commands, 

ultimately generating the coordinated firing patterns that underlie muscle contractions during 

motor behavior.

I. INTRODUCTION

Motoneurons transform the internal actions of the brain into behavior, translating patterns of 

interneuronal activity into commands for skeletal muscle contraction and relaxation. Every 

movement, whether simple (kneejerk reflex, postural maintenance), rhythmic (locomotion, 

respiration), or complex (playing the piano, hitting a baseball, speaking), is the consequence 

of a highly detailed and precise pattern of activity of many populations of motoneurons, 
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convolved with the biomechanical properties of the skeletomuscle system. Although the 

signal processing underlying the distribution of inputs between and within motoneuron pools 

determines the basic features of any movement, the final arbiters of nervous system output 

are motoneurons. How motoneurons respond to their inputs, and how their responses are 

regulated, is of interest and the subject of this review.

Sherrington (1142) introduced the concept of motoneurons as the final common path, 

representing the penultimate link between the central nervous system (CNS) and motor 

behavior. Since then, motoneurons have attracted the attention of investigators studying the 

cellular physiology of central neurons for several reasons. 1) The function of motoneurons is 

well defined, i.e., causing contraction of striated muscle. 2) With the advent of intracellular 

recording techniques, it was possible to study the electrical properties of these large 

accessible neurons, which can be readily identified in physiological experiments by 

antidromic invasion from specific muscle nerves (141). 3) Multisensorial inputs from 

muscles, joints, and skin produce synaptic potentials in motoneurons, and experimental 

access to these pathways paved the way for studies of synaptic transmission in the CNS and 

of simple reflex pathways in mammals (317, 436). Numerous major reviews have been 

published on motoneuron physiology; among the more notable are References 49, 107, 161, 

162, 475.

From Sherrington to Eccles, motoneurons were the paradigmatic neurons of the brain. Many 

fundamental and general properties of neurons and synaptic transmission were first 

identified in motoneurons, e.g., quantal release, inhibitory transmission, and the consequent 

conclusion that chemical neurotransmission is the principal form of interneuronal 

communication. In the past decade, interest in motoneurons has waned as intense 

investigation of other regions of the brain has led to an encyclopedic identification of 

neuronal properties not typically associated with motor control, e.g., long-term potentiation 

observed in hippocampal neurons and proposed to be a component of learning. One 

difficulty in contextualizing all of this information is that many of these well-characterized 

properties have been identified in neurons in the absence of data concerning how these 

neurons process signals in actual behavior. Here, motoneurons have a unique advantage 

since we know precisely 1) the information coding of their output signals, i.e., contraction of 

the innervated muscle fibers, and; 2) in many cases, their activity during complex behaviors, 

either indirectly by observing movements or recording muscle activity, or directly by 

recording from their axons or better yet their cell bodies. This provides a context for 

understanding and interpreting data that should be more highly valued. One goal in this 

review is to emphasize this perspective. We review studies, with emphasis on recent work, 

describing the passive and active membrane properties of spinal and cranial motoneurons, 

anatomical organization of their synaptic input, and the actions of different transmitter 

systems on the control of motoneuronal excitability (see Fig. 1). Most of these studies were 

done without addressing issues that were and remain the focus of many studies of 

motoneurons, such as the physiological relevance and characterization of 1) different motor 

unit types, e.g., fast fatigue resistant, fast fatigable, slow fatigue resistant; 2) the mechanisms 

underlying their orderly recruitment, i.e., the size principle; and 3) the synaptic inputs from 

multiple classes of afferent fibers. We refer the reader to several excellent reviews on these 
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important issues (49, 107, 475, 1103). We further limit our discussion to mammalian α-

motoneurons, with a few notable exceptions involving motoneurons from other vertebrates, 

where some motoneuronal properties have been studied in more detail. There are important 

differences between the properties of motoneurons in newborn compared with those in adult 

mammals, both with respect to cellular properties and actions of transmitters; where such 

differences may reflect on the control of excitability, we have separated the description of 

the two groups.

II. MOTONEURONS

A. Embryonic Development and Anatomical Organization of Motoneurons

Motoneurons are generated from progenitor cells in the ventral region of the neural tube 

early in embryonic development (145, 1230). The inductive signal in this process is the 

Sonic Hedgehog glycoprotein (SHH), which is secreted by axial mesodermal cells of the 

notochord (214, 319, 339, 340, 799, 1054, 1397). The extracellular matrix protein 

vitronectin may act as a downstream effector or a synergistic factor in SHH-induced 

motoneuron differentiation (803). The transcription factor MNR2 functions as a neural 

determination gene, and its expression initiates motoneuron differentiation (1233). Further 

motoneuronal differentiation requires expression of the LIM homeodomain transcription 

factor, Islet1 (Isl-1), since animals in which Isl-1 function has been eliminated do not 

generate motoneurons (980). Diversification of motoneuron subtypes in the spinal cord is 

controlled by the differential expression of four LIM homeodomain proteins (Isl-1, Isl-2, 

Lim-1, Lim-3) (32, 763, 1230, 1254, 1276). At the time of their birth, all classes of 

motoneurons express Isl-1 and Isl-2, but at the time of axon extension, the four LIM factors 

show a stereotyped expression pattern in functional subclasses of spinal motoneurons: 1) 

motoneurons innervating axial muscles express Isl-1, Isl-2, and Lim-3; 2) motoneurons 

innervating ventral limb muscles and body wall express Isl-1 and Isl-2; and 3) motoneurons 

innervating dorsal limb muscles express Lim-1 and Isl-2. Early-born motoneurons in the 

lateral motor column (LMC) at the brachial and lumbar levels synthesize a retinoid that 

induces late-born LMC motoneurons to migrate past the early-born LMC motoneurons to 

the ventrolateral spinal cord (1172); this suggests that neuronally released retinoids may 

coordinate subtype identity of spinal motoneurons innervating limb muscles. Genes of the 

LIM homeodomain class are also expressed differentially among cranial motor nuclei 

(1307). Their function is presently unknown; they may regulate receptors for guidance cues 

that direct axons selectively along distinct pathways to regions outside the spinal cord (763). 

Thus inductive signals from the notochord establish the identity of motoneurons, and local 

signals (possibly from the paraxial mesoderm) induce a differential expression pattern of 

LIM factors determining the motoneuronal subtype. Once the induction and functional 

differentiation of motoneurons has occurred, survival of developing motoneurons depends 

on muscle-derived factors and/or functional changes in the state of the motoneurons, i.e., 

from growing cells to transmitting cells (440, 936). The nature of the muscle-derived growth 

molecules is largely unknown, but one, hepatocyte growth factor/scatter factor, is necessary 

for survival of a subpopulation of limb-innervating motoneurons (1399). The molecular 

basis for motoneuronal innervation of specific muscles is being elucidated in model systems 

such as chick hindlimb muscles, zebrafish axial muscle, and Drosophila abdominal body 
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wall muscle (cf. Ref. 325). However, the genetic determinants controlling subtype-specific 

development of motoneuronal morphology, intrinsic electrical properties, and CNS 

connectivity are largely unknown.

In the fully developed mammal, motoneuron groups are somatotopically organized (475, 

502, 822, 916, 1055). Spinal cord motoneurons are in lamina IX of the ventral horn, divided 

into a medial and a lateral column. Motoneurons in the medial column innervate axial 

muscles, and those in the lateral column, present at the cervical, upper thoracic, and 

lumbosacral levels, innervate limb muscles. In the lateral column, motoneurons innervating 

distal muscles are more dorsal. In the rostrocaudal direction, motoneuron groups innervating 

single muscles span one to several spinal segments. Cranial, i.e., brain stem, motoneurons 

are not organized in a continuous column as in the spinal cord but form distinct nuclei, with 

an intrinsic somatotopic organization (297, 664).

The size and dendritic arborization of spinal and cranial motoneurons vary considerably. 

Consider, for example, cat hindlimb motoneurons. They have medium to large somata with 

a diameter of 30–70 µm (246, 1287, 1298, 1435) and 5–20 stem dendrites, which have a 

diameter of 0.5–19 µm and ramify extensively over a mean path length of ~1,200 µm, giving 

rise to ~150 dendritic terminations. The dendrites tend to project in the longitudinal 

direction (247), a phenomenon seen in many types of spinal motoneurons (178, 283, 1189).

B. Passive Membrane Properties of Motoneurons

The dendritic membrane constitutes >97% of the total membrane surface area in cat spinal 

motoneurons (246), with 61% of the stem dendrites and 12–33% of more distal dendrites 

covered by synaptic boutons (937). Consequently, the vast majority of synaptic inputs to 

motoneurons are dendritic, and integration of synaptic potentials is heavily influenced by the 

passive membrane properties of the dendrites (548, 1024). Synaptic current generated in a 

dendrite attenuates as it spreads electrotonically toward the soma, escaping through open 

channels in the membrane and charging the dendritic membrane capacitance. Determination 

of the geometrical features of the dendritic tree together with electrical parameters of the 

membrane [membrane resistance (Rm), membrane capacitance (Cm), and cytoplasmic 

resistivity (Ri)], provides an estimate of the attenuation of synaptic potentials. One useful 

parameter is the length constant, or space constant (λ), which is the distance over which a 

steady-state voltage is attenuated to 1/e (0.37) of its initial value.

Estimates of the electrotonic length of cat spinal motoneurons, based on recordings with 

sharp intracellular electrodes (which introduces an artifactual somatic shunt) and 

morphological reconstructions of the dendritic tree, are between 1.1 and 1.6 λ (63–65, 336, 

369, 1288). Whole cell patch-clamp recordings (reducing somatic shunt artifacts) with two 

electrodes on the same soma from spinal cord motoneurons in juvenile rats estimates 

electrotonic length of uncut dendrites at 0.85 λ (1247). Thus a substantial fraction of a direct 

current in the dendrite reaches the motoneuronal soma, making the neuron relatively 

compact electrotonically for slowly changing currents. However, synaptic potentials have 

fast rise times, and the low-pass filtering properties (due to membrane charging) of dendrites 

distort and attenuate a synaptic signal more strongly than an applied steady-state voltage. 

This strong filtering property in cat motoneurons is mainly the result of a large membrane 
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capacitance, and peak attenuations measured for fast synaptic currents in the distal dendrites 

range over 20- to 30-fold. A more direct approach to the measurement of dendritic 

attenuation is to study spinal motoneurons in culture (Fig. 2) (706, 1290). The electrotonic 

length of these neurons is ~0.7 λ; dual recordings (one electrode on the soma and one on a 

dendrite) give a 1/e attenuation corresponding to ~260 µm for excitatory postsynaptic 

potentials (EPSP) travelling from the dendrite to the soma (706). Interestingly, EPSP 

travelling from the soma to the dendrite are attenuated much less (1/e attenuation of ~710 

µm), a result predicted by cable theory (188). The overall picture of the passive properties of 

motoneurons in culture is that the soma and dendrites are roughly isopotential for slowly 

varying potentials with fast voltage transients arising from synaptically generated currents 

more strongly filtered. Thus dendritic EPSP should produce smaller and more slowly 

changing somatic depolarization that could bring the membrane potential above threshold 

for firing but with a smeared temporal relation to underlying synaptic potentials. In contrast, 

EPSP in the somatic region should rise sufficiently fast that if they were above threshold, an 

impulse would be generated in close synchrony with the incoming synaptic potential.

Spatial differences in the membrane resistivity will also affect integration of synaptic input. 

For example, in cat spinal motoneurons, the somatic membrane has a lower resistivity than 

the dendritic membrane (179, 369, 1288), perhaps due to the presence of somatic voltage-

dependent K+ channels (179). However, this difference may instead be due to a shunt 

induced by the recording pipette (1247). Ongoing synaptic input will also change the 

resistance of the dendritic membrane and the driving force for the synaptic current, and 

consequently affect synaptic integration. An estimated fivefold decrease in the membrane 

resistivity will result if all of the excitatory boutons impinging on a spinal motoneuron 

release transmitter at a rate of 30 quanta/s (107). The synaptically generated shunt of the 

motoneuronal membrane in an intact behaving animal has yet to be measured.

C. Active Membrane Properties of Motoneurons

The dynamic regulation of motoneuronal excitability is largely determined by voltage-gated 

channels, which also are the targets for several neuromodulators affecting excitability (Table 

1).

1. Na+ currents—All motoneurons have a fast inactivating Na+ current (INa i), which 

underlies Na+-dependent action potentials. The exact membrane distribution of inactivating 

Na+ channels (Nai channels) is presently unknown. Because action potentials initiate in the 

unmyelinated initial axon segment, this region may have a higher concentration of Nai 

channels (34, 66, 141, 200, 240, 861, 1114). Normally, initial segment action potentials 

invade the somatodendritic membrane and give rise to action potentials, with inflections in 

typical intracellular recordings referred to as IS and SD spikes (66, 240, 454, 870, 919). Na+ 

channels in the dendritic membrane have not been demonstrated directly in motoneurons in 

vivo or in acute brain slices, but there is evidence for backpropagating Na+-dependent spikes 

in dendrites of cultured spinal motoneurons (707, 766). The voltage dependence and kinetics 

of activation and inactivation of Na+ channels in motoneurons are difficult to study, because 

motoneurons are not ideal for voltage-clamp techniques requiring a high time resolution. 

Because of their complex electrotonic structure, motoneuron membrane charging is slow; 
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reliably controlling membrane voltage, i.e., obtaining a good “space clamp,” is not possible. 

In two-electrode voltage-clamp recordings from spinal motoneurons, the somatic INa i in 

spinal motoneurons activates and inactivates rapidly (τ ~1 ms; range, 0.1–1.3 ms depending 

on voltage) and exhibits some steady-state inactivation at resting membrane potential (66). 

The somatic membrane of neonatal rat spinal motoneurons has tetrodotoxin (TTX)-sensitive 

14-pS conductance Nai channels (1068). Activation occurs between −60 and −20 mV, and 

inactivation kinetics are fitted by a single exponential function (τ ~1–4 ms) with a half-

maximal potential of −82 mV. Interestingly, recovery from inactivation is rather slow (τ 

~154 ms), suggesting that control of firing frequency in motoneurons is affected by recovery 

time from Nai channel inactivation. However, whether these values from the neonate are 

comparable to values in the adult CNS is unknown.

A persistent, i.e., noninactivating, Na+ current (INa p) is present in facial, hypoglossal, and 

trigeminal motoneurons (205, 870, 919). INa p activates below spike threshold, which would 

accelerate subthreshold membrane depolarization to spike threshold. INa p may represent Nai 

channels in a noninactivating gating mode, rather than a distinct type of Na+ channels (148, 

243).

2. K+ currents—K+ channels are principal determinants of the subthreshold membrane 

behavior, action potential shape, and firing properties of motoneurons and are also important 

targets for neuromodulators affecting motoneuronal excitability. Several distinct types of K+ 

conductances are found in motoneurons (825).

The resting membrane potential of cat spinal motoneurons in vivo is typically between −65 

and −75 mV (458, 459, 993, 1421), positive to the equilibrium potential for K+ (EK). This 

suggests that resting membrane potential is the result of balance between outward K+-, 

inward Na+-, and Cl−-leak conductances. The relative contribution of these leak currents in 

motoneurons under in vitro conditions is estimated as gNa/gK = 0.13 and gCl/gK = 0.25 

(372). Other ionic currents, such as the inward rectifier K+ current (IKir), hyperpolarization-

activated inward current (Ih), transient outward K+ current (IA), and Ca2+-activated K+ 

currents also contribute to the resting membrane potential (74, 525, 667, 701, 1261).

Inward rectifier currents, i.e., currents that reduce upon depolarization and increase with 

hyperpolarization, are mediated by Kir channels (481, 912, 1065). In some neurons, inward 

rectifiers are active at resting membrane potential, giving rise to a steady outward current, 

which is in balance with leak inward currents. When the membrane is relatively 

unperturbed, this equilibrium ensures that the membrane potential is stable near EK. 

However, if the membrane is depolarized, Kir channels close (due to a voltage-dependent 

block by polyamines and Mg2+), releasing the membrane to depolarize further (anomalous 

rectification). Transmitters acting on the Kir channels (through second messenger systems) 

can have a powerful influence on neuronal excitability by reducing the stabilizing action of 

the Kir current. Recently, several novel inwardly rectifying K+ channels (Kir2.1, Kir2.2, 

Kir2.4, GIRK1–3) have been identified in brain stem motoneurons (607, 1261). Remarkably, 

expression of Kir2.4 transcripts appears restricted to brain stem motor nuclei. Transcripts 

appear to be absent in higher brain structures. In hypoglossal motoneurons, block of IKir2.2 
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and IKir2.4 by extracellular Ba2+ leads to depolarization and firing, suggesting that these and 

related conductances indeed contribute to the motoneuronal resting membrane potential.

Delayed rectifier (IKdr), transient outward (IA), Ca2+-activated K+ [IK Ca(BK), IK Ca(SK)], and 

leak currents shape the membrane trajectory of action potentials and associated 

afterhyperpolarizations in motoneurons. The delayed rectifier is a sustained outward K+ 

current (1065) activated by depolarization, with slower activation kinetics than INa i (90% 

complete within 5 ms, Ref. 62). It contributes to the falling phase of the action potential and 

the fast afterhyperpolarization (fAHP). External tetraethyl-ammonium (TEA) blocks the 

delayed rectifier, lengthening action potential duration and blocking fAHP in motoneurons 

(62, 205, 523, 870, 919, 1113, 1213, 1311). Unitary K+ currents of the delayed rectifier type, 

observed in patches from the soma of neonatal spinal motoneurons (1068), have a ~10-pS 

channel conductance (in normal Ringer solution), activate between −70 and 0 mV, and 

deactivate slowly (60 ms at −60 mV).

IA is a transient, i.e., rapidly inactivating, outward K+ current activated by depolarization, 

that is deinactivated by hyperpolarization (481, 1065), affecting the onset and steady-state 

firing of motoneurons (525, 919, 1068, 1213, 1311). In trigeminal motoneurons (525), IA 

activates around −55 to −60 mV (preceded by a “priming” hyperpolarization), peaks within 

5 ms, inactivates with a time constant of 6–8 ms, and is partially activated at resting 

membrane potential (525). In spinal motoneurons of neonatal rat, IA activates between −60 

and −20 mV, quickly inactivates (τ ~15–60 ms), and has a conductance of ~19 pS in normal 

Ringer solution (1068). In motoneurons, 4-aminopyridine (4-AP) blocks IA, prolonging 

spike repolarization, and reducing fAHP (525, 919, 1213, 1311, 1425). However, it is 

unclear whether IA affects the interspike interval, since interspike hyperpolarizations in 

motoneurons may be too small to deinactivate IA (525). If IA indeed is active at resting 

membrane potential, it could affect the onset of firing by delaying the occurrence of the first 

spike in response to a strong depolarizing input.

Ca2+-activated K+ currents are ubiquitous, found in all neurons. They are the result of large 

(BK) and small conductance (SK) K+ channels gated by a rise in intracellular Ca2+, and in 

the case of the BK channels, also by voltage (1065). Both IK Ca(BK) and IK Ca(SK) are present 

in motoneurons (205, 463, 523, 647, 666, 667, 826, 870, 918, 919, 1070, 1213, 1291, 1311). 

IK Ca(BK), which also is called Ic, is selective for K+ and activates after an influx of Ca2+ 

during an action potential. In the absence of IK Ca(BK), the falling phase of the action 

potential is prolonged (1213, 1291, 1311). In patches from cultured mouse motoneurons and 

with symmetrical K+ concentrations (140 mM), BK channels have a large conductance (240 

pS), a sigmoidal dependence on potential, an increased open probability with increased Ca2+ 

concentration, an inactivation time constant of 40 ms at low Ca2+ concentration (0.5 µM), 

and are blocked by external TEA (825, 826). Unitary Ca2+-activated K+ currents of the BK 

type in soma membrane patches of rat spinal motoneurons (1070) have a conductance of 82 

pS in normal Ringer solution, are activated by intracellular Ca2+ and depolarization, activate 

rapidly (within 2–3 ms with 10−4 M Ca2+ internally and depolarization to −50 mV), do not 

inactivate in 100 µM internal Ca2+, and are blocked by external TEA and charybdotoxin.
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IK Ca(SK) is a Ca2+-activated, voltage-independent K+ current blocked by the bee venom 

apamin and is the dominant conductance underlying afterhyperpolarizations. Spike 

afterhyperpolarization in motoneurons is blocked by inorganic Ca2+ blockers, intracellular 

injection of Ca2+ chelators, and notably by apamin (7, 205, 523, 647, 1311, 1426), 

suggesting that motoneurons express SK channels and that they play a critical role in the 

repetitive firing behavior of motoneurons. In mouse motoneurons in culture, unitary currents 

from SK channels have a ~18-pS conductance, a 3.5-ms mean open time, and show no 

voltage dependency (825).

Na+-activated K+ channels (IK Na) are found in membrane patches from spinal motoneurons 

(1069). IK Na does not appear to contribute to single action potentials but gives rise to the 

postdischarge hyperpolarization that follows trains of action potentials, due to accumulation 

of internal Na+.

A hyperpolarization-activated current (Ih, or IQ in some studies), which is a mixed cationic 

current carried by Na+ and K+, is found in motoneurons (7, 62, 74, 205, 523, 577, 870, 919, 

957, 1214, 1313). Ih has relatively slow kinetics (τ ~100–400 ms, Ref. 74) and has a reversal 

potential positive to resting membrane potential (approximately −40 mV, Refs. 74, 1214), 

i.e., the net current is inward both at rest and at hyperpolarized potentials. Consequently, Ih 

opposes membrane hyperpolarizations, such as would be produced by inhibitory synaptic 

input. Activation-deactivation of Ih following hyperpolarizations gives rise to a 

postinhibitory rebound (PIR) and can lead to rebound bursts of action potentials. Ih may be 

partially active at rest, thereby contributing to the resting membrane potential (74, 701). A 

steady activation at rest also means that Ih affects motoneuron responses to depolarizing 

inputs. During depolarization, Ih deactivation will increase neuronal input resistance. When 

the depolarizing current or synaptic input is relieved, steady outward currents repolarize the 

membrane, generating an afterhyperpolarization because of the increased input resistance. 

The afterhyperpolarization then activates Ih, and the membrane returns to rest. (Fig. 3; Refs. 

870, 957). Thus Ih seems to stabilize the membrane potential around rest and also underlies 

rebound depolarizations and hyperpolarizations. Spinal motoneurons in the newborn rat 

receive phasic excitatory and inhibitory synaptic input during neurochemically induced 

fictive locomotion (486), and Ih may play a role in generating rebound burst firing following 

phasic inhibitory synaptic input (98).

3. Ca2+ currents—At least six types of voltage-gated Ca2+ channels (L, N, P, Q, R, and T 

types) are expressed in CNS neurons (1030, 1275). The pharmacological and single-channel 

properties of motoneuronal Ca2+ channel subtypes have been worked out in greatest detail in 

neonatal hypoglossal motoneurons (1291, 1293, 1310). Three types of high-voltage-

activated (HVA; L, N, and P type) and one type of low-voltage-activated (LVA; T type) 

Ca2+ channel types are present (1291), with single-channel conductances (with 110 mM 

Ba2+ as charge carrier) of 28 pS (L type), 14 pS (N type), 20 pS (P type), and 7 pS (T type). 

L- and P-type channels do not inactivate, whereas T- and N-type channels do (τ ~20 and 58 

ms, respectively). Whether adult hypoglossal motoneurons express all of these types of Ca2+ 

channels is not known. Neonatal facial motoneurons also have HVA and LVA Ca2+ channel 

types in their somatic membrane (995). However, the HVA P-type channel is absent in the 

somatodendritic membrane, and a novel type (Rslow) carries a major component of the total 
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HVA Ca2+ current (995). In this study, single-cell RT-PCR was used to detect mRNA for 

the α1A-subunit of HVA Ca2+ channel subtypes, along with other α1-subunit types. Because 

α1A-subunits are thought to combine to form P/Q-type Ca2+ channels, the absence of P-type 

channels in the soma suggests that P-type channels may be present elsewhere in the 

membrane of facial motoneurons, most likely in axon terminals (995). LVA and HVA Ca2+ 

channel types are also present in spinal motoneurons (524, 881). Ca2+ conductances affect 

the falling phase of the action potential, spike afterdepolarization (ADP), and 

afterhyperpolarization (AHP), in the latter case via IK Ca (463, 523, 524, 647, 870, 1291, 

1310, 1311). The Ca2+ channel subtypes underlying ADP, which is most prominent in 

neonatal animals, and AHP can be distinguished pharmacologically and result from both 

LVA and HVA as well as HVA Ca2+ channels, respectively (647, 1291, 1311). The L-type 

Ca2+ channels play a central role in some motoneurons that are capable of generating 

plateau potentials (521, 527). In the absence of modulatory transmitters, inward current 

flowing through L-type Ca2+ channels is curtailed by outward currents (524), effectively 

generating a small inward rectification just subthreshold to spike initiation (870, 1112, 

1111). Perturbations of the balance of inward and outward currents, e.g., in form of 

transmitter-induced reduction in outward K+ currents, can lead to plateau potentials and 

bistable membrane behavior by uncovering inward currents through L channels (121, 285, 

521, 1200). In some specialized motoneurons, a separate mechanism operates to produce 

plateau potentials. Motoneurons in the rostral compact formation of the nucleus ambiguus, 

which innervate esophageal muscles, have a Ca2+-activated Na+ current (INa Ca) that 

produces prolonged plateaulike firing in response to brief afferent input or current injection. 

INa Ca resembles the Ca2+-activated nonspecific cationic current (ICAN) found in other CNS 

neurons (962). Spinal motoneurons in the turtle also have an ICAN, but in these motoneurons 

the current is not involved in generation of plateau potentials (970).

The spatial distribution of active conductances over the somatodendritic membrane is 

obviously important in determining the motoneuronal response to inputs. In turtle spinal 

motoneurons, Ca2+ conductances are present in dendrites (522), which may have important 

consequences for the transfer of synaptic input (1162), and in the generation and modulation 

of plateau potentials (521, 522, 524, 1200). In rat spinal motoneurons, L-type Ca2+ channels 

are present in the somatic and proximal dendritic membrane and N-type Ca2+ channels in 

both the dendritic and somatic membrane (1351).

D. Integration of Synaptic Input and Firing Modes of Motoneurons

The relationship between synaptic input to a motoneuron pool and the resulting muscle 

force, i.e., the motor pool input-output function, is generally described by a sigmoid curve 

(107). The initial upslope of the curve results from the orderly recruitment of motor units 

with increasing size, axonal conduction velocity, and fatigability, i.e., the size principle 

(107, 475). Rate modulation of the firing of motoneurons underlies further increases, with 

some contribution of continued recruitment. One of the main goals in the study of 

motoneuronal excitability is to understand how integration of synaptic input produces this 

input-output relationship, and how it is affected by neuromodulators. In broad terms, 

transformation of synaptic input to generation of impulses depends on the following: 1) 

motor unit type (types S, FR, FI, FF), 2) location of synaptic terminals, 3) character and 
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distribution of active and passive membrane properties, and 4) effects of neuromodulators 

on synaptic transmission and on repetitive firing behavior.

In section IV, we discuss the mechanisms by which synaptic inputs affect the input-output 

relationship of motoneurons. In this section, we describe the basic firing properties of 

motoneurons.

Motoneurons fire repetitively in response to sustained suprathreshold excitatory input. This 

behavior has been studied mainly by injection of current pulses through an intracellular 

electrode. There are distinct phases of spike-frequency adaptation to such pulses, and a 

nonlinear rise in steady-state firing frequency with increasing current (Fig. 3; Refs. 437, 622, 

625). At the onset of a long current pulse, an initial doublet [two spikes at short interval (<20 

ms)] is often seen, which is part of the initial adaptation phase (0.5–1 s) during which the 

firing frequency drops sharply. A second phase of adaptation follows, which in some 

motoneurons (1087) is divided into an early (~2-s duration) and late phase (approaching 

steady state for long pulses). At the end of the current pulse, there is a postdischarge 

hyperpolarization followed by a return to resting potential.

Initial doublets, with instantaneous frequencies of 50–300 Hz, are seen in spinal 

motoneurons during endogenous motor behavior (488, 639, 673, 1417), suggesting that they 

are not an experimental artifact. Initial doublets may permit motoneurons to generate extra 

force at the onset of a contraction (476, 838), perhaps to overcome inertia, but the 

phenomenon is not necessarily correlated with a physiological need for strong contractions 

(639, 673). An increase in the magnitude and duration of spike AHP contributes to the initial 

adaptation (48, 62, 1312), dependent on Ca2+ entry (activating IK Ca) during the first few 

spikes (1088, 1301). However, blockade of Ca2+ influx does not entirely abolish initial 

adaptation. Other processes may contribute, such as deactivation of Ih at the onset of the 

depolarization, and changes in the threshold for action potential generation in the initial 

segment (1114). Late adaptation is also not abolished by Ca2+ channel blockers; in fact, it 

increases (1088, 1311), indicating that a number of Ca2+-independent mechanisms 

contribute to late adaptation. During repetitive firing, spike duration lengthens, and spike 

amplitude and rate of rise decrease (1312); this suggests that conductances that shape 

impulses change during maintained firing, leading to late adaptation. Late adaptation may be 

produced by a progressive increase/decrease in an unidentified outward/inward current 

(1088). Postdischarge hyperpolarization is blocked by ouabain, suggesting that it is due to an 

outward current generated by a Na+-K+ pump driven by local accumulation of Na+ (1088).

The relationship between steady-state firing rate and injected current (F-I relationship) 

increases in a linear fashion at low firing rates (primary range), then enters a steeper linear 

phase (secondary range) at higher firing rates (47, 623, 1109). In cat lumbosacral 

motoneurons, the secondary range starts when steady-state firing reaches ~50 spikes/s, with 

a slope 2–6 times that of the primary range (623). Many motoneurons lack the secondary 

range at steady state, with a linear F-I relationship over the entire firing range (573, 859, 

870, 919). A persistent inward current (Ii, Ca2+ mediated) may underlie the secondary range 

(1003, 1114). The F-I relationship is highly dependent on the magnitude and duration of the 

spike AHP, since repetitive firing rate is directly related to the AHP duration (624). An 
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effective way of modulating motoneuronal excitability is to modulate the magnitude of the 

AHP. For example, 5-hydroxytryptamine (5-HT) reduces the spike AHP (see sect. IVE) in 

cranial motoneurons, which leads to a dramatic increase in the slope of the F-I relationship 

(91, 526).

A particularly intriguing firing property of some motoneurons is the generation of repetitive 

firing that outlasts the period of excitatory input (239, 244, 326, 518–520, 527, 634, 1110). 

Plateau potentials underlie this behavior, which can be elicited in motoneurons by either 

short trains of excitatory synaptic input or current injection. Short-lasting inhibitory input 

can turn off the plateau potential, leading to bistable firing or membrane bistability under 

some circumstances. In most motoneurons, plateau potentials are not an endogenous 

membrane behavior but a latent property uncovered by activation of monoaminergic 

receptors (632, 634), and under modulatory control by other neurotransmitters (285, 1200). 

Thus motoneurons in spinalized cats (which are deprived of input from brain stem 

monoaminergic neurons) will exhibit plateau potentials when 5-HT and norepinephrine 

(NE) precursors are given intravenously (239, 244, 519), but not otherwise. A persistent 

Ca2+ current, possibly located in the dendrites, is the proposed ionic mechanism for 

generation of these plateau potentials in motoneurons (521, 522, 527, 720; see sect. IVE). 

During fictive locomotion (486, 1104) and in tonic muscle contractions associated with 

postural control (327, 633, 635), plateaulike firing is present in some motoneurons (486, 

1104). Long-lasting plateau potentials are preferentially found in motoneurons with low 

thresholds for spike initiation and slow axonal conduction velocity, a hallmark of 

motoneurons of the S and FR type, which underlie most postural tasks (721, 722). The 

threshold for somatic activation (via current injection) of plateau potentials in cat spinal 

motoneurons is lowered by tonic excitatory afferent input (88). Because the plateau 

threshold can be lowered to the recruitment level of these motoneurons, plateau potentials 

under normal circumstances could play a role in amplifying the recruitment step rather than 

generating bistable behavior (88). An alternative view holds that plateau potentials serve to 

reduce the need for steady ongoing synaptic drive during maintained postural muscle 

contraction, through generation of self-sustained firing after transient synaptic input (634). 

Plateau generation in cat spinal motoneurons exhibits the phenomenon of “warm up,” i.e., a 

progressive lowering of threshold for plateau activation with repeated activation (3- to 6-s 

intervals) (89). Plateau warm up may represent a form of short-term plasticity in 

motoneurons that ensures an increased motoneuronal output during sustained motor acts 

such as repetitive movements, e.g., locomotion. Specialized motoneurons in the compact 

formation of the nucleus ambiguus (innervating the esophagus) show plateau potentials in 

response to short-lasting synaptic input or current injection (1041). This plateau potential is 

carried by an ICAN-like current and may generate prolonged spike activity in the ambiguus 

motoneurons during swallowing.

III. ORGANIZATION OF SYNAPTIC INPUT TO MOTONEURONS

Adult cat spinal motoneurons receive ~50,000–140,000 synaptic boutons (937), with >93% 

of the receptive membrane area in the dendrites. In L7 cat motoneurons, 61% of this space is 

covered by synaptic boutons. GABA/glycine-immunoreactive boutons dominate the stem 

dendrites, covering 69% of the membrane; glutamate-like immunoreactive terminals 
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comprise 18% (ratio ~4). In more distal dendrites, the GABA/glycine-to-glutamate ratio 

falls to 1.5. About 6% of the dendritic boutons are not immunoreactive for GABA, glycine, 

or glutamate. Presumably these boutons contain other transmitters (937).

The origins of these synaptic inputs are of considerable interest, since they encode the 

functional significance of the incoming signals. In the following section we briefly 

summarize the anatomical organization of synaptic inputs to spinal and cranial motor nuclei. 

The majority of the cited studies are based on tracing techniques combined with 

immunohistochemical detection of putative transmitters. We do not attempt to give a 

complete description of all the known pathways; rather, we emphasize the major anatomical 

pathways and the organizational principles (Table 2, Fig. 4).

A. Afferent Projections to Spinal Motor Nuclei

Monosynaptic input to spinal motoneurons from sources outside the neuraxis originate 

exclusively from muscle spindle Ia and group II afferents (147, 502, 543, 830, 1184). The Ia 

projection likely uses glutamate as a transmitter (939). Propriospinal neurons provide the 

major synaptic input to spinal motoneurons (502). Labeling of spinal premotor neurons has 

been achieved by transneuronal transport of wheat germ agglutinin, virus, or retrograde 

labeling following discrete injection of tracers in motor columns. The pattern of premotor 

neuron labeling varies considerably depending on the motor group studied (21, 227, 513, 

515, 566, 1012, 1264). Some spinal motoneurons receive synaptic input via recurrent axon 

collaterals from other motoneurons innervating the same or synergistic muscles (248, 249). 

Recurrent inhibition is mediated by Renshaw neurons that send inhibitory (GABAergic and 

glycinergic) projections to motoneurons innervating mainly proximal muscles (409, 1099, 

1370). Interneurons and propriospinal neurons from most of the spinal cord laminae relay 

afferent signals from muscles, joints, and skin (49, 475, 563, 869, 1064), as well as 

segmental (22, 534, 1236) or supraspinal input to spinal motoneurons. They also generate 

coordinated, rhythmic patterns of activity such as locomotion and scratching that are 

ultimately transmitted to motoneurons (533, 1240, 1355); only a few studies have identified 

rhythmically active propriospinal interneurons with direct connections to spinal 

motoneurons (533, 1240).

Spinal motoneurons receive extensive projections from the brain stem. The raphe pallidus 

and obscurus contain premotor neurons that project directly to spinal motoneurons via the 

lateral and ventral funiculi (69, 508, 802). There are monosynaptic projections from the 

raphe pallidus to deltoid motoneurons (23) and medullary raphe nuclei to phrenic 

motoneurons (296). Raphe-spinal projections send off collaterals to the ventral horn of the 

spinal cord (529) and to the intermediolateral cell column (where the other class of nervous 

system efferents, preganglionic neurons, are located in the spinal cord), suggesting 

coordination of autonomic and somatic motor activity through common premotor neurons 

(20). Raphe premotor neurons are either serotonergic (265) or nonserotonergic (1161). 

Substance P (134, 209, 495), thyrotropin-releasing hormone (TRH) (134, 471), enkephalin-

like peptides (134, 397, 497, 531, 723), cholecystokinin (792), neurokinin A (907), galanin 

(41), and glutamate or aspartate (908) colocalize with 5-HT (based on 

immunohistochemistry) in neuronal cell bodies in the caudal raphe and medial reticular 
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formation, as well as in fibers and terminals in the ventral horn of the spinal cord (39, 41, 

42, 133, 575, 576, 907, 908, 1034, 1237, 1297, 1348). Peptidergic immunoreactivity largely 

disappears from the inputs to motoneurons after destruction of serotonergic neurons with 

neurotoxins such as 5,6-dihydroxytryptamine (426, 576).

Noradrenergic premotor neurons projecting to spinal motoneurons are in the locus 

coeruleus, the subcoeruleus, the medial and lateral parabrachial nuclei, and the Kölliker-

Fuse nuclei (222, 232, 503, 507, 585, 925, 1011, 1352, 1353). Met-enkephalin or glutamate 

is colocalized with NE in spinally projecting locus coeruleus neurons (395, 398, 749). 

Intraventricular injection of 6-hydroxydopamine reduces the ventral horn content of NE and 

the number of noradrenergic fibers by ~85%, suggesting that the brain stem premotor 

neurons are the main source of noradrenergic input to spinal motoneurons (715).

Spinal motoneurons also receive direct brain stem inputs from the retroambiguus nucleus 

(501, 1302), ventromedial medulla (GABAergic and glycinergic neurons; Refs. 504, 506), 

ventrolateral medulla (331, 354, 1047, 1248), and the nucleus tractus solitarius (NTS; Refs. 

331, 874). On the basis of ultrastructural analysis of synapses in the ventral horn, a 

glutamatergic projection to spinal motoneurons originating in the ventromedial medulla may 

exist, but the location of the medullary glutamatergic premotor neurons is unknown (505). 

The vestibulospinal system, including neurons in the medial and lateral vestibular nuclei, 

projects to head and neck motoneurons and lumbosacral motoneurons (299, 448, 545, 1057, 

1368).

Most corticospinal projections to motoneurons are indirect, typically via interneurons in the 

intermediate zone of the spinal cord. Direct corticospinal projections to some motoneuron 

groups innervating distal musculature and perhaps functionally involved in control of fine 

movement, are present in primates and to a limited extent in rats (125, 146, 252, 714, 741). 

Finally, the red nucleus projects monosynaptically to spinal motoneurons innervating distal 

muscles (391, 392, 500). Several other premotor neuron systems likely project to spinal 

motoneurons, since transmitter-like substances are found in fibers/boutons in spinal motor 

nuclei, and several transmitter receptors and physiological actions of transmitters have been 

demonstrated in motoneurons. The anatomical location of the premotor neurons using a 

particular transmitter remains unknown in most cases (Table 2).

B. Afferent Projections to Orofacial Motor Nuclei

Proprioceptive information from the muscles of mastication reaches the trigeminal and 

hypoglossal motor nuclei via the trigeminal mesencephalic nucleus (1015). Afferent 

information from other peripheral sensors enters the brain stem through vagal, 

glossopharyngeal, and accessory nerves and is conveyed to the trigeminal, facial, and 

hypoglossal nuclei via premotor neurons in the nucleus of the solitary tract (83, 122, 759, 

1235, 1263). A third major sensory afferent input to orofacial nuclei is from the spinal 

trigeminal complex (122, 482, 544, 737, 1263). The largest concentration of premotor 

neurons to the orofacial motor nuclei is in the medullary and pontine reticular formation 

adjacent to the motor nuclei themselves. Thus hypoglossal premotor neurons are 

ventrolateral and dorsolateral in the medullary reticular formation (122, 297, 1263), and the 

majority of trigeminal and facial premotor neurons are in the pontomedullary and 
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parvicellular reticular formations (482, 535, 850, 1263). Some of these premotor neurons are 

GABAergic, glycinergic, or glutamatergic (738, 739, 1210, 1277, 1278). In addition to these 

regions, a smaller number of premotor neurons to trigeminal, facial, and hypoglossal nuclei 

are located in 1) pontine nuclei (Kölliker-Fuse; parabrachial nucleus; and trigeminal, facial, 

and hypoglossal nuclei); 2) periaqueductal gray of the midbrain (facial and hypoglossal 

nuclei); 3) periambigual region (hypoglossal and facial nuclei); 4) vestibular nuclei (facial 

nucleus); 5) gigantocellular reticular nucleus (all 3 nuclei); and 6) paralemniscal zone in the 

lateral midbrain and external cuneate nucleus (facial nucleus) (175, 297, 474, 482, 544, 737–

739, 935, 1209, 1263, 1404).

Noradrenergic input to the hypoglossal nucleus comes from neurons in three pontine 

regions, i.e., nucleus subcoeruleus, A7 and A5 cell groups (12, 14). The facial nucleus 

receives input from noradrenergic neurons in the A5 cell group (451) and trigeminal motor 

nucleus from the A7 cell group (451). This differential distribution of noradrenergic input to 

brain stem (and spinal cord) nuclei suggests that noradrenergic neurons can be divided into 

subgroups that differ in their connections and functional capacities (452).

The raphe pallidus, obscurus, and magnus are the main regions containing 5-HT-positive 

neurons projecting to the trigeminal, hypoglossal, and facial nucleus (376, 740, 789, 790). 

The raphe nuclei also contain premotor neurons positive for several neuropeptides. 

Substance P-like immunoreactive neurons in the caudal raphe project to the trigeminal, 

hypoglossal, and facial motor nucleus, and Met-enkephalin-like immunoreactive premotor 

neurons are in the caudal raphe and medial reticular formation (375, 376, 477).

Some premotor neuron groups projecting to the orofacial nuclei are involved in dedicated 

motor tasks and thus have more restricted projection patterns. The central subnucleus of the 

solitary tract contains the pattern generator for swallowing and conveys direct synaptic 

information to hypoglossal motoneurons and motoneurons forming the compact formation 

of the ambiguus nucleus (30, 67, 467). The Edinger-Westphal nucleus projects to the facial 

nucleus, forming part of the circuit mediating the corneal blink reflex (645).

The nucleus ambiguus contains esophageal, pharyngeal, and laryngeal motoneurons (106). 

Premotor neurons projecting to the ambiguus nucleus arise from the nucleus of the solitary 

tract (including the swallowing-related central subnucleus), zona intermedialis reticularis 

parvicellularis, pontine nuclei (Kölliker-Fuse, parabrachial nucleus), vestibular nuclei, 

periambigual regions, paraventricular hypothalamic nucleus, external cuneate nucleus, area 

postrema, and periaqueductal gray (67, 467, 591, 698, 924, 998, 1130, 1144, 1427, 1428).

Surprisingly, few projections have been demonstrated from the cortex to orofacial motor 

nuclei (1098), emphasizing the general scheme that voluntary motor commands to 

motoneurons likely pass through various groups of brain stem and/or spinal premotor 

neurons.

C. Afferent Projections to Oculomotor Nuclei

Eye muscles are innervated by motoneurons in the oculomotor, abducens, and trochlear 

motor nuclei. Several neuronal circuits in the brain stem and midbrain are dedicated to the 
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coordination of these motor groups, and the organization of afferent input is consequently 

complex. Reticular formation premotor neurons projecting to the oculomotor nucleus are in 

the medial midbrain reticular formation (891), reticular formation of the mesodiencephalic 

junction (896, 1148), and the dorsal paragigantocellular reticular nucleus (191). Premotor 

neurons to the abducens and trochlear motor nuclei are also in the pontine reticular 

formation (699, 1115, 1344, 1420). All three motor nuclei receive input from the vestibular 

nuclei as part of the vestibulo-ocular reflex (225, 341, 434, 685, 699, 943, 1051, 1283). 

Some of these premotor neurons are GABAergic (superior vestibular nucleus) or cholinergic 

(the medial vestibular nucleus; Refs. 191, 685, 1346). Coordination between motoneurons in 

the oculomotor and abducens nuclei is partly mediated by GABAergic internuclear neurons 

projecting contralaterally between the nuclei (284, 817, 1346). The nucleus prepositus 

hypoglossi contains premotor neurons (possibly glycinergic) that project to all three 

oculomotor nuclei (341, 684, 699, 816, 1181, 1344). The oculomotor nucleus and the 

trochlear nucleus receive afferents from the rostral interstitial nucleus of the medial 

longitudinal fasciculus (GABAergic and glutamatergic; Refs. 1180, 1335) and interstitial 

nucleus of Cajal (654). A small number of neurons in the locus coeruleus, trigeminal 

sensory complex and olivary pretectal nucleus project to the oculomotor nucleus (191, 455, 

646).

Several other premotor neuron systems likely project to cranial motor nuclei (see Table 2).

There are several common principles underlying the organization of synaptic input to spinal 

and cranial motoneurons (Fig. 4).

1. Multisensorial afferent input is conveyed via sensory nuclei in the brain stem and 

spinal gray.

2. Premotor neurons located close to the motoneuron groups in the reticular formation 

or spinal gray provide the major synaptic input to motoneurons. One notable 

exception is the phrenic motoneuron pool that receives inspiratory drive from 

premotor neurons in the medulla. These local premotor neurons form the main 

gateway for relaying and integrating multisensorial afferent input and descending 

synaptic information. Several spinal and brain stem central pattern generators 

(CPG) (locomotion, scratching, and others) are embedded in this premotor system.

3. Long projections from brain stem and pontine nuclei, both from diffusely 

projecting premotor groups (e.g., raphe, locus coeruleus) and from premotor groups 

involved in specialized motor tasks (e.g., respiration, eye movements, equilibrium), 

converge on brain stem and spinal premotor/interneurons as well as motoneurons.

4. Some motoneurons controlling distal limb muscles receive direct cortico- and 

rubrospinal synaptic input.

IV. TRANSMITTER MODULATION OF MOTONEURONAL EXCITABILITY

Motoneuronal inputs are affected by the presynaptic release of various transmitters (amino 

acids, amines, peptides) acting on postsynaptic receptors; several of these transmitters can 

also affect signaling by actions at presynaptic receptors. The integrative effect of these 

transmitters acting on their receptors, in concert with the intrinsic motoneuron properties, 
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determine the generation of the efferent signals, action potentials propagated along 

peripheral motor nerve fibers and recurrent collaterals. The integration is complex. Actions 

at ionotropic receptors induce (or reduce) localized current flows that spread according to 

membrane properties and cellular morphology. Actions at metabotropic receptors initiate 

second messenger cascades that have myriad effects, including altering channel or receptor 

function. Many of these actions are convergent, that is, they ultimately act via the same 

signal transduction mechanisms, or affect the same target, such as a specific type of channel.

In this section, we review the principal neurotransmitter systems affecting motoneuronal 

excitability. In each section, we discuss the important ligands, the associated receptors, the 

effects on neuronal properties affecting excitability, the signal transduction pathways, and, 

where known, the function.

A. Glutamate: Ionotropic Actions

Glutamate is the principal fast excitatory neurotransmitter in the CNS (226, 854, 890). The 

potent excitatory action of glutamate on CNS neurons was first reported in 1960 for sensory 

and motoneurons of cat spinal cord (262). In this section we briefly review 1) glutamate 

receptor ligands; 2) the molecular biology of glutamate receptors; 3) the distribution of 

glutamate receptor subtypes/ subunits on different motoneuron pools; 4) functional 

implications of the structural diversity of glutamate receptors as it relates to motoneuron 

excitability in adult, during development, and in disease; 5) pre- and postsynaptic actions of 

glutamate; and 6) role of glutamate receptors in synaptic integration, production of 

oscillatory behavior and synaptic transmission.

1. Ligands—A major difficulty with establishing a role for glutamate and associated 

excitatory amino acids (EAA; L-aspartate, L-homocysteate; Ref. 342) in synaptic signaling is 

that they are also involved in metabolic processes. Thus determining whether their presence, 

synthesis, release, and transport underlies a metabolic or signaling function is difficult (469). 

The relative roles of the different EAA remain unclear. Limitations of the various techniques 

applied to the problem are reviewed elsewhere (469). Data are most consistent with L-

glutamate as the main EAA at motoneuron synapses. Circumstantial evidence includes 

presence of high-affinity uptake mechanisms and high glutamine levels (456, 1151) in 

neurons and terminals that synapse on motoneurons (144, 808); detection of increased 

glutamate levels in perfusate from in vitro preparations following synaptic activation or 

glutamate uptake inhibition in rat and frog spinal cord (443, 614, 1223); potentiation of 

endogenous activity by EAA uptake inhibitors (142, 442, 818); and immunohistochemical 

detection of glutamate in boutons synapsing on motoneurons (878, 937, 1207). Furthermore, 

group Ia primary afferent boutons synapsing on retrogradely labeled motoneurons are 

enriched in glutamate-like immunoreactivity (939).

2. Receptors—Three ionotropic glutamate receptor subtypes, each assembled from an 

unknown combination of receptor subunits (most likely 5, but see Ref. 1059), are classified 

on the basis of pharmacological and functional properties as follows: 1) α-amino-3-

hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) [comprising glutamate receptor 

(GluR) 1–4 subunits]; 2) kainate (KA: high affinity; comprising GluR5–7 and KA1, KA2 
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subunits); and 3) N-methyl-D-aspartate (NMDA) receptors (comprising NMDAR1, 

NMDAR2A-D and NMDAR3A subunits). Two orphan subunits, δ1 and δ2, have also been 

identified (58, 100, 294, 499, 837, 853, 880, 1100, 1118, 1119).

The functional complexity of glutamate receptor-mediated synaptic signaling is conferred by 

variation in receptor subunit composition and further enhanced by posttranscriptional 

processing of gene transcripts through alternative splicing and RNA editing. All AMPA 

receptor subunits undergo alternative splicing of COOH-terminal sequences and flip and 

flop sequences near the M4 transmembrane domain. GluR2 subunit mRNA are edited at the 

Q/R site and GluR2, GluR3 and GluR4 subunit mRNA are edited at the R/G sites. Kainate 

subunit mRNA, GluR5 and GluR6, are edited at the Q/R site. GluR6 mRNA is also edited at 

I/V and Y/C sites. The NMDAR1 subunit exists as eight possible splice variants 

(NMDAR1a–4a and NMDAR1b–4b) generated through alternative splicing of one cassette 

in the NH2-terminal region and the individual or combined deletion of two cassettes in the 

COOH-terminal region (711, 887, 1194).

3. Distribution of receptors on motoneurons—AMPA, NMDA, and kainate 

receptors have been identified on motoneurons via receptor autoradiography (RAR), 

immunohistochemistry (ICC), and in situ hybridization (ISH). However, as receptor subunit 

composition and posttranscriptional modification contribute to the pharmacological and 

physiological properties of the GluR subtypes, we will focus on ICC and ISH studies. These 

data are summarized in Tables 3–5 and provide specific information on receptor subunit/

splice variant expression within different motor nuclei and therefore may reveal a structural/

molecular basis for motoneuron pool-specific differences in physiological properties and 

susceptibility to excitotoxicity/motoneuron disease. The functional implications are further 

explored in section IVA4.

A) SPINAL MOTOR NUCLEI: Low levels of AMPA, kainate, and NMDA binding sites 

are seen in lamina IX of the spinal cord in rat (438, 558, 855), human (215, 565, 595, 1132–

1134, 1136), and cat (845). Binding is typically <50% of the strongest labeling observed in 

the substantia gelatinosa and does not vary between different spinal cord levels. Although 

there are some inconsistencies between ICC and ISH studies, a general pattern emerges. For 

AMPA receptor subunits, ICC studies from rat (407, 558, 801, 1206) and human (1367) 

suggest that GluR4 ≥ GluR3/2 > GluR1. Similarly, ISH studies, which distinguish between 

GluR subunits 2 and 3, suggest that GluR4 = GluR3 > GluR2 > GluR1 (407, 559, 966, 1082, 

1145, 1257, 1258), whereas recent studies in human spinal cord suggest low levels of GluR2 

subunits (1137) and the complete absence of GluR2 mRNA expression (1366). Low-level 

GluR2 expression in spinal cord motoneurons is further supported by low GluR2 ICC 

relative to GluR3 and GluR4 in rat spinal cord (975). Analysis of GluR splice variants is 

limited to spinal motoneurons where expression of GluR2-flip, GluR3-flip and flop, and 

GluR4-flip and low levels of GluR1-flop in rat (559, 1238, 1257, 1258) differs from human, 

where all splice variants are present but flop isoforms predominate (1259).

The distribution of spinal cord kainate receptors has been least studied. KA1 and GluR5 are 

present in lumbar motoneurons (1257) and GluR5 is present in cervical motoneurons in rat 

(407). Detection of GluR6/7 and KA2 ICC in cervical motoneurons (976) contrasts with 
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absence of ISH labeling of GluR6, GluR7, and KA2 in lumbar motoneurons (1257) and may 

reflect differential expression of subunits between cervical and lumbar motoneuron pools, 

but more likely reflects the greater sensitivity of ICC. There is much speculation on the 

cellular distribution and function of KA receptor subunits, since, with the exception of 

cultured hippocampal neurons (728, 729), dorsal root ganglia (528), and cerebellar granule 

cells (1170), presence of functional high affinity KA receptors in CNS neurons has not been 

confirmed. Recent developments of specific KA agonists and antagonists should facilitate 

functional characterization of KA receptors on motoneurons (217, 1201).

NMDAR1 and -2A subunits and transcripts are strongly expressed in cervical and lumbar 

motoneurons in rat (407, 765, 977, 979, 984, 1145) and mouse (1341), and NMDAR2A 

subunits are present in human (1078). The presence of NMDAR2B subunits remains 

uncertain as their localization with ICC in cervical spinal cord of rat is with an antibody that 

does not distinguish between NMDAR2A and -2B (977). In addition, ISH studies are 

inconsistent, showing low levels (765, 984) or absence of NMDAR2B transcript in rodent 

spinal cord (1257, 1341). Expression of NMDAR2D transcripts also varies from low levels 

(984, 1257) to none (765, 1145, 1341) in rodent spinal cord. NMDAR2C transcripts have 

not been detected (765, 1145, 1341). Thus the distribution of NMDA receptor subunits 

within the spinal cord appears to be NMDAR1 > NMDAR2A > NMDAR2B >> 

NMDAR2D > NMDAR2C with little variation along the rostrocaudal axis. NMDAR3A 

expression has yet to be examined. ISH analyses of the eight NMDAR1 splice variants 

(NMDAR1 1a,b to 4a,b) in the ventral horn of the cervical (765) and lumbar spinal cord 

(1255) are not entirely consistent. NMDAR1 type a and b splice variants are present within 

the ventral horn, as are NMDAR1–2 and NMDAR1–4 subunits. NMDAR1–3 expression is 

low in ventral horn cells. Furthermore, detection of multiple splice variants in single 

motoneurons supports heteromeric receptor assembly. Comparison of ISH images with 

functional analyses of heteromeric recombinant receptors and a more complete analysis of 

the properties of motoneurons will be required to determine whether splice variants of the 

NMDAR1 subunit contribute to heterogeneity of spinal motoneurons relevant to 

physiological and pathophysiological functions.

Assessment of the relative abundance of AMPA, KA, and NMDA receptors within spinal 

motoneuron pools is difficult, since most ICC and ISH studies do not simultaneously 

examine expression of all three receptor classes, nor do they assess labeling based on the 

summed expression of all receptor subunits. However, available data in rat indicate that 

AMPA ~ NMDA > KA (407, 1257), whereas data in rabbit suggest that AMPA ~ KA > 

NMDA (120).

B) CRANIAL MOTOR NUCLEI: As seen for spinal motoneurons, NMDA and non-

NMDA receptor binding sites are low in brain stem motor nuclei relative to cortical regions 

(215, 795, 855, 856, 1135). NMDA receptor binding in motor nuclei subserving eye 

movements (III, IV, and VI nuclei) appears reduced relative to visceromotor nuclei [V, VII, 

and X (NA) nuclei] (1135) and the XII nucleus (855, 1135). In contrast, non-NMDA binding 

appears elevated in somatic motoneurons relative to visceromotor nuclei (215; see also Refs. 

288, 865, 932, 1398).
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With the exception of GluR1 subunits in the IV nucleus, GluR1–4 AMPA subunits and 

transcripts are present in all cranial motoneuron pools; GluR1 subunit expression is lowest, 

whereas levels of GluR2, -3, and -4 appear similar (28, 801, 978, 1082, 1367). Expression 

across functional groupings of cranial motoneurons is also similar, with the possible 

exception of a general reduction in expression of all subunits in general visceromotor nuclei 

(Edinger-Westfall, EW; dorsal motor nucleus of the vagus, DMV).

NMDA receptor subunit expression in spinal cord and brain stem motoneuron pools (EW, 

III, V, VII, X, NA and XII nuclei) are similar. In general, NMDAR1 > NMDAR2A > 

NMDAR2B (977, 979, 1340), with NMDAR2B identified in DMV and XII nucleus of mice 

only (1340). NMDAR2C and -D expression has only been examined in mice using ISH 

(1340), whereas NMDAR3A has not been examined. Again, differences in subunit 

expression across functional groups of cranial motoneurons are not obvious, aside from 

reduced signal in DMV and EW pools. Of note is that the IV nucleus fails to show 

immunoreactivity for NMDAR1 or NMDAR2A/B subunits.

Comparison of KA receptor subunit expression in spinal cord versus cranial motoneuron 

pools is premature. Expression of KA1 and GluR5 has not been examined, whereas 

moderate immunolabeling for GluR6/7 and KA2 has been observed in rat in all motoneuron 

pools examined (III, V, VI, VII, X, nucleus ambiguus, and XII nuclei). As seen for AMPA 

and NMDA subunit expression, ICC is reduced in EW relative to other motoneuron pools 

(976).

4. Physiological significance of glutamate receptor diversity—Molecular cloning 

and expression studies indicate that motoneuron responses to glutamatergic transmission, 

and to allosteric modulators, are determined by the type of subunits/splice variants that 

combine to form the glutamate receptor. Glutamate receptor expression is also dynamically 

regulated. Subunit expression can change during development (710, 711, 857), in response 

to afferent inputs and after ischemia (880). The physiological significance to motoneuron 

excitability of this potential diversity of glutamate receptors, however, is unclear. Continued 

development of subunit-/splice variant-specific agents such as Joro spider toxin (112), 

agriotoxin (478), Evans blue (616), and ifenprodil (1364, 1365; reviewed in Refs. 370, 427), 

combined with molecular physiological approaches similar to those used recently to 

introduce cDNA for the GluR1 subunit into motoneurons in vivo and in vitro (906), promise 

further insight into the role of specific glutamate subunits in controlling motoneuron 

excitability (906). Moreover, the implication that differential susceptibility of motoneurons 

to degeneration in motoneuron diseases may in part be attributable to molecular diversity of 

glutamate receptors (193, 559, 1082, 1134, 1135, 1258, 1366) should accelerate discovery in 

this area.

At present, the significance of specific subunits/splice variants to motoneuron excitability 

must be inferred by comparing the expression patterns in motoneurons with properties of 1) 

recombinant receptors studied in expression systems (e.g., Refs. 499, 752, 868) or 2) native 

receptors studied using a combination of whole cell recording and single-cell RT-PCR (e.g., 

Refs. 416, 584). This section examines key structural features of glutamate receptors most 

likely to be relevant to motoneuron excitability by focussing on patterns of glutamate 
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subunit expression in motoneurons (see sect. IVA3) and the influence of these subunit/splice 

variants on channel kinetics (deactivation and desensitization), ionic permeability, and 

glutamate receptor modulation through phosphorylation. A complete discussion of the 

functional properties imparted to recombinant receptors by each of the 15 glutamate receptor 

subunits and their modified transcripts is available elsewhere (294).

A) AMPA RECEPTORS

I) Channel gating: Non-NMDA receptors activate and desensitize rapidly and are primarily 

responsible for fast excitatory synaptic transmission (294). Thus modulation of AMPA 

receptor properties can profoundly alter motoneuronal excitability. Subunit composition, 

alternative splicing of the flip/flop module, and RNA editing at the R/G site affect gating of 

AMPA receptors. The relative abundance of GluR2 (especially GluR2-flip) and GluR4 

(especially the flop variant) subunits appears to be a major factor determining gating kinetics 

of native AMPA receptors (294, 416, 868). GluR2 flip subunits give rise to slowly gated 

channels, whereas GluR4 subunits determine rapidly gated AMPA channels. Thus high 

levels of GluR4 in spinal and cranial motoneurons in conjunction with reduced levels of 

GluR2 in spinal motoneurons may predict AMPA receptor complexes with rapid 

deactivation and desensitization kinetics (416, 868) as well as slow recovery rates from 

desensitization (752). For example, lumbar motoneurons in chicks have rapidly gated 

receptors with rapid desensitization kinetics (1166) and glutamatergic inspiratory drive to 

hypoglossal motoneurons is potentiated by cyclothiazide (which blocks AMPA receptor 

desensitization) (406). Not only are the rapid desensitization kinetics of AMPA receptors 

likely to play a role in shaping synaptic currents (50, 406, 1166), but rates of desensitization 

threefold faster than rates of resensitization can produce rapid frequency-dependent 

modulation of excitability, since synapses rich in this type of receptor should become much 

less excitable during high-frequency activation. Furthermore, if desensitization kinetics are 

subject to endogenous modulation similar to that produced by exogenous drugs (50, 406, 

1126), allosteric modulation of desensitization kinetics can provide a powerful mechanism 

for modulating motoneuron excitability to glutamatergic inputs.

Posttranscriptional modification of motoneuron AMPA receptors may also be important in 

channel gating. For example, AMPA receptors assembled from flop variants generally have 

faster desensitization kinetics and slower recovery from desensitization than flip 

counterparts (416, 868, 1120). Thus developmental increases in expression of flop isoforms 

of GluR receptor subunits in rat (559) and preponderance of GluR flop variants in spinal 

motoneurons of human (1259) may increase the inability of motoneurons to reliably follow 

fast trains of stimuli, thereby decreasing excitability to glutamatergic inputs.

In contrast, RNA editing at the R/G site of GluR2, -3, and -4 subunits in brain increases 

developmentally and is associated with slower desensitization rates and faster recovery from 

desensitization (752). Thus, if R/G editing in motoneurons follows a similar pattern, it may 

enhance the excitability of motoneurons to glutamatergic inputs and increase their ability to 

follow high-frequency inputs. Thus interactions between receptor subunit, alternative 

splicing, and RNA editing may interact to control motoneuron responsiveness to 

glutamatergic inputs. Cells with rapidly desensitizing, slowly recovering AMPA receptors 
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should respond only to the beginning of a sequence of fast inputs, whereas rapidly 

recovering, slowly desensitizing receptors should integrate incoming signals as they will 

transmit with greater reliability during trains of high-frequency stimuli.

II) Ionic permeability: Most AMPA receptors are permeable to Na+ and K+ but 

impermeable to Ca2+. Ca2+ impermeability is conferred by the presence of Q/R site-edited 

GluR2 subunits (167, 168, 498). Because virtually all (99%) GluR2 mRNA in the brain is 

edited at the Q/R site at all developmental stages, variation in Ca2+ permeability of AMPA 

receptors is determined by the presence or absence of the GluR2 subunit (167, 1120).

The relevance of Ca2+-permeable AMPA receptors to motoneuron physiology remains 

speculative. Potential consequences include modulation of repetitive firing behavior through 

effects on Ca2+-dependent K+ channels. Developmental increases in the amount of GluR2 

relative to other subunits have important implications for activity-dependent development of 

motor circuits (559), whereas low-level expression of GluR2 subunits may contribute to the 

selective vulnerability of different motoneuron pools to neurodegeneration in conditions 

such as amytrophic lateral sclerosis (193, 559, 1082, 1137, 1258, 1318, 1366, but see Ref. 

866).

III) Modulation of AMPA receptors by phosphorylation: Little is known of the importance 

of AMPA receptor phosphorylation in modulating motoneuron activity. However, given the 

prominent role of AMPA receptors in mediating synaptic drive to motoneurons, and that in 

many regions of the brain AMPA receptor function is regulated by phosphorylation of 

amino acid residues (serine, threonine, or tyrosine) of AMPA receptor subunits or associated 

proteins (68, 111, 363, 439, 655, 787, 821, 1052, 1229, 1331, 1396; for recent reviews, see 

Refs. 771, 871, 1053, 1173, 1174, 1256, 1395), phosphorylation may represent an important 

mechanism for modulating motor outflow from the CNS (e.g., Ref. 414).

Phosphorylation sites are not uniformly distributed on the different AMPA receptor subunits 

(583). Thus, in addition to physiological analyses of the effects of kinases and phosphatase 

inhibitors on AMPA-mediated synaptic inputs to motoneurons, determination of the receptor 

subunits that comprise AMPA receptors in motoneurons and identification of the 

phosphorylation sites in the AMPA receptor subunits are necessary steps to understanding 

the functional importance of phosphorylation, as well as subunit composition, in controlling 

motoneuron excitability. For example, although identification of multiple phosphorylation 

sites on the GluR1 subunit emphasize its importance in AMPA receptor regulation, its 

relevance to motoneuron control is questioned by the low-level expression of GluR1 in 

motoneurons. Potential phosphorylation sites on the remaining subunits (GluR2, -3, and -4, 

Ref. 895; GluR3, Ref. 617) may therefore be more relevant to control of motoneuron 

excitability.

B) NMDA RECEPTORS: NMDA receptors on motoneurons contribute to glutamatergic 

transmission, modulate repetitive firing behavior (through activation of IK Ca), contribute to 

nonlinear behavior (152, 314, 486), and reduce the voltage dependence of glutamatergic 

synaptic inputs (486, 745, but see Ref. 201). In addition, their long-duration excitatory 

postsynaptic currents (EPSC), Ca2+ permeability, and voltage dependence are important in 
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the detection and reinforcement of weakly correlated synaptic inputs that is thought to 

contribute to use-dependent synaptic plasticity during development, as well in the adult 

(279, 837, 1094).

Given the involvement of NMDA receptors in control of motoneuron excitability, it is clear 

that modulation of NMDA channel properties through alterations in subunit composition, 

alternative splicing, and RNA editing will have significant impact on motoneuron behavior. 

The strength and sensitivity of the voltage-dependent Mg2+ block, channel kinetics, and 

glycine sensitivity vary, depending primarily on expression profiles of NMDAR2 subunits 

(2A–2D) (542, 683, 853, 857, 858, 1349).

For example, the voltage sensitivity of the Mg2+ block of heteromeric NMDA receptors 

(NMDAR1 to NMDAR2), as well as the magnitude of the block, is much stronger for 

receptors containing NMDAR2A or -2B relative to NMDAR2C or -2D subunits (857). 

Predominant expression of NMDAR2A and 2B subunits in cranial and spinal motoneurons 

(Table 5) should reduce the potential impact of NMDA-mediated Ca2+ influx on repetitive 

firing (through activation of IK Ca). The presence of significant levels of NMDAR2D 

subunits in lumbar motoneurons (1257), but not other motoneurons, may predict a greater 

susceptibility of spinal motoneurons to modulation by IK Ca.

Gating kinetics are also affected by subunit composition. The decay time constant of NMDA 

currents, which has significant implications for synaptic integration as well as use-dependent 

synaptic plasticity, varies 3- to 40-fold depending on subunit combination with the decay 

time constants of NMDAR1–2A recombinant receptors < NMDAR1–2B < NMDAR1–2C 

<< NMDAR1–2D (857, 858). Cranial and spinal motoneurons, which predominantly 

express NMDAR2A and -2B subunits (Table 5), may experience shorter duration EPSC 

relative to NMDAR2D containing lumbar motoneurons (984, 1257). Longer duration 

postsynaptic potentials and weaker Mg2+ block of receptors composed of NMDAR1–2B, 

-2C, and -2D subunits would facilitate detection and reinforcement of weakly correlated 

inputs.

Phosphorylation of NMDA receptors by a variety of transduction pathways is also 

dependent on the presence of subunit-specific phosphorylation sites differentially distributed 

over NMDAR1 and -2 subunits (312, 542, 658, 871, 1076, 1249, 1250).

5. Pre- and postsynaptic actions of glutamate

A) PRESYNAPTIC ACTIONS: The initial observations of kainate-mediated 

depolarization of afferent terminals in the spinal cord (8), in conjunction with localization of 

presynaptic ionotropic glutamate receptors and their enhancement of transmitter release in 

hippocampus (218, 994), raised the intriguing possibility that synaptic transmission may be 

modulated by presynaptic ionotropic glutamate receptors. Evidence, however, is sparse 

(819) and currently does not support a role for such receptors at the level of motoneurons. In 

contrast, there is considerable evidence that metabotropic glutamate receptors modulate 

presynaptic transmission (see sect. IVB).
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B) POSTSYNAPTIC ACTIONS: Generation of an inward current or depolarization of 

motoneurons by exogenously applied glutamate or its agonists is clearly established for all 

motoneurons examined and probably should be considered dogma. Currents induced by 

exogenous glutamate in neurons cultured from ventral spinal cord (810, 811, 1350) reverse 

near 0 mV, are relatively linear between −20 mV and more depolarized potentials, but show 

a little change in slope conductance at more hyperpolarized potentials. This rectification is 

due to the action of glutamate at AMPA and NMDA receptors. In general, AMPA-induced 

currents are nonrectifying, reverse near 0 mV, desensitize rapidly, and are mediated by Na+ 

and K+. AMPA receptors lacking GluR2 subunits, however, also pass Ca2+ and show doubly 

rectifying current-voltage (I–V) relationships. NMDA-induced currents, in contrast, exhibit a 

negative slope conductance in their I–V relationship between approximately −40 and −20 

mV (due to a voltage-dependent Mg2+ block, Ref. 811), reverse near 0 mV, have slower 

kinetics of activation and longer decay than AMPA currents, and are mediated by Na+, K+, 

and Ca2+ (499, 1118, 1121).

Exogenous application of glutamate substantially increases motoneuronal conductance (up 

to 6-fold) (201, 745, 950, 1433). However, changes in conductance during synaptic 

activation of glutamate receptors are variable (201, 1139). During fictive locomotion in cat, 

motoneuron conductance can increase by ~20% relative to control. However, a conductance 

increase during the depolarized, relative to hyperpolarized, phase of the locomotor cycle 

occurs in only 8% of motoneurons (1139). Lack of phasic oscillation in input conductance in 

association with glutamatergic-mediated depolarization may reflect arrival of locomotor 

inputs on distal synapses where conductance changes are not detected with somatic 

intracellular recording (1162). Also, inhibitory inputs during the hyperpolarized phase of the 

cycle may produce increases in conductance similar to those produced during the 

depolarized phase by the excitatory inputs.

Despite the well-characterized nature of glutamate-induced currents, many potential sources 

of variability make description of a typical glutamatergic EPSP/C difficult. EPSP/C in 

motoneurons vary widely in shape, size, duration, onset and decay kinetics, voltage 

dependence, as well as antagonist sensitivity (86, 364, 412, 841, 926, 1158, 1433). The 

postsynaptic response to activation of a single glutamatergic synapse has been characterized 

in detail at few motoneuron synapses (412, 841, 1035). Stimulation of afferent pathways can 

lead to a distorted picture of individual synaptic inputs due to temporal dispersion in the 

arrival times of afferent impulses and difficulty in establishing an effective voltage clamp at 

distal synapses. Careful selection of somatic synapses for analysis is therefore required to 

obtain an accurate picture of evoked, spontaneous, or miniature EPSC. Differences between 

spinal and cranial motoneurons are not apparent. Activation of single group Ia afferent 

axons in vivo, primarily an AMPA receptor-mediated input (1327), produces an EPSC at 

somatic synapses with a peak amplitude of 330 pA (at resting membrane potential), a 10–

90% rise time of 0.2 ms, and τ ~0.3–0.4 ms. The associated EPSP have a peak of ~100 V 

and, like the EPSC, reverse near 0 mV (364). AMPA-mediated EPSC evoked in spinal cord-

spinal cord synapses in culture vary linearly in amplitude with membrane potential, have 

decay time constants between 0.6 ms (somal synapses) and 1–2 ms (proximal dendrites), and 

reverse near 0 mV (902). Combined AMPA/NMDA-mediated EPSC at similar spinal cord-
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spinal cord neuron synapses have decay time constants of 3.9 and 86 ms for the fast 

(AMPA) and slow (NMDA) components of the response, respectively (374). The slow 

component reverses near 0 mV, is blocked by NMDA antagonists, and is voltage dependent. 

Glutamate-mediated miniature EPSC (mEPSC) in lumbar motoneurons have a peak 

amplitude of 7.7 pA, a 1.2-ms rise time, and a 4-ms decay time constant (412). AMPA-

mediated quantal EPSC in phrenic motoneurons have peak amplitudes of ~4 pA, whereas 

spontaneous EPSC have peak amplitudes of 5–50 pA, a mean rise time (10–90%) of 0.25–

0.7 ms, and a decay time constant of 1.2–1.9 ms (746). In hypoglossal motoneurons, 

NMDA-mediated mEPSC average 16 pA in amplitude (range: ~5–60 pA), 10–90% rise time 

of 8 ms, and a decay time constant of >50 ms (at −50 mV). AMPA components of the 

mEPSC are markedly shorter, with decay time constants averaging ~10 ms (926).

Developmental changes in kinetic properties of mEPSC are also likely. Between embryonic 

day 17 and postnatal days 1–3, although mEPSC rise time does not change (412), mEPSC 

amplitude increases ~40% and the decay time constant almost doubles. Later changes in 

mEPSC properties have not been examined in detail. However, the time course of mEPSC in 

postnatal motoneurons (413) is within the range reported for afferent-evoked EPSP in spinal 

cord of adult cats (1036).

6. Synaptic integration—The spatiotemporal integration of glutamatergic synaptic inputs 

and production of action potentials as output by motoneurons, i.e., their transfer function, is 

poorly understood. Most models of motoneuron input-output have focused on steady-state 

conditions and are predicated on the (relatively) linear summation of synaptic (and injected) 

inputs (107, 108). Although linear summation at the soma is likely, experimental (163, 165, 

1025) and simulation data (733, 1124) suggest that glutamatergic EPSP (1380) add in a 

nonlinear fashion. Active dendritic conductances and motoneuron bistability are present in 

many motoneurons (see sect. IIC) and, in conjunction with the voltage dependence of 

NMDA-mediated synaptic inputs (152, 374, 1433), will contribute to the nonlinearity (see 

below). Moreover, when glutamatergic inputs do add linearly, their combined effects on 

firing probability do not always sum in a linear fashion (359). In this light, the observation 

that unitary EPSP, or EPSP evoked from the same single fiber, vary up to eightfold in their 

rise times (reflecting dispersion of terminals over the dendritic tree, Refs. 33, 166, 1327) yet 

have similar amplitudes (33, 549) is also of interest. Motoneurons may therefore resemble 

hippocampal pyramidal neurons (197, 198) in having mechanisms for boosting the synaptic 

current at distal synapses to ensure equivalence in actions of synapses regardless of their 

location on the dendritic tree. Indeed, motoneurons may be geometrically arranged for 

optimal current transfer from dendrites to soma (859, 862).

The pattern of excitatory input may prove to be a very important factor in determining 

motoneuronal excitability (359, 1005). For example, transient glutamatergic synaptic inputs, 

such as the excitatory input from Ia afferents, appear to have a relatively greater effect on 

output than steady-state inputs (1004). Recent work where glutamatergic inspiratory drive 

currents to phrenic motoneurons were first recorded under voltage clamp and then reinjected 

under current clamp before and after removal of synchronous 20- to 40-Hz components, 

suggests that synchronized presynaptic activity that produces large, high-frequency 
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components on rhythmic drive currents may play an important role in maximizing output for 

a given current input (960).

7. Role of glutamate receptors on motoneurons in production of rhythmic 
activity—NMDA receptor-mediated currents, by virtue of their voltage dependence, not 

only introduce nonlinearities into the synaptic integration process, but can contribute to 

oscillatory behavior. NMDA-induced currents underlie TTX-resistant bursting in abducens 

motoneurons (313, 314), mastication-related motoneurons (636), lamprey spinal locomotor 

motoneurons (449, 450), and neonatal rat spinal motoneurons (486). Depolarization is 

proposed to bring motoneurons into a voltage region where the Mg2+ block is removed, 

giving rise to a regenerative depolarization (328, 449, 450). As seen for 5-HT in 

motoneurons from embryonic amphibians (1155), modulation of NMDA channel function, 

as well as Ca2+-dependent K+ channels or voltage-dependent Ca2+ channels, can alter the 

balance of membrane properties to induce, or continuously regulate, oscillatory activity 

according to behavioral circumstances (326, 632). Thus, provided that NMDA receptors are 

endogenously activated during these behaviors (as seen for lamprey), motoneurons can 

actively shape motor output.

8. Role of glutamate in synaptic transmission—Unequivocal evidence that EAA act 

as transmitters at any motoneuron synapses is sparse (469). However, involvement of 

glutamate/glutamate receptors in synaptic transmission to motoneurons is strongly supported 

by electron microscopic analysis of synaptic inputs (878, 937), the inhibition by glutamate 

antagonists of excitatory synaptic activity in virtually all motoneurons examined, and the 

potentiation of endogenous activity by EAA uptake inhibitors (142, 442, 818).

Molecular physiological analysis of motoneuronal AMPA and NMDA receptors and the 

functional role of glutamate receptor diversity in mediating/modulating synaptic 

transmission is relatively unexplored. Ongoing development of agonists/antagonists specific 

for receptors containing certain receptor subunits/splice variants should foster new insight.

Current understanding of glutamatergic pharmacology at motoneuron synapses was 

advanced most significantly through development and application of specific NMDA and 

non-NMDA receptor antagonists (most recently the quinoxalinediones; Refs. 370, 514) to in 

vitro preparations of CNS tissue (ranging from thin slices of spinal cord/brain stem to 

rhythmically active brain stemspinal cord preparations in a variety of species; Refs. 94, 619–

621, 813, 927, 944). Although it is important to remember that all receptors localized to a 

given synapse will act in concert to produce the postsynaptic response, considerable effort 

has been devoted to distinguish the relative roles of NMDA and non-NMDA receptors in 

mono- and polysynaptic transmission. This section considers some experimental difficulties 

of assessing the roles of these two receptor subtypes and then describes their contribution to 

the synaptic activation of motoneurons.

A) COMPLEXITIES OF ASSESSING NMDA AND NON-NMDA RECEPTOR 
CONTRIBUTIONS

I) Voltage-dependent Mg2+ block of the NMDA receptor: Experimental detection of the 

NMDA receptor contribution to monosynaptic inputs is complicated by the voltage-
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dependent Mg2+ block of the NMDA channel (811). Inclusion of high concentrations of the 

divalent cation Mg2+ in in vitro baths to isolate Ia monosynaptic inputs (557, 568) may 

obscure NMDA receptor contributions. Removal of Mg2+ in solutions bathing the neonatal 

rat spinal cord has inconsistent effects, revealing an NMDA component of the monosynaptic 

EPSP to motoneurons in one case (570) but not others (557, 568). More recent data, under 

conditions of normal Mg2+ levels, support a contribution of NMDA receptors to 

monosynaptic transmission (333, 335, 347, 368, 637, 991). The inability to observe a non-

NMDA antagonist resistant component in monosynaptic reflexes (333, 347, 1190) does not 

rule out NMDA-receptor involvement. It may simply reflect the voltage-dependent block of 

NMDA receptors at resting membrane potentials (see below), i.e., the NMDA component 

does not show up in the absence of non-NMDA mediated, or experimental, depolarization 

(333, 347, 570, 637, 661, 991).

II) Developmental changes in NMDA receptors: Inconsistencies between studies may also 

result from a developmental decrease in the contribution of NMDA receptors to synaptic 

transmission. NMDA receptors are transiently expressed in high densities in the ventral horn 

during early postnatal development (432, 601). The magnitude of NMDA-induced 

depolarizations of spinal motoneurons decreases during development in neonatal rat 

between postnatal days 0–15 (516). In isolated spinal cord of embryonic rat, NMDA 

receptors contribute up to 50% of the short-latency dorsal root-activated EPSP, a 

contribution that decreases with age (1433). Complete loss of NMDA receptor involvement 

in monosynaptic transmission in mature mammals, however, is unlikely. Genes for NMDA 

receptor subunits are expressed in the ventral horn of adult rat cord, and a NMDA 

contribution has been observed in adult (335). Extension of experiments performed on adult 

rat cord in vitro (755–758) to include intracellular analysis of monosynaptic afferent inputs 

to motoneurons similar to that performed in neonates (661, 991) should help resolve this 

question.

III) Definition of mono- versus polysynaptic inputs: Establishing the relative roles of non-

NMDA and NMDA receptors in mono- versus polysynaptic transmission is difficult, 

especially with stimulation of mixed afferent fibers. Stimulation of single, presynaptic axons 

can also be problematic because it produces postsynaptic effects with multiple (fast and 

slow) time courses. If the slow component is misinterpreted as polysynaptic, its depression 

by NMDA antagonists will not be seen to support involvement of NMDA receptors in 

monosynaptic transmission. Use of neonatal preparations in vitro advanced the 

pharmacological distinction of NMDA and non-NDMA receptors but perhaps clouded 

discrimination between mono- and polysynaptic inputs. Because of incomplete myelination, 

the conduction velocity of low-threshold fibers is ~10-fold slower in neonates than adults 

(1073). Differences in the threshold of activation for the different fiber types are also 

reduced. Although adult in vitro preparations address some of these issues, in vitro 

reductions in temperature to preserve spinal circuits may also affect response latency (109). 

Thus reference to mono- and polysynaptic transmission may be misleading and perhaps best 

reserved for paradigms where unequivocal distinction is possible; referring to early and late 

components of the afferent response (347) may be more appropriate.
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B) ROLE OF GLUTAMATE IN TRANSMISSION OF PRIMARY AFFERENT 
FEEDBACK

I) Spinal reflex transmission: Primary afferent fibers have both mono- and polysynaptic 

projections to motoneurons, including those from Ia spindle afferents, Golgi tendon organs 

(Ib), and flexor reflex afferents (group II and III afferents from skin, joints, muscle, and 

group II spindle afferents), that mediate various reflexes. The general insensitivity of short-

latency (presumptive monosynaptic) inputs and sensitivity of polysynaptic inputs to NMDA 

antagonists underlies the general consensus that non-NMDA receptors are primarily 

responsible for monosynaptic excitatory transmission while NMDA receptors underlie 

polysynaptic transmission (153, 277, 343, 346, 411, 470, 557, 568, 755–758, 996, 1160, 

1246, 1381, 1382). Development of specific non-NMDA antagonists (514) confirmed the 

non-NMDA receptor involvement in monosynaptic (335, 347, 570, 637, 661, 758, 991, 

1280) as well as polysynaptic afferent transmission (333, 347, 570, 637, 991).

The role of NMDA receptors in monosynaptic afferent transmission remains controversial. 

However, the existence of non-NMDA receptor antagonist-resistant components of 

monosynaptic inputs supports a NMDA receptor contribution (335, 570, 637, 991) (Fig. 5). 

For example, the Ia EPSP induced through muscle nerve stimulation in cats in vivo exhibits 

a GYKI 52466-insensitive component (335) that is weakly depressed by DL-2-amino-5-

phosphonovaleric acid (APV) (368). In addition, the ventral root potential in adult rats in 

vivo (347), the monosynaptic EPSP in rat cord in vitro (637), and the fast EPSP associated 

with activation of ventrolateral spinal tracts (333) are depressed by NMDA antagonists. 

Similarly, a detailed intracellular analysis in isolated spinal cord of neonatal rat where 

polysynaptic inputs to motoneurons were reduced with mephenesin, reveals a significant 

NMDA component (991) (Fig. 5). Postsynaptic colocalization of NMDA and non-NMDA 

receptors at single afferent release sites mediating monosynaptic EPSP is further supported 

by similar sensitivity of NMDA and non-NMDA components of dorsal root or spinally 

evoked EPSC/EPSP to frequency-dependent changes in amplitude (661, 991, 1433).

While equivocal, taken as a whole the above data suggest that non-NMDA receptors 

underlie the majority of the short latency and perhaps even the longer latency reflex 

components, with a significant contribution from NMDA receptors to both components. The 

relative contributions of the two components may be dynamically regulated. NMDA 

receptor subunit composition and densities appear to decrease developmentally. In addition, 

rapid desensitization of AMPA receptors and their slow recovery relative to NMDA 

receptors (294) may dictate greater involvement of NMDA receptors in mediating high-

frequency afferent inputs. Although NMDA receptors have traditionally been envisioned as 

important mediators of low-frequency activity (especially during development) because of 

the increased probability of summation associated with their prolonged EPSP (1094), further 

examination of frequency-dependent changes in the relative roles of NMDA and non-

NMDA receptors is warranted.

II) Cranial reflex transmission: Data concerning the role of glutamate receptors in 

mediating primary afferent inputs to cranial motoneurons are sparse. In addition to the 

complexities discussed above, activation of primary afferent nerves is more difficult for 
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cranial than spinal motoneurons because they are generally less accessible. Activation of 

specific functional classes of afferents through stimulation of nuclei or fiber tracts within 

supraspinal structures is a poor alternative, since stimulation of a common site of origin or 

defined fiber tract guarantees less functional identity than similar procedures in the spinal 

cord (164). Thus many of the glutamatergic afferent synapses on cranial motoneurons that 

have been studied cannot be functionally classified. Because afferent-evoked EPSP in 

cranial motoneurons are rarely induced from first-order primary afferent fibers, the relative 

roles of NMDA versus non-NMDA receptors in transmitting mono- versus polysynaptic 

primary afferent inputs has received limited attention. Recent development of in vitro 

preparations with intact bulbar reflex circuits should facilitate progress (55, 648, 829).

The relative contribution of non-NMDA and NMDA receptors varies among synapses to 

cranial motoneurons, but both are involved in transmitting afferent signals. Trigeminal-

induced EPSP in rat abducens motoneurons are mediated by non-NMDA receptors (950). In 

contrast, monosynaptic EPSP to jaw-closer motoneurons elicited from spindle or periodontal 

receptor fibers in mesencephalic nucleus of V, when examined intracellularly (1273) rather 

than extracellularly (206, 656), show a small but significant NMDA component. The greater 

sensitivity to NMDA antagonists of extracellular potentials induced in trigeminal 

motoneurons through stimulation of tooth pulp versus oral mucosa further supports the 

differential involvement of NMDA and non-NMDA receptors (609). Similarly, the NMDA 

contribution to dual component EPSP elicited from the NTS fiber tract onto ambigual 

motoneurons in medullary slices, believed to be the efferent limb of the swallowing reflex, 

is larger than seen at most other cranial motoneuron synapses (1336).

C) ROLE OF GLUTAMATE IN TRANSMISSION OF DESCENDING AND 
PROPRIOSPINAL/PROPRIOBULBAR INPUTS

I) Spinal motoneurons: Many excitatory supraspinal and propriospinal motoneuron inputs 

are mediated by glutamate or a related EAA (31, 143, 156–158, 266, 267, 450, 928, see also 

Ref. 449). Presumptive monosynaptic EPSP/C evoked by stimulation of reticulospinal or 

propriospinal neurons/axons in the medial longitudinal fasciculus (MLF) (371), ventrolateral 

funiculus (VLF), and ventral horn (333, 992) are sensitive to NMDA and non-NMDA 

antagonists. Although pathway-specific variation in the relative contributions of non-NMDA 

and NMDA receptors is evident, non-NMDA antagonists primarily reduce EPSP amplitude 

while NMDA antagonists shorten EPSP duration. Parallel frequency-dependent changes in 

the amplitude of NMDA and non-NMDA components of EPSP/C evoked through VLF, 

MLF, and spinal cord (as well as dorsal root) stimulation, further supports the conclusion 

that NMDA and non-NMDA receptors are colocalized on the postsynaptic membrane (371, 

661, 991, 992).

II) Cranial motoneurons: Postsynaptic colocalization of non-NMDA and NMDA receptors 

and their concurrent mediation of synaptic inputs are also apparent at synapses between 

propriobulbar neurons and cranial motoneurons. EPSP induced in ambigual motoneurons 

from presumptive NTS axons in vivo (1336) and mEPSC in hypoglossal motoneurons from 

unidentified sources (926) are sensitive to NMDA and non-NMDA antagonists (1336). That 

some mEPSP have kinetics and pharmacology consistent with exclusive involvement of 
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NMDA receptors, however, again points to considerable diversity in the subtypes of 

glutamate receptors at different motoneuron synapses.

In summary, although the majority of data indicate involvement/colocalization of NMDA 

and non-NMDA receptors at motoneuron afferent synapses, the relative roles of the two 

major subtypes do not appear to be uniform. There is considerable diversity in the glutamate 

receptor complement of different motoneuron synapses. Although such diversity is 

undoubtedly important, its functional significance remains to be determined.

D) ROLE OF GLUTAMATE IN TRANSMISSION OF RHYTHMIC MOTOR 
DRIVE: Glutamate receptors play multiple essential roles in generation of rhythmic motor 

behaviors (356, 590). They mediate many of the afferent or descending signals that initiate 

these behaviors, which include locomotion (43, 590), chewing (608), and deglutition (105). 

Furthermore, exogenous glutamate can activate a variety of episodic rhythmic behaviors. 

Local application of glutamate into the NTS in vivo elicits deglutition (466, 627, 628), into 

the pontine micturition center elicits micturition (785, 963), and intrathecal glutamate 

activates locomotion (304). Bath application of glutamate agonists to various in vitro 

preparations is a common method of activating rhythmic motor networks underlying 

locomotion (202, 469, 486, 1168) as well as chewing (648).

Glutamate receptors are also essential for generation of rhythmic motor output from 

networks including those underlying locomotion (486, 1168), respiration (355, 357, 401, 

405, 442, 1042, 1167), deglutition (105) and chewing (538, 648, 764). Distinguishing the 

role of glutamatergic receptors in rhythm generation from their role in transmission of the 

rhythmic drive to motoneurons, however, has been difficult due to the spatial proximity of 

many rhythm-generating networks to their output motoneurons. For example, application of 

EAA antagonists within the spinal cord to examine the pharmacology of rhythmic locomotor 

inputs to spinal motoneurons can interfere with rhythm generation itself.

I) Locomotion: Direct evidence for a role of glutamate receptors in signaling rhythmic 

locomotor drive potentials comes from experiments where the spatial proximity of 

locomotor rhythm-generating circuits and motoneurons has been overcome using 

muliticompartment perfusion chambers in vitro. Thus fictive locomotion is activated by 

local perfusion of discrete spinal cord segments with EAA agonists. Properties of rhythmic 

locomotor potentials in rat motoneurons outside the region of rhythm generation are 

consistent with NMDA and non-NMDA receptor involvement (201). Many motoneurons 

also receive tonic glutamatergic excitation during locomotion, which may serve to either 

increase motoneuron excitability, facilitate bistable behavior, or generate NMDA receptor-

mediated pacemaker activity (see above).

II) Respiration: Spatial separation of cranial and especially spinal respiratory motoneurons 

from brain stem rhythm-generating networks has been exploited to establish the critical role 

of glutamate receptors in the transmission of excitatory inspiratory or expiratory drive (355, 

401, 1026, 1042). The relative contribution of non-NMDA versus NMDA receptors is not 

firmly established. In vitro whole cell recording studies in rhythmic brain stem-spinal cord 

and transverse medullary slice preparations from neonatal rodents indicate that while 
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phrenic (745) and hypoglossal motoneurons (405) possess NMDA receptors, inspiratory 

synaptic currents are unaffected by NMDA antagonists in the presence of normal Mg2+ 

concentrations (405, 745). In fact, inspiratory synaptic currents to hypoglossal motoneurons 

are similar in wild-type and transgenic neonatal mice lacking functional NMDA receptors 

(402). Furthermore, whole nerve (C4 or XII) inspiratory activity is not affected by NMDA 

antagonists (405, 442, 745) (in one case a minor decrease was observed, Ref. 818). Phrenic 

nerve output in adult rabbit and rat in vivo, however, is reduced by application of both non-

NMDA and NMDA antagonists into the ventral horn (117, 216). Differences may reflect in 

vitro versus in vivo or neonate versus adult conditions. For example, in vitro, the 

concentration of glycine, an allosteric modulator of NMDA receptors, is reduced (96), and 

motoneurons may be relatively hyperpolarized due to deafferentation; consequently, NMDA 

channels may experience a greater Mg2+-dependent block. In addition, there are also 

developmental changes in expression of NMDA receptors. Although many brain regions 

show reductions in NMDA receptor expression, NMDA receptor binding in NTS and the 

ventrolateral medulla, regions containing premotor neurons which provide rhythmic 

respiratory drive to phrenic motoneurons, increases from postnatal day 0 and plateaus at 

approximately postnatal day 9 (1031).

III) Other: Glutamate receptor activation underlies myoclonic twitches in lumbar 

motoneurons that characterize REM sleep (1178), putative swallowing-related information 

transfer between NTS and ambigual motoneurons (1336), cortically evoked rhythmical 

masticatory inputs to jaw opener motoneurons (608), micturition (593, 805, 963, 1188, 

1193, 1411–1413), and emetic (190, 278, 724) reflexes. The precise pharmacology of 

motoneuronal glutamate receptors involved in these rhythmic behaviors remains to be 

established.

9. Role of glutamate in activity-dependent development of motoneurons—
Synaptic transmission during critical periods in early postnatal life plays a central role in 

acquisition of mature electrophysiological, morphological, and molecular properties of 

neurons (487). The propensity for activity-dependent (re)organization of circuits in the 

neonatal, but not the adult, nervous system underlies the hypotheses that 1) the molecular 

composition of neonatal circuits (including motor circuits) supports activity-dependent 

synaptic plasticity while maturational changes impede this process, and 2) features of 

glutamatergic transmission factor importantly in activity-dependent development of motor 

circuits. Activity-dependent restructuring of neuronal circuits has primarily been examined 

for thalamic and cortical sensory maps, but evidence for its role in motoneuron development 

is growing (361, 487, 599, 750, 899, 900). Developmental alterations in motoneuronal 

glutamate receptor subunit expression (558, 559), binding profiles (432, 595, 601), changing 

contributions of receptor subtypes to synaptic transmission (719, 1433), and reductions in 

NMDA-induced currents (516, 876) underscore not only the potential for developmental 

change in motoneuron excitability but the possible contribution of glutamate receptors to 

activity-dependent development of motoneurons.

Attention has focused on the role of NMDA receptors. Their long-duration EPSC, Ca2+ 

permeability, and voltage dependence factor prominently in theories of activity-dependent 
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phenomena (279, 837, 1094). In non-motoneuron systems, NMDA receptor composition 

appears to be regulated to produce longer lasting EPSC in young tissue and facilitate 

activity-dependent synaptic plasticity (187, 479, 857, 1028, 1141, 1364, 1365, 1429).

NMDA receptors also appear to be involved in activity-dependent development at the 

motoneuron level. 1) Motoneuron somal growth and dendritic branching are inhibited by 

NMDA receptor antagonism in early postnatal life (594). 2) Afferent expression of Cat-301 

proteoglycan, a proposed marker for activity-dependent development (596), is dependent on 

NMDA receptor activation (597), motoneuron activity (600), and activity in large-diameter 

afferent fibers (598). 3) Mouse dorsal root ganglion-ventral horn synapses undergo NMDA- 

and non-NMDA-mediated activity dependent modification in vitro (362, 901, 903). 4) 

Establishment of active sensorimotor synapses is correlated with increased motoneuron 

sensitivity to NMDA and kainate, and decreased sensitivity to glutamate, suggesting that 

dorsal root afferents affect the number, location, or binding affinity of glutamate receptors, 

perhaps through an activity-dependent process (1433). 5) NMDA antagonists extend the 

postnatal period where neonatal rats are able to recover from spinal cord injury (776). In 

fact, NMDA receptor properties and subunit composition may themselves be activity 

dependent. Early in development, when neurons receive few, weakly correlated inputs, long-

duration NMDA-mediated events may be essential for synaptic organization. As 

development proceeds and synaptic inputs increase in strength and coherence, an activity-

dependent change in NMDA receptor subunit expression/number favoring reduced NMDA 

currents may avoid excessive stimulation and excitotoxicity (1094). A developmental 

analysis of receptor subunit expression and properties is required to determine whether there 

is any transition in receptor properties to favor longer duration EPSP in motoneurons of 

younger animals.

Non-NMDA receptor properties may also be developmentally regulated to facilitate activity-

dependent development of motoneurons. Higher levels of overall GluR subunit expression 

in neonates and a consistent bias of neonate motoneurons toward expression of flip GluR 

splice variants (559), which have higher gain than their flop counterparts, suggest greater 

excitability of neonatal motoneurons to glutamatergic inputs. The larger non-NMDA 

currents in neonates may lead to greater depolarization, greater activation of NMDA 

receptors, and greater Ca2+ influx. A greater Ca2+ permeability of neonatal AMPA 

receptors, suggested by the higher ratio of GluR1, -3, -4/GluR2 in neonatal motoneurons 

relative to adults (559), may also enhance plasticity in neonates.

In contrast to the postnatal period, disruption of glutamate/ NMDA-mediated synaptic 

activity during fetal life appears to be without major effect on motoneuron properties or 

synaptogenesis. Developmental changes in excitability of embryonic rat spinal motoneurons 

grown in culture, although affected by changes in electrical activity, are unaffected by 

glutamate antagonists (1392). Monosynaptic afferents connect appropriately with fetal chick 

or frog spinal cord motoneurons when synaptic activity is blocked (380). In the absence of 

functional NMDA receptors (NMDAR1 knockout mice), rhythmic respiratory motor output 

is present at birth and in vitro is undistinguishable from that of normal mice (402). A role for 

glutamatergic activity in the programmed decrease in motoneuron cell number that occurs 

during fetal development (apoptosis) (176, 386, 387, 695) remains possible (176).
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The relative role of activity and glutamate receptors in the development of spinal versus 

cranial motoneurons, somatotopic organization of motoneuron pools (297, 997, 1343) and 

the cellular mechanisms underlying activity-dependent changes are all areas requiring 

further investigation.

B. Glutamate: Metabotropic Actions

Glutamate, in addition to its role as the principal fast excitatory neurotransmitter, also 

modulates neuronal excitability by activating a large family of metabotropic receptors.

1. Receptors—Metabotropic glutamate receptors (mGluR) are coupled through GTP-

binding proteins to intracellular second messenger cascades (196, 1101, 1164, 1195, 1369). 

There are at least eight subtypes of mGluR (mGluR1 to -8) (3, 517, 804, 885, 931, 1231, 

1232) that can be divided into three groups (groups I, II, and III) on the basis of sequence 

homology and pharmacological profiles (234, 989). Group I mGluR (mGluR-1, 5) are 

coupled to phospholipase C (PLC) and increase the synthesis of inositol 1,4,5-trisphosphate 

(IP3), and trigger intracellular Ca2+ release (3, 36, 804). Group II (mGluR2, -3) and group 

III mGluR (mGluR-4, 6–8) are negatively coupled to adenylyl cyclase and inhibit the 

formation of cAMP (315, 885, 931, 1085, 1231, 1232).

2. Cellular distribution of receptors—Metabotropic glutamate receptors are widely 

distributed in the CNS. There is a wide diversity and heterogeneous distribution of mGluR 

subtypes in different areas, with a unique differential cellular localization of receptor 

subtypes. Group I mGluR appear to be localized postsynaptically (71, 762, 800, 1146) where 

they act to increase neuronal excitability (905, 1105, 1108). Group II and III receptors are 

predominantly localized in presynaptic terminals (135, 638, 735, 1146, 1147) where they 

inhibit transmitter release (70, 373, 419, 773, 1075, 1107, 1272, 1314). This differential 

localization is by no means exclusive (419, 793, 1056). Nevertheless, the unique cellular 

localization of each mGluR subtype suggests that the precise placement of receptors is a 

crucial factor contributing to the control of neuronal excitability.

3. Modulation of synaptic transmission to motoneurons—Activation of mGluR 

causes a profound inhibition of synaptic transmission to spinal and cranial motoneurons 

(301, 561). Both group II and group III mGluR reduce spinal segmental transmission to 

lumbar motoneurons (181, 541, 562, 618, 1243) and bulbospinal inspiratory synaptic inputs 

to phrenic motoneurons (301, 302). Only synaptic events are depressed. These two groups of 

mGluR have no effect on postsynaptic depolarization induced by exogenous EAA (302, 

541) or postsynaptic membrane intrinsic properties (181, 301). Moreover, the frequency of 

mEPSC is significantly reduced by both group II and group III agonists, whereas the 

mEPSC amplitude is unaffected (301, 302). This suggests that activation of presynaptic 

group II and group III mGluR inhibits glutamate release to motoneurons. Activation of 

mGluR can also enhance synaptic transmission, as seen in frog (433) and lamprey (224) 

spinal motoneurons.

The precise mechanisms underlying the presynaptic action of mGluR are not known. 

Inhibition of transmitter release from presynaptic terminals may result from the reduction of 
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presynaptic Ca2+ influx (915). Inhibition of voltage-dependent Ca2+ currents after mGluR 

activation occurs in neuronal soma (219, 428, 730, 1089, 1185, 1204, 1272, 1410); perhaps a 

similar mechanism underlies the presynaptic inhibitory action of mGluR agonists. Another 

possible mechanism is the direct modulation of the exocytotic machinery by influencing the 

availability of vesicles or their probability of release (468). The activation of mGluR is 

effective in reducing the frequency of spontaneous mEPSC when presynaptic action 

potentials are blocked in motoneurons (301, 302) and in other neurons, such as in 

hippocampus (419, 779, 1091) and striatum (1282). These spontaneous mEPSC seem 

independent of presynaptic Ca2+ influx since they persist in the presence of Ca2+ channel 

blockers (419, 1090, 1091, 1102). Thus the inhibition of presynaptic Ca2+ currents does not 

seem obligatory for the reduction of transmitter release by mGluR. mGluR may inhibit 

transmitter release by interfering with the secretion cascade subsequent to presynaptic Ca2+ 

influx (419, 468, 1091, 1105, 1282).

Group II and group III mGluR both appear to be present in terminals presynaptic to 

motoneurons. Because their actions appear similar, what purpose is served by having both 

types present? One possibility is that each group of receptors is located in different sets of 

terminals. Another possibility is spatial segregation of each group within presynaptic 

elements (1146). In hippocampal neurons, group III receptors are predominantly located in 

presynaptic active zones, whereas group II receptors are found at the preterminal axon at a 

site away from the release sites (1146). Thus group III mGluR would be preferentially 

activated, whereas group II mGluR would be activated only under higher release conditions. 

However, because the identification of mGluR subtypes relies largely on the selectivity of 

agonists, and because the two groups show high homology, the possibility that various 

agonists act through the same receptor cannot be excluded.

In addition to presynaptic actions, modulation of postsynaptic ligand-gated receptors can 

alter synaptic transmission. In lumbar (1285) and cranial trigeminal (287) motoneurons, 

depression of synaptic transmission is mediated by postsynaptic mGluR that decrease 

currents through ionotropic glutamate receptors. Group I mGluR appear to be involved in 

this process (1285).

4. Modulation of intrinsic membrane properties—Activation of mGluR, most likely 

of group I, causes membrane depolarization (287, 301, 302, 316, 540, 560, 561, 1242, 

1244). This effect persists after block of synaptic transmission, suggesting mediation by 

postsynaptic receptors. In rat phrenic (301, 302) and trigeminal (287) motoneurons, 

depolarization is due to an inward current produced by activation of postsynaptic group I 

mGluR (301). This inward current consists of at least two components: a dominant 

component resulting from the blockade of a Ba2+-sensitive resting K+ current (287, 302) and 

an unidentified Ba2+-resistant component (302). Inhibition of this tonic K+ current results in 

membrane depolarization and increase in membrane resistance, both effects increasing 

motoneuronal excitability. Thus motoneurons show enhanced firing in response to either 

synaptic current or injected current after activation of mGluR (301, 302).

mGluR modulation of postsynaptic Ca2+ currents can also increase motoneuronal 

excitability (287, 285). In turtle spinal motoneurons, mGluR sensitive to (R,S)-α-methyl-4-
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carboxyphenylglycine (MCPG), a nonselective mGluR antagonist, facilitate plateau 

potentials by increasing an L-type Ca2+ current (285). Furthermore, the facilitation induced 

by mGluR activation can be compartmentalized to affect only part of the motoneuron 

membrane, i.e., a plateau potential in a medial dendrite can be facilitated, with no 

simultaneous effect in a lateral dendrite (286).

5. Endogenous activation of mGluR in motoneurons—Motoneuron activity 

changes significantly after administration of mGluR antagonists. Synaptic currents in rat 

spinal lumbar and cervical motoneurons are enhanced by antagonists for group II and for 

group III mGluR (182, 183, 301). This is presumably caused by the blockade of presynaptic 

receptors, suggesting that endogenous activation of these receptors attenuates synaptic 

transmission. In phrenic motoneurons, the group I mGluR antagonist (R,S)-1-

aminoindan-1,5,dicarboxylic acid (AIDCA) significantly reduces EPSC amplitude, 

suggesting that postsynaptic group I mGluR, along with various ionotropic receptors (441, 

745), are activated by endogenously released glutamate during inspiration.

In summary, three groups of mGluR are functionally expressed in motoneurons to mediate 

differential effects on intrinsic and synaptic properties via distinct mechanisms operating at 

pre- or postsynaptic sites. The diversity of actions mediated by various receptor subtypes 

provides a wide dynamic range for modulation of motoneuron excitability.

C. GABA and Glycine: Ionotropic Actions

GABA (920, 1016) and glycine (675, 700, 1023) are the principal fast inhibitory transmitters 

in the mammalian CNS. They are involved in all aspects of nervous system function, 

including control of motoneuron excitability (87, 101, 675, 700, 782, 847, 1306).

In this section we briefly review 1) ligands responsible for endogenous activation of GABA 

and glycine receptors, 2) the molecular biology of ionotropic GABA and glycine receptors, 

3) distribution of GABA and glycine receptors subunits amongst motoneuron pools, 4) the 

physiological significance of GABA/glycine receptor diversity to the control of motoneuron 

excitability, 5) post- and presynaptic actions of GABA and glycine, 6) functional role of 

GABA and glycine in modulating motoneuron excitability, and 7) development of 

ionotropic inhibitory systems.

1. Ligands—Compelling evidence indicates that GABA (920, 1016) and glycine (675, 

700, 1023) are inhibitory transmitters in the mammalian CNS. β-Alanine is also a candidate 

ligand at GABA and glycine receptors (675, 1016); its effects are inhibited by GABA 

(SR-95531) and glycine antagonists (strychnine), and steroids potentiate the action of β-

alanine at GABAA receptors (1384).

2. Receptors

A) GABA RECEPTORS: GABA produces its actions in the CNS by binding to two 

subclasses of ionotropic receptors, GABAA and GABAC, and one class of metabotropic 

receptor, GABAB (see sect. IVD). Pre- and postsynaptic GABAA receptors play prominent 

roles in modulating motoneuron excitability. GABAA receptors form Cl−-selective channels; 

Rekling et al. Page 34

Physiol Rev. Author manuscript; available in PMC 2016 February 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



have allosteric sites for benzodiazepines, barbiturates, neuroactive steroids; and are 

phosphorylated by protein kinase C (PKC) and protein kinase A (PKA) (59, 579, 592, 606, 

893, 1152, 1363). They are hetero-oligomeric, pentameric, protein assemblies of unknown 

subunit combination or stoichiometry. At least 15 genetically distinct subunit subtypes (α 1–

6; β 1–4; γ 1–4; δ) as well as alternatively spliced variants and additional posttranscriptional 

modifications underlie the molecular diversity of GABAA receptors (60, 242, 282, 309, 682, 

867, 893, 1016).

GABAC receptors are ligand-gated Cl− channels that are insensitive to drugs that modulate 

GABAA and GABAB receptor function (123, 578, 580, 581). Compared with GABAA Cl− 

channels, they are more sensitive to GABA, less prone to desensitization, and have longer 

open times. Their molecular biology has not been fully characterized. It appears that ρ1–ρ2 

subunits, which are typically referred to as GABAA receptor subunits, may form GABAC 

receptors (242, 338, 581). The role of GABAC receptors in regulation of motoneuron 

excitability is not known. GABAC type responses have been characterized predominantly in 

the retina. Furthermore, although ρ1 mRNA is exclusive to the retina, RT-PCR analysis of ρ2 

indicates its presence throughout the brain, including the spinal cord. Its expression in, or 

presynaptic to, motoneurons remains to be established (338).

B) GLYCINE RECEPTORS: Glycine modulates motoneuron excitability through 

activation of a group of postsynaptic receptors belonging to a superfamily of ligand-gated 

ion channels that share homology with GABAA, nicotinic ACh, and 5-HT3 channels. 

Glycine receptors have been the subject of several recent reviews (81, 101–104, 674, 675, 

700, 1023, 1306). They form Cl−-selective channels, possess allosteric sites for Zn2+, and 

are subject to positive (PKA, cAMP) and negative (PKC) modulation via receptor 

phosphorylation. The purified receptor contains two transmembrane subunits of 48 kDa (α) 

and 58 kDA (β) and a peripheral protein of 98 kDa (gephyrin). Glycine receptors form 

hetero-oligomeric, pentameric protein assemblies from α, which contain the glycine and 

strychnine binding sites, and β subunits. At least four genes code for separate α-subunits (α1, 

α2, α3, and α4), while diversity in β-subunits has not been found. Molecular diversity is 

further increased through alternate splicing. The α1-, α2-, and α3-subunits undergo 

alternative splicing to produce α1 ins, α2A and α2B, and α3K and α3L (917) splice variants, 

respectively, which modify pharmacological and electrophysiological properties of the 

receptor (82, 445, 676, 677). An additional subunit designated α2* differs from the α2A-

subunit by only a single amino acid and likely represents an allelic variant of the α2-gene 

(81, 101–104, 674, 675, 700, 1023, 1306).

Gephyrin, a 93-kDa peripheral membrane polypeptide, is associated with the β-subunit 

(835). At least five splice variants exist (1008). Gephyrin is of primary significance because 

of its pivotal role in the formation of glycine receptor clusters, which most likely occurs 

through its anchoring of the receptor to the cytoskeleton (640, 641, 643, 1251, 1354). 

Although this protein may not be directly involved in signal transduction, its relevance to 

control of excitability is obvious due to the importance of synapse distribution over the 

somatodendritic tree in synaptic integration.
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3. Distribution of inhibitory amino acid receptors on motoneurons—
Understanding the types of receptors expressed by specific motoneuron pools and their 

spatial distribution on the surface of motoneuron in relation to functionally identified 

synapses (as well as the distribution of active dendritic conductances) is critical in 

understanding not only how motoneurons function as information processing units but how 

motoneurons target receptors to different synapse populations to effect various responses to 

input (831, 1162). This section 1) examines expression patterns of inhibitory amino acid 

receptor subtypes/subunits within the different motoneuron pools and 2) describes the spatial 

distribution of the amino acid receptors/ synapses over the somatodendritic tree.

A) GABAA RECEPTOR LOCALIZATION

I) Spinal motoneurons: Consistent with GABAA receptor binding studies (54, 349, 827, 

1414, 1415), GABA or glutamate decarboxylase (GAD) immunostaining is widespread 

throughout the spinal cord, and lower in the ventral relative to the dorsal horn. GABAergic 

terminals are consistently found surrounding and contacting motoneuron cell bodies and 

proximal dendrites (186, 510, 775, 827, 875). GABA or its receptors are present in synaptic 

densities of cervical and lumbar motoneurons (290, 878, 937, 941, 942, 1027, 1197), at a 

low percentage of presynaptic (axoaxonic) terminals (290, 1197), and at extrasynaptic sites 

(1197).

α2- and α3-subunit mRNA are the most abundantly expressed of the α-subunits in the spinal 

cord. The α2-transcript (770, 971, 972, 1374) and protein (116) and the α5-subunit (116) are 

present in spinal motoneurons, whereas the α1-, α3-, and α6-transcripts (770, 971, 972) and 

α1-protein (115) are either absent or very sparse. Binding studies are generally consistent 

with these findings. Most spinal neurons have only type II benzodiazepine receptors (136) 

which, in transfected cells, are associated with α2- and α3-receptors (1009). Benzodiazepine 

type I pharmacology, which is not apparent in spinal neurons, is typically associated with 

α1-receptors.

β3-mRNA, but not β2 (971, 972, 1374), has been localized in spinal motoneurons. However, 

in contrast to dorsal horn cells and other regions of the spinal cord, the lack (116) or low 

level (25, 1045) of immunolabeling for β-subunit protein in spinal motoneurons questions a 

major role for β-subunits in native motoneuronal GABAA receptors.

Spinal motoneurons also express mRNA for the γ2-subunit (770, 971, 972, 1374) and γ2-

immunolabeling (116, 1197). The γ1- and δ-transcripts have not been localized to spinal 

motoneurons (972). Differences in expression along the length of the cord are not apparent 

(116). Thus the combinations of GABAA subunits most likely to form receptors on spinal 

motoneurons are α2δ2 or α2b3δ2 in unknown stoichiometry. Continued development of 

subunit- specific antibodies (282) is required to confirm the presence of subunit protein.

II) Cranial motoneurons: GABAA receptors are also ubiquitous on cranial motoneurons 

(18, 875, 1177), but expression patterns of the various receptor subunits appear to differ 

between cranial and spinal motoneurons (Table 6). Facial and trigeminal motoneurons of 

adult rat express transcripts for α1-, α2-, β1–2-, and γ2-subunits but very low levels, or 

absence, of α3-, α5-, α6-, β1-, γ1-, and δ-transcripts (972). α1-mRNA is also strongly 
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expressed in DMV, XII, facial, III, IV, VI, with only weak labeling in V (483). 

Immunohistochemical analyses with antibodies specific to α1–3-, α5-, β2/3-, γ2-, and δ-

subunits indicate intense to moderate labeling for α1-, α2-, and γ2-subunits and weak 

labeling for α3 and α5 in III, V, VII, ambigual, DMV, and XII motoneurons. The only 

exceptions to this general pattern are that V and DMV show minimal labeling for α1 and 

that β2/3 has only been detected in the VII nucleus (388). Thus the major feature 

distinguishing cranial from spinal motor pools is the presence of α1- and α3-subunits in 

cranial motoneurons. Of considerable interest as well is the apparent lack of β2/3-subunits in 

all motoneuron pools (spinal and cranial), because β-subunits are widely expressed in many 

other neuron types. Differences between functional groups of cranial motoneurons are not 

yet apparent.

B) GLYCINE RECEPTOR LOCALIZATION: Localization of glycinergic neurons and 

terminals has been examined by exploiting high-affinity uptake of [3H]glycine (494, 547) 

and glycine immunohistochemistry (180, 738, 739, 937, 941, 942, 1029, 1251, 1252, 1300, 

1389). The postsynaptic localization of receptors on cranial and spinal motoneurons has 

been established through receptor autoradiography with [3H]glycine and [3H]strychnine (11, 

140, 1010, 1061, 1419), immunohistochemistry (35, 115, 424, 1138, 1251–1253, 1270, 

1271, 1300), and in situ hybridization (390, 642, 786, 1017, 1018, 1081, 1083, 1339). On 

cranial and spinal motoneurons, glycine receptors appear confined to the postsynaptic 

membrane, with few differences among the various motoneuron pools. One notable 

exception is the reduced labeling of visceromotor motoneurons (EW and DMV) relative to 

cranial motoneurons innervating striated muscle.

The differential expression of glycine receptor subunit proteins on motoneurons is poorly 

described. Specific antibodies are only available for α1-subunits and gephyrin. Few 

motoneuron studies have used the α1-antibody (80, 1270, 1271). Most have used a 

nonspecific antibody or the antibody to gephyrin (35, 115, 424, 1138, 1251, 1252, 1300; for 

description of antibody specificity, see Refs. 80, 981, 1271). Evidence that gephyrin may 

also be expressed at nonglycinergic synapses indicates the need for caution in using 

gephyrin immunoreactivity on its own as a marker for glycinergic synapses (1251).

Distribution of glycine receptor subunit transcripts assessed with in situ hybridization 

indicates marked developmental changes in expression patterns but similar patterns between 

the different motoneuron pools of the adult. In general, transcripts for α1- and β-subunits are 

highly expressed in adult cranial and spinal motoneurons (390, 786, 1081, 1083). α2-

Transcripts are reduced relative to α1 (786, 1339) but show similar patterns of distribution 

(1017, 1018). Gephyrin transcripts are high in spinal motoneurons (642), whereas α3-mRNA 

is barely detectable in spinal ventral horn and hypoglossal motoneurons (786, 1159). Details 

of the α4-distribution are also unclear, but low levels are expressed in spinal cord of mouse. 

The only marked spatial difference in expression is that, relative to spinal and cranial 

motoneuron pools innervating striated muscle, α1-transcripts appear reduced in motoneurons 

innervating the eye muscles (1083). Consistent with immunohistochemical data, α1-, α2-, 

and β-transcripts are also reduced in visceromotor nuclei (EW and DMV) relative to 

motoneurons innervating striated muscle (390, 1081, 1083).
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Subcellular distribution of glycine receptor transcripts may, however, differ between spinal 

and cranial motoneuron pools. In the majority of spinal cord motoneurons, α1- and α2-

transcripts are localized in the soma and dendrites, whereas β-subunit and gephyrin mRNA 

are restricted to the soma (1017, 1018). In contrast, in facial, hypoglossal, and ambiguual 

motoneurons, α-transcripts are restricted to the soma (1018). Association of α-subunit 

mRNA in the dendrites with postsynaptic differentiations could provide dynamic 

modulation of synaptic efficacy (in spinal motoneurons but not cranial motoneurons) by 

changing composition and density of receptors at glycinergic synapses (1017).

C) SPATIAL DISTRIBUTION OF AMINO ACID RECEPTORS OVER THE 
SOMATODENDRITIC TREE: Ultrastructural characteristics of excitatory and inhibitory 

synapses on motoneurons are well established. Analysis of the distribution of presumptive 

excitatory (glutamatergic; S- or M-type terminals) and inhibitory (GABA- or glycinergic; F-

type terminals) boutons (97, 114, 238) (139, 691, 1058), combined with postembedding 

immunohistochemical studies of amino acid transmitters in boutons synapsing with 

motoneurons, have provided important insight into the spatial distribution of synapses on 

motoneurons. Although many of the original studies focused on the soma and proximal 

dendrites (290, 291, 510, 941, 1027), extension of these studies to include distal dendrites 

has been essential, since dendrites comprise >90% of the motoneuron receptive domain.

A number of general organizational features are emerging. 1) Between 85 and 95% of 

boutons on spinal motoneurons (lumbar, phrenic, sacral) are immunoreactive for glutamate, 

GABA, and/or glycine (878, 937). 2) There is extensive colocalization of GABA and 

glycine with terminals that are exclusively glycinergic exceeding those that are exclusively 

GABAergic (582, 937, 941, 942, 1205). 3) Close to 60% of boutons apposing dendrites of 

spinal and brain stem motor nuclei of cat and rat contain glycine and/or GABA (291, 937, 

941, 942, 1027, 1071, 1150, 1205). 4) Glutamate-enriched boutons appear to comprise just 

over one-third of boutons in lumbar and sacral motoneurons (937) and between ~48 and 

58% of boutons in the phrenic nucleus (878, 1207). 5) The proximal compartment (soma 

and stem dendrites) appears to be under powerful glycine/GABA inhibitory influence. The 

proximal compartment of lumbar motoneurons has a glycine/GABA-to-glutamate synaptic 

ratio of 3.5– 4:1, and the distal compartment has a ratio of ~1.5:1 (937). The proportion of 

glutamate and inhibitory synapses does not appear to vary between proximal and distal 

dendritic compartments in phrenic motoneurons (878). However, exclusion of smaller distal 

dendrites from the sample raises the possibility that the proximal compartment of phrenic 

motoneurons is also under stronger inhibitory control. 6) Inhibitory synapses are not limited 

to the soma and proximal dendrites. Distal compartments of lumbar motoneurons show a 

uniform balance between inhibitory and excitatory synapses, with glutamate accounting for 

40% of synapses (937). The importance of inhibitory synapses in dendrites has long been 

recognized. Not only can inhibition gate action potential production at the soma, but it can 

control the weight of excitatory inputs from different dendritic regions (1162).

The spatial distribution of functionally identified synapses and the molecular composition of 

glutamate/GABA/glycine receptors underlying these inputs are not yet known. 

Postembedding immunohistochemical studies with antibodies specific to the different 

receptor subunits in conjunction with electron microscopic analyses, similar to that used for 
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NMDA receptor subunits in hippocampal and cerebellar neurons (977, 979), will greatly 

increase understanding of the ultrastructural localization of receptor subunit protein on the 

cell soma and dendrites of motoneurons (for reviews on factors controlling glutamate 

receptor distribution, see Refs. 324, 662, 1349). Description of the receptor subtypes/

subunits mediating specific physiological inputs will require controlled activation of 

synapses at specific sites on specific dendritic branches, refinement of techniques for precise 

application of agonists/antagonists, and continued development of subtype/subunit-selective 

agonists/antagonists (370).

4. Physiological significance of GABA and glycine receptor diversity in 
modulation of motoneuron excitability—Inhibitory control is elaborated by GABA 

and glycine receptor diversity, heterogeneous spatial distribution of receptors, and 

colocalization of GABA and glycine. As previously discussed for glutamatergic 

transmission, the physiological significance to motoneuron excitability of the potential 

diversity of GABA and glycine receptors conferred by multiple subtypes, subunits, and 

posttranscriptional modification remains one of the major unanswered questions of amino 

acid transmission. Relatively little is known of the structure-function relationships of native 

GABA receptors in any neuron. In motoneurons, attempts to identify the native GABA 

receptors have been limited to immunoprecipitation studies (971) and immunochemical and 

in situ hybridization analysis of subunit expression. Attempts to match properties of native 

receptors to those of recombinant receptors have not yet identified a single native GABAA 

receptor in any neuron; however, analysis of the contribution of subunits to functional 

properties of recombinant receptors is far from complete. Physiological properties of 

recombinant receptors affected by subunit composition include GABA potency, 

conductance state, gating properties, modulation by steroids and phosphorylation, and 

intensity of benzodiazepine amplification of Cl− currents (150, 242, 772, 1016). The signal 

transduction mechanism, however, remains virtually unchanged in various receptor 

subtypes. The major functional implication of GABAA receptor diversity may be associated 

with changes in the channel-gating potency of GABA (242). The EC50 of 19 different 

subtypes of recombinant GABAA receptors varies from 0.3 to 15 µM (308). The importance 

of varied gating affinity of GABA receptors in control of motoneuron excitability is not 

clear, but in hippocampal and cortical pyramidal neurons, it is postulated to be critical for 

synchronizing the firing rate and coordinating neuronal interactions in columnary cortical 

activity (242).

The potential diversity of glycine receptors is less than that for GABAA receptors. However, 

variations in subunit composition affect gating properties and may account for the 

heterogeneity in the voltage dependence and desensitization properties of glycine responses 

(1023). The most obvious change in glycine receptor structure and function occurs during 

the first 2–3 postnatal weeks, when the fetal/neonatal receptor (most probably an homomeric 

α2-receptor) matures to the adult heteromeric form that lacks significant α2-subunit. The 

open time of recombinant α2-receptors is much greater than for homomeric α1- and native 

adult receptors (1159, 1219). These changes are consistent with developmental decreases in 

the decay time course of inhibitory postsynaptic currents (IPSC) in spinal neurons. In 

hypoglossal motoneurons, a postnatal switch from α2- to α1-glycine receptor subunit 
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expression correlates with shorter channel open times and faster PSC/P decays, matching 

kinetic properties of glycinergic synaptic potentials to membrane properties of the 

motoneurons (1159). Thus changes in glycine receptor structure appear to significantly alter 

glycinergic transmission during development.

It is unlikely that any single approach will reveal the functional and molecular profiles of 

native GABA or glycine receptors in individual motoneurons (824, 1375); electrophysiology 

remains the best approach for assessing physiological, biophysical, and pharmacological 

properties of GABAA/glycine receptors (1407), but without subunit specific agonists/

antagonists, it does not provide information on subunit composition. Difficulties of 

examining multiple subunits in a single neuron must be overcome to identify native 

receptors.

For a more thorough treatment of physiological properties that may be conferred by the 

presence or absence of specific receptors subunits on motoneuron membrane, we refer 

readers to our summary of receptor subtypes/subunits expressed on specific motoneuron 

pools and recent reviews on analysis of recombinant GABAA (242, 761, 824, 852, 1016, 

1309) and glycine receptors (1023, 1306).

5. Post- and presynaptic actions of inhibitory amino acids

A) POSTSYNAPTIC ACTIONS: GABAA AND GLYCINE RECEPTORS: Inhibitory 

postsynaptic potentials were first recorded in cat motoneurons (241) and subsequently 

attributed to activation of glycine and GABAA receptors (257, 668, 1347). Activation of 

glycine (213, 257, 649, 668, 1211, 1215, 1221) or GABAA receptors (257, 275, 668, 782, 

1221) in adult spinal and cranial motoneurons by exogenous or synaptically released 

agonists elicits similar responses comprising an opening of Cl−-selective ion channels, 

inward movement of Cl−, a decrease in membrane resistance, and membrane 

hyperpolarization. GABA and glycine receptors also have at least four similar conductance 

states, although the main conductance state differs (124, 462, 1169, 1218). The primary 

difference between the two receptors lies in their response kinetics; GABAA receptor-

mediated responses decay more slowly and show greater desensitization.

Although predominantly hyperpolarizing, GABA and glycine responses can also be 

depolarizing if intracellular Cl− concentration is elevated. Thus, in neonatal (or fetal) 

motoneurons, where intracellular Cl− is elevated relative to adult, responses to GABAA 

(413, 1192, 1389) and glycine agonists, either exogenously applied (413, 1389) or 

synaptically released (412, 557, 582, 1159, 1211), are typically depolarizing (  flux 

does not contribute to the depolarizing response in motoneurons, Refs. 413, 967). Note that 

although these Cl−-dependent potentials are depolarizing, large decreases in input resistance 

are believed to underlie the fact that they remain inhibitory (412, 413, 1159, 1192, 1389).

The ontogeny of many aspects of GABA and glycinergic transmission has been examined in 

spinal motoneurons (412, 413, 1389); however, a clear description of the developmental 

stage where depolarizing GABA/glycine responses become hyperpolarizing is lacking. 

Whole cell recordings, while providing valuable information on kinetics of GABAergic and 

glycinergic IPSP/C of neonate and adult motoneurons (1215, 1218), are not well-suited for 
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these measurements because of disruptions in internal Cl− concentration. Perforated-patch 

recordings using the Cl−-impermeant ionophore gramicidin indicate a change in reversal 

potential of glycinergic IPSC in hypoglossal motoneurons from −37 to −73 mV between 

postnatal days 0 and 18 (1159). A more complete developmental analysis using similar 

techniques in spinal as well as cranial motoneurons is required.

In summary, activation of GABAA and glycine receptors decreases motoneuron excitability, 

apparently regardless of whether the responses are depolarizing or hyperpolarizing. In 

adults, membrane hyperpolarization combines with a significant reduction in input 

resistance that shunts excitatory inputs to reduce excitability. In neonates, the reduction in 

input resistance and associated shunt has the dominant effect on excitability, reducing action 

potential output to injected and synaptic current despite the membrane depolarization (413, 

668, 1192, 1389). Note, however, that a depolarizing versus hyperpolarizing shunt will have 

different effects on voltage-gated channels. The consequences of this differential activation 

of voltage-gated channels for motoneuron excitability remain to be studied.

B) COLOCALIZATION/CORELEASE OF GABA AND GLYCINE: A recurrent theme 

in studies of inhibitory transmission is the extensive degree of overlap between GABAergic 

and glycinergic systems. There is strong anatomical evidence for the colocalization of 

GABAA and glycine receptors at single postsynaptic densities (115, 1252, 1270) and for 

GABA and glycine colocalization in presynaptic terminals (937, 941, 942, 1150, 1205, 

1252). Electrophysiological measurements are consistent with GABAergic and glycinergic 

contributions to IPSP/C in cranial motoneurons (656), as well as recurrent (1099), afferent, 

and descending inhibitory inputs to spinal motoneurons (412, 413, 991, 992, 1191, 1389). In 

fact, GABA and glycine can be coreleased from the same presynaptic vesicle (582) (see Fig. 

6). The postsynaptic complement of receptors, however, is not constant between synapses. 

Analysis of evoked and mIPSC suggests three types of inhibitory synapses on spinal 

motoneurons: GABA only, glycine only, and mixed synapses comprising 15, 41, and 44% of 

the total input, respectively (582). These data raise a large number of important questions 

regarding how terminal type is determined, how transmitters are packaged, and how 

postsynaptic densities are constructed to match terminal type (914). The functional 

significance of this corelease to synaptic integration and motoneuron excitability is also 

uncertain. With the only major difference between the actions of GABA and glycine being 

the prolonged action of GABA, e.g., time constants of decay for the GABAA and glycine 

component in spinal motoneurons are ~59 and ~16 ms, respectively (582, cf. Ref. 413), the 

control of the relative amount of GABA versus glycine may regulate the time course of the 

inhibitory input, which would be of critical importance for motor coordination.

C) PRESYNAPTIC ACTIONS OF GABAA RECEPTORS: Presynaptic inhibition by 

GABA receptors was first proposed to underlie the reduction in group Ia excitatory 

postsynaptic potentials in spinal motoneurons that could not be accounted for by 

postsynaptic mechanisms (381). The best anatomical evidence for GABAA receptor-

mediated presynaptic inhibition of synaptic transmission to motoneurons is electron 

microscopic detection of GABA-like immunoreactivity in axoaxonic terminals presynaptic 

to afferent terminals in lamina VI and IX (280, 290, 809) and GABA receptor 
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immunoreactivity on terminals presynaptic to motoneurons (1197; see also Refs. 824, 1187). 

Electrophysiological evidence for GABAA-mediated presynaptic inhibition includes indirect 

measurement of changes in the inhibition of ventral root reflexes or dorsal root potentials 

after activation of a conditioning stimulus (253, 318) and direct intracellular measurement of 

presynaptic inhibition of afferent-motoneuron EPSP (1191).

GABAA-mediated presynaptic inhibition appears to result from depolarization of primary 

afferent terminals in dorsal and ventral horns (256). Volleys of action potentials arriving in 

the spinal gray matter from segmental (afferent) or supraspinal (descending) sources initiate 

release of GABA from spinal interneurons. Subsequent activation of GABAA receptors on 

presynaptic terminals depolarizes the terminal and inhibits release of excitatory transmitter 

at the primary afferent-motoneuron synapses. GABAA receptor activation depolarizes 

primary afferent terminals because sensory neurons have reversal potentials for Cl− that are 

more positive than resting membrane potential (see review in Ref. 26). However, the precise 

mechanism by which primary afferent depolarization (PAD) inhibits transmitter release is 

not known. The prevailing hypothesis is that PAD inactivates Na+ channels sufficiently to 

block action potential invasion into the terminals (or reduce action potential amplitude), 

thereby suppressing transmitter release. Transmitter-induced membrane shunts (1326) and 

inactivation of Ca2+ currents may also contribute (254, 435, 697, 782, 819, 1123, 1328).

6. Functional role of GABA and glycine in modulating motoneuron excitability

A) POSTSYNAPTIC GABAA AND GLYCINE RECEPTORS: Activation of 

postsynaptic inhibitory receptors via local interneurons within or near cranial (199, 386, 387, 

738, 739, 1029, 1277) and spinal (475, 1324, 1370) motoneuron pools, in conjunction with 

inhibitory projection neurons from the brain stem (504, 506) 1) control motoneuron 

responses to mono- and polysynaptic afferent and descending inputs, 2) help establish 

motoneuron recruitment order and gain, and 3) shape temporal and spatial patterns of 

activity in different motoneuron pools during reflexive and rhythmic behaviors and changes 

in state.

The contribution of postsynaptic GABAA and glycine receptors to afferent reflex and 

descending inhibitory control of motoneuron activity has been demonstrated in spinal 

motoneurons through stimulation of dorsal roots (570, 571, 991, 1389), ventral funiculi 

(333, 992), single afferent fibers, and premoto/interneurons (582, 1215). Cranial 

motoneurons are subject to similar inhibitory control (429, 631, 656, 886, 1221, 1222, 

1406). However, considerable heterogeneity is apparent in these control systems. The 

relative contribution of GABA and glycine varies regionally between motoneuron pools and 

input pathways.

GABA- and glycine-mediated postsynaptic inhibition of motoneuron activity also 

contributes significantly to production of rhythmic behaviors, including respiration (353, 

834), locomotion (201, 486, 644, 968), chewing (207, 337, 538), and swallowing (105), 

where motoneuron activity is characterized by sequential phases of excitation and inhibition. 

Inhibitory synaptic control of excitability during the active phase will affect the timing of 

burst onset and offset (affecting onset of muscle contraction and relaxation), firing pattern, 

and recruitment order (961, 969, 1049, 1377, 1379). Inhibitory inputs during the quiescent 
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phase in a motoneuron, e.g., during the expiratory phase in an inspiratory neuron, will 

reduce the probability of spurious, and inappropriate, activation (1049). Inhibition seen at 

the end of each phase of activity is presumed to facilitate phase transitions but may not be 

obligatory to rhythm generation (355).

Inhibition may also provide phase-specific control of motoneuron gain, as suggested by the 

observation of a phasic inspiratory inhibition of phrenic motoneurons that matches the shape 

and time course of their inspiratory excitatory drive (961). Because phrenic motoneurons 

(444), like most motoneurons (292, 1084, 1143, 1221, 1394), participate in multiple 

behaviors, such a mechanism may contribute to the optimization of motoneuron excitability 

for different motor tasks.

Postsynaptic inhibition also modulates motoneuron excitability during behaviors such as 

micturition and over longer time scales associated with sleep state-dependent changes of 

muscle tone. In micturition, tonic activation of motoneurons innervating the external urethral 

sphincter during bladder filling (172, 351) is suppressed during voiding (350, 352), in part 

by a postsynaptic glycinergic mechanism (1138). Glycinergic inhibition of most spinal and 

some cranial motoneurons is also responsible for the atonia of rapid-eye-movement (REM) 

sleep (212, 485, 652, 1179). A perplexing aspect of this inhibition is its regional 

heterogeneity. Although most spinal motoneurons are inhibited, some inspiratory 

motoneurons are not, which is probably essential to avoid atonia of respiratory muscles. 

Among cranial motoneurons, the mechanism of inhibition varies during REM sleep. For 

example, in trigeminal motoneurons (649–651, 965, 1029), inhibition is glycinergic, 

whereas the inhibition of hypoglossal motoneuron activity results primarily from 

disfacilitation (669, 670, 672, 1378). The mechanisms underlying this differential control are 

incompletely understood but remain of considerable interest because of their potential 

involvement in conditions such as cataplexy, REM behavior disorder, and state-dependent 

respiratory disorders such as obstructive sleep apnea and perhaps sudden infant death 

syndrome.

B) PRESYNAPTIC GABAA RECEPTORS: Presynaptic inhibition mediated by GABAA 

(and GABAB; see sect. IVD3) receptors is not ubiquitous within the spinal cord. It appears to 

be a specialized feature of specific pathways that is mediated through complex interneuronal 

circuits (see Fig. 4 in Ref. 753). For example, GABAA receptor activation depolarizes 

afferent terminals from muscle (Ia, Ib, and type II) and skin but does not depolarize 

terminals of neurons projecting from the lateral vestibular (263) or red (260, 261) nuclei. 

Moreover, PAD of various classes of afferents is differentially affected by segmental and 

descending inputs (1062, 1063). Activation of group I afferents and vestibulospinal 

pathways induces PAD in Ia afferents, whereas cutaneous, reticulospinal, rubrospinal, and 

corticospinal pathways inhibit PAD. In contrast, stimulation of group Ib afferents, 

reticulospinal, rubrospinal, vestibulospinal, and corticospinal pathways induces PAD in Ib 

afferent terminals. Cutaneous afferents induce PAD in some Ib terminals and inhibit it in 

others. Part of this differential control is due to mediation of PAD in Ia and Ib afferents by 

different pools of last order GABAergic interneurons, with descending activity targeting 

specific sets of these interneurons (753). The observation that presynaptic inhibition induced 

through intraspinal stimulation differentially affects separate axonal branches of the same 
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group I fiber (322, 323), and that ascending and segmental collaterals of individual spindle 

afferents can be separately controlled (753), suggests a complex spatial organization of 

presynaptic inhibitory circuits.

The functional significance of pathway-specific expression and modulation of PAD is not 

known, but it may provide a substrate for gating of different functional classes of afferents. 

The pattern of coactivation of axoaxonic synapses could presynaptically control the flow of 

information through the axonal arbor (696). Thus presynaptic inhibition may play an 

important role in the selection of sensory signals required for the execution of specific motor 

tasks (221, 753, 819, 904, 1062, 1063, 1154).

7. Development of GABA and glycine receptor systems

A) GABA DEVELOPMENT: The GABAergic system undergoes substantial 

developmental regulation (709, 769, 770, 823, 1001, 1002, 1033, 1106, 1391). Transcripts 

for α2, α3, α5, β2–3, and γ2–3 are all present in presumptive motoneurons of the mantle zone 

by embryonic day 13 in rat. Peak expression of subunits occurs between embryonic day 17 

and 20 when mRNA for α2–5, β1–3, and γ1–3 subunits are all present. α3–5, β1–2, γ1, and γ3 

then decrease and are almost absent by the end of the second postnatal week (770). 

Developmental changes in transcript expression appear to result in changes in the amount of 

receptor protein subunit (389, 712).

The precise role of GABAA receptors in development of motoneuron circuits and 

modulation of motoneuron excitability is not known. GABA itself can alter GABAA (and 

GABAB) receptor expression (748, 783, 784, 1106). In addition, the abundant expression of 

GABAA receptors in embryonic and neonatal spinal cord may serve a trophic role in 

regulation of neuronal differentiation and synaptogenesis (828). In early development, 

depolarization due to GABAA receptor activation could elevate intracellular Ca2+ levels, a 

potentially important signal in modulating early differentiation (1182). In addition, GABA- 

(and glycine-) mediated depolarization, in conjunction with the observation that in some 

systems glutamatergic synaptic transmission is strongly mediated by NMDA receptors early 

in development (1433), has led to the suggestion that in hippocampus GABA receptor 

activation may facilitate activation of NMDA receptors (87). In such a scheme, GABA- (and 

glycine- see below) mediated depolarization would play the role in activity-dependent 

organization of neuronal circuits conferred on AMPA receptors later in development. The 

relevance of such a mechanism at the motoneuron level is not known.

B) GLYCINE DEVELOPMENT: Glycine receptors show marked developmental 

heterogeneity. Relative to the adult form, the neonatal receptor has low affinity for 

strychnine (1376) and contains an α-subunit with different molecular mass and antigenic 

epitopes (700, 1023, 1306). Developmental changes in subunit expression from a neonatal 

receptor composed primarily of α2* are likely to underlie these differences, because α1, α3, 

and β subunits and transcripts are expressed at low levels in the fetus and neonate (786, 

1339). Only α2* receptors have the low strychnine sensitivity characteristic of neonatal 

receptors, whereas the prolonged time course of fetal/neonatal postsynaptic potentials/

currents is consistent with recombinant α2 receptors (1159, 1219). If the depolarizing 
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actions of glycine (and GABA, see above) during development contribute to activity-

dependent organization of motoneuronal circuits by removing the Mg2+ block of NMDA 

channels, the prolonged glycinergic postsynaptic potentials/currents in fetus and neonate 

(413, 1159) would facilitate this process.

D. GABA: Metabotropic Actions

GABA, in addition to its role as a fast inhibitory neurotransmitter, inhibits motoneuronal 

excitability by activating presynaptic metabotropic GABAB receptors.

1. GABAB receptors—GABAB receptors are coupled through G proteins to produce 

increases in K+ or decreases in Ca2+ currents and mediate slow synaptic inhibition. Two 

receptor genes have been identified by molecular cloning, GABABR1 and GABABR2. 

Interestingly, and unlike most G protein-coupled receptors which function as homomers, 

native GABAB receptors appear to be formed by heterodimerization of GABABR1 and 

GABABR2 (586, 613, 1356). Splice variants, GABABR1a and GABABR1b, for the 

GABABR1 clone have also been identified. These forms have similar pharmacological 

profiles but clearly a major goal of future studies is to define possible receptor subtypes (99, 

128, 446, 612). Analysis of native receptors suggests at least five receptor subtypes, but it is 

not yet clear whether individual genes exist for each (251, 417). The cloning of the receptor 

should precipitate a vast increase in our understanding of GABAB receptor physiology 

including further delineation of its mechanisms of action (99) as well as its pre- and 

postsynaptic distribution within the CNS (118, 129, 626, 843, 873, 893).

2. GABAB receptor localization—GABAB receptor distribution has primarily been 

explored with receptor autoradiography (130, 132, 220, 415, 1006, 1007). Patterns of 

GABAA and GABAB receptor binding are not identical but do show considerable overlap. 

GABAB binding sites are distributed heterogeneously in the CNS. Within the spinal cord, 

the highest densities occur in the dorsal horn (11, 130, 783, 1006, 1007), but ventral horn 

binding is also present (11, 1006). Binding in the brain stem is highest in the spinal 

trigeminal nucleus.

A substantial presynaptic localization of GABAB receptors in the dorsal horn is suggested 

by 50% reductions in binding after capsaicin-induced degeneration of sensory afferents 

(1006, 1007). It is not known whether GABAB binding sites in the ventral horn are pre- or 

postsynaptic. Dorsal rhizotomy does not alter ventral horn binding, suggesting postsynaptic 

localization. GABAB agonists, however, have minimal effect on motoneuron properties (see 

below), leaving the possibility that ventral horn binding represents presynaptic sites on 

descending fibers (1006, 1007) or local interneurons.

3. Post- and presynaptic actions

A) POSTSYNAPTIC: In contrast to GABAA receptors, postsynaptic GABAB receptors 

appear to be of minimal importance in the regulation of motoneuron excitability. 

Application of the GABAB agonist baclofen at concentrations sufficient to depress 

excitatory and inhibitory synaptic activity is not associated with changes in motoneuron 

membrane potential, conductance, excitability, time constant, or EPSC decay (321, 572, 
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661, 731, 973, 985, 1317). Postsynaptic effects in mammalian motoneurons, including 

hyperpolarization, decreases in input resistance, and reductions in excitability and the 

afterhyperpolarization (276, 377, 1334; cf. Ref. 694), are only observed using high 

concentrations of baclofen.

Postsynaptic receptor involvement, however, cannot be completely excluded. GABAB 

agonists affect motoneurons of lower vertebrates (806). If the GABAB-mediated 

postsynaptic action occurs at distal dendrites, as appears to be the case in other neurons 

(843, 873), a GABAB receptor-mediated change in membrane potential/conductance may 

not be detected at the cell soma (686) but could still affect the neuronal response to other 

distal dendritic inputs.

B) PRESYNAPTIC: GABAB receptor activation with exogenous agonists such as baclofen 

is associated with presynaptic inhibition of excitatory synaptic transmission to cranial (461, 

930) and spinal motoneurons. Glutamatergic Ia, Ib afferent, and dorsal root evoked 

potentials in spinal motoneurons are inhibited by baclofen (27, 259, 276, 321, 377, 661, 731, 

734, 973, 985, 991, 1191, 1317, 1334, 1390). GABAB receptor activation is also associated 

with reductions in presynaptic Ca2+ influx (255) and in release of glutamate (604, 1239), 

substance P (780, 1239), and calcitonin gene-related peptide (CGRP) (781) from primary 

afferent terminals (127). A similar, although less potent, GABAB-mediated inhibition of 

transmission occurs at excitatory synapses descending through ventrolateral (321, 992) and 

ventromedial funiculi or from the reticular formation and vestibular nuclei (572). The 

apparent absence of presynaptic GABAB modulation of some descending inputs (261, 611) 

again highlights the potential for pathway-specific presynaptic modulation of motoneuron 

excitability.

The action of baclofen on inhibitory synaptic transmission to motoneurons is less consistent. 

Positive and negative results have been reported (276, 377, 611, 985, 1013). Suppression of 

spontaneous and evoked IPSP in rat spinal motoneurons by baclofen (1334) suggests that 

inhibitory inputs to motoneurons are under presynaptic control. However, the possibility that 

the inhibitory actions of baclofen on IPSP in these polysynaptic pathways is secondary to 

blockade of release of excitatory transmitters acting on inhibitory interneurons cannot be 

excluded.

GABAB agonists also suppress GABAA-mediated PAD (259, 1013). GABAB autoreceptors 

in terminals of last-order interneurons mediating PAD may function as a self-limiting 

mechanism controlling synaptic efficacy of these interneurons (843, 1013). Interestingly, the 

baclofen suppression of PAD is greater for Ib afferent-induced PAD than for PAD induced 

by descending reticular formation inputs. Thus last-order interneurons mediating PAD via 

segmental pathways may have a greater density of GABAB autoreceptors than those 

mediating PAD via descending pathways (1013). In spinal motoneurons of Xenopus, there is 

a GABAB receptor-mediated presynaptic inhibition of glycinergic inputs (1325); this has yet 

to be seen in mammalian motoneurons.

In addition to the effects on individual postsynaptic potential/currents, GABAB receptor 

activation is implicated in activity-dependent modulation of synaptic transmission. The 
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efficacy of synaptic contacts can be modified by activity in the presynaptic neuron. For 

example, high-frequency activation of afferent inputs to spinal motoneurons can produce 

synaptic facilitation and depression and tetanic and posttetanic potentiation (973). For Ia 

afferent to motoneuron synapses, large-amplitude EPSP in motoneurons with large input 

resistance and small rheobase tend to show negative modulation (depression, a progressive 

decrease in EPSP amplitude during high-frequency stimulation). Small-amplitude EPSP in 

motoneurons with low input resistance and high rheobase undergo positive modulation 

(facilitation, Refs. 228, 229, 832, 1117). Both types of synapses are proposed to experience 

increased presynaptic Ca2+ and elevated probability of transmitter release. However, the 

greater susceptibility of synapses producing large EPSP to transmitter depletion is proposed 

to underlie their negative modulation. Reduced susceptibility of synapses producing small 

EPSP to transmitter depletion would show positive modulation. GABAB receptor activation 

with baclofen shifts negative modulation to positive (depression to facilitation) or increases 

the degree of positive modulation (facilitation) (731, 732, 973), presumably by decreasing 

Ca2+ entry into the terminal (255, 990, 1117), which decreases the probability of transmitter 

release and depletion.

The mechanism(s) by which baclofen reduces the release of transmitters from terminals 

presynaptic to motoneurons is not known. In dorsal root ganglion neurons, the presynaptic 

inhibitory action of GABAB receptors is proposed to result primarily from a G protein-

mediated reduction of voltage-sensitive Ca2+ currents (255, 602, 731). An increase in K+ 

currents (410, 843, 873), and a third mechanism that is independent of effects on leak or 

voltage-gated currents identified in hippocampus, may also contribute (843).

4. Endogenous role for GABAB receptors in modulating motoneuron 
excitability?—Despite the clear demonstration that baclofen inhibits motoneuron activity, 

establishing an endogenous role for GABAB receptors in modulating motoneuron 

excitability has been slower. Relatively few studies have been performed at the motoneuron 

level. In addition, GABAB antagonists have limited efficacy in potentiating synaptic 

transmission, questioning the endogenous role of GABAB in modulating inputs to 

motoneurons (154, 1191, 1317, 1390; see also Ref. 843). Part of the limited efficacy, 

however, may reflect use of weak GABAB antagonists, such as 2-OH saclofen, or that 

GABAB antagonists applied at the cell soma do not reach distal synapses (1191). 

Intravenous administration of recently developed selective antagonists (154, 687, 688, 783) 

suggests a marked involvement of GABAB receptors in the prolonged inhibition of 

monosynaptic reflexes (258). Results on spinal and cranial motoneurons in vitro range from 

indicating substantial GABAB involvement (33, 183, 686) to no effect (154) and levels in 

between (1317). Discrepancies may reflect varying degrees of endogenous activation of the 

relevant pathways in different experimental models.

Another possibility is that GABAB receptors on afferent terminals are located 

extrasynaptically (1191). Under such conditions, activation of extrasynaptic receptors is 

only likely to occur during periods of massive GABA release (or reduced uptake) due to 

highly effective GABA uptake mechanisms. Paracrine-like activation of extrasynaptic 

GABAB receptors is present in hippocampal CA1 cells (539). Thus modulation of GABA 

uptake systems may play an important role in presynaptic inhibition by GABAB receptors.
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In conclusion, GABAB receptors enable GABA to modulate excitability by inhibitory and 

disinhibitory effects. As a result of their coupling through second messenger systems and 

their differential effects on afferent and descending pathways, they have the potential to 

produce long-term changes in excitability in a pathway-specific manner, as suggested by the 

therapeutic value of baclofen and GABAB-related compounds. Baclofen in particular is used 

as a muscle relaxant in the treatment of spasticity of spinal origin (131, 781, 782, 784). 

Recent cloning of the GABAB receptor subunits (612, 613) will define the basis for 

introducing and improving the clinical profile of GABAB receptor ligands (128).

E. Serotonin

1. Ligands, receptors, and sources of 5-HT input to motoneurons—Soon after its 

initial discovery in the periphery (serum, intestinal mucosa), 5-HT was shown to be present 

in the mammalian CNS (29). Using the Falck-Hillarp histochemical fluorescence technique, 

Dahlstom and Fuxe (264, 408) demonstrated that 5-HT-positive cells are located in the 

midline of the brain stem and project to most of the brain. 5-HT-immunoreactive boutons 

are found in the ventral horn of the spinal cord, in cranial motor nuclei, and apposed to the 

somatodendritic membrane of cranial and spinal motoneurons, suggesting that 5-HT-

containing neurons project directly to motoneurons (19, 24, 38, 39, 569, 657, 908, 988, 

1072, 1186, 1224, 1286). On average, ~1,500 5-HT-immunoreactive boutons contact the 

dendritic area of individual spinal lumbar motoneurons in adult cats, with the vast majority 

of 5-HT input on the dendrites (24). Compared with the estimated total number of synaptic 

boutons on spinal motoneurons (50,000 –140,000; Ref. 937), this means that only 1–3% of 

synaptic boutons on spinal motoneurons are serotonergic. A large number of 5-HT-

immunoreactive varicosities associated with spinal motoneurons also contain substance P, 

TRH, or other peptides (see sect. III; Refs. 39, 133, 245, 908, 1237, 1286, 1348, 1388). 

Similar observations of 5-HT and substance P coexistence have been made in axonal 

varicosities in cranial motor pools (1225).

Some 15 5-HT receptor subtypes, which can be divided into seven subfamilies, have been 

characterized. All 5-HT receptors belong to the superfamily of G protein-coupled receptors, 

except for the 5-HT3 receptors, which are ligand-gated ion channels (420, 1296). The 

expression pattern of different 5-HT2A receptors or their transcripts has been mapped in 

some spinal and cranial motoneurons by immunocytochemistry, in situ hybridization, and 

PCR reactions detecting mRNA encoding for 5-HT receptors. In the spinal cord, 

immunodetection of 5-HT receptor subtypes using an anti-ideotypic antibody recognizing 5-

HT1B, 5-HT2C, and 5-HT2A receptor subtypes reveals that one, two, or all of these receptors 

are present in the somatodendritic region of spinal motoneurons (1046).

Use of an antipeptide antibody (44, 629) reveals a striking distribution of 5-HT1A receptors 

in cervical spinal motoneurons (44, 629). The axon hillock is densely, and the soma is 

diffusely, labeled, whereas dendritic labeling is absent, suggesting that 5-HT signaling via 5-

HT1A receptors is localized at the site of action potential generation (44, 629). Unassembled 

subunits of the 5-HT3 receptor, which is a ligand-gated ion channel, are found in the soma of 

both spinal and cranial motoneurons, but the location of the assembled 5-HT3 receptors is 

unclear (864). Cranial motor nuclei express transcripts for 5-HT1A and 5-HT2A receptors 
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(1383); in the hypoglossal nucleus, transcripts encoding for 5-HT1B, 5-HT2A, 5-HT2C, 5-

HT3, 5-HT7, but not 5-HT1A receptors, are expressed (929). However, 5-HT1A receptors are 

expressed in motoneurons of neonatal animals (1228).

Pharmacological and electrophysiological studies have identified several 5-HT receptor 

subtypes in both spinal and cranial motoneurons, and in the following section we describe 

the pre- and postsynaptic actions of 5-HT on motoneurons and the receptors involved.

2. Pre- and postsynaptic actions of 5-HT on motoneurons—Application of 5-HT 

(by microiontophoresis) in the vicinity of spinal motoneurons in vivo or systemic injection 

of 5-HT precursors generally leads to the following: an increase in motoneuronal excitability 

(1362), tonic muscle electromyogram (EMG) activity increases (839, 1044), and some 

spinal motor reflexes are facilitated (223, 233, 1044, 1079, 1401). Locally applied 5-HT 

produces a small (2–6 mV) depolarization in spinal motoneurons in vivo, accompanied by 

an increase in membrane input resistance and a reduction in the spike AHP (1359).

The postsynaptic action of 5-HT in spinal motoneurons has been studied using in vitro 

preparations from neonatal or juvenile animals. Bath application of 5-HT depolarizes spinal 

motoneurons in spinal cord slices from the neonatal rat, an effect that persists after blockade 

of action potential-driven synaptic transmission (by adding TTX or replacing external Ca2+ 

with Mg2+) (236, 332, 1216, 1332, 1434). The 5-HT-induced current is carried by both Na+ 

and K+ through activation of an inwardly rectifying current (likely Ih); 5-HT1A receptors are 

involved in this action (1216). 5-HT also enhances LVA Ca2+ currents in neonatal rat spinal 

motoneurons (93). One study, however, reports depolarizations as well as hyperpolarizations 

induced by 5-HT in spinal motoneurons from neonatal rats, effects proposed to be mediated 

by decreasing and increasing a K+ current via 5-HT2 and 5-HT1A receptors, respectively 

(1332). Thus some spinal motoneurons in neonatal mammals may be inhibited rather than 

excited by 5-HT. Consistent with these observations, iontophoretic 5-HT applications to 

motoneurons in adult animals in vivo produce long-lasting hyperpolarizations following an 

initial short-lasting depolarization (1424). Neonatal rodent phrenic motoneurons are 

depolarized postsynaptically by 5-HT through activation of 5-HT2 receptors (Fig. 7) (744). 

In addition to this effect, exogenous 5-HT reduces the amplitude of inspiratory-modulated 

synaptic drive to these motoneurons, probably through activation of presynaptic 5-HT1B 

receptors, affecting synaptic release (295, 744).

5-HT induces plateau potentials in turtle spinal motoneurons under in vitro conditions (521, 

1163). The plateau potential, which gives rise to long-lasting depolarizations and bistable 

firing behavior, is blocked by L-type Ca2+ channel antagonists. The underlying ionic 

mechanism may involve a reduction of outward K+ currents (primarily IK Ca), thereby 

uncovering a L-type Ca2+ current present both in the soma and dendrites of these 

motoneurons (522). However, a direct action on L-type Ca2+ channels is also possible (121, 

522). Plateau potentials are found in spinal motoneurons in adult cats (see sect. IID), when 

descending brain stem-spinal cord systems are intact or after spinal transection when 5-HT 

or NE precursors are given intravenously (239, 244, 519, 632). A reevaluation of the 

functional consequences of plateau potentials in hindlimb motoneurons in cats led to the 

suggestion that plateau potentials under normal circumstances play a role in ensuring 
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effective recruitment rather than in generating bistable behavior (88). Finally, 5-HT reduces 

the amplitude of dorsal root evoked EPSP and IPSP via presynaptic 5-HT1 receptors (1387), 

a mode of action also found in several cranial motor pools.

The ionic mechanisms underlying 5-HT effects on cranial motoneurons have been worked 

out in greatest detail for facial, hypoglossal, and trigeminal motoneurons. In vivo or in vitro, 

facial motoneurons respond to exogenously applied 5-HT with a depolarization (5–8 mV) 

and an increase in membrane input resistance (705, 1303, 1304). The depolarization is 

unaffected by TTX, indicating a postsynaptic site of action (705). The receptor subtype 

mediating the depolarization is likely 5-HT2, but not 5-HT1A, receptors (1032). The 

underlying ionic mechanism is a 5-HT-induced enhancement of the hyperpolarization-

activated Ih current (701, 702), concurrent with a decrease in a resting K+ current IK leak 

(701, 703).

Hypoglossal motoneurons are also excited by 5-HT (91, 305, 671), but mechanisms change 

developmentally. Exogenous application of 5-HT to hypoglossal motoneurons from neonatal 

rodents gives rise to a spike-initiating depolarization, with no clear change in membrane 

input resistance (91, 1228). Compared with adults, there is marked reduction in the spike 

AHP in these motoneurons (73, 91, 1228). However, hypoglossal motoneurons from 

juvenile animals respond to 5-HT with a depolarization associated with an increase in input 

resistance and show no effect of 5-HT on the spike AHP (1228). The discrepancy with 

regard to the spike AHP is explained by a reduction in the expression of 5-HT1A receptors in 

juvenile animals (79, 1228). In neonatal animals, activation of 5-HT1A receptors leads to a 

reduction in N- and P-type Ca2+ currents, which in turn leads to reduced spike AHP (73). 

Interestingly, 5-HT also acts presynaptically in the hypoglosssal nucleus of neonatal rats, 

reducing glutamatergic and glycinergic synaptic transmission through activation of 

presynaptic 5-HT1B receptors (1156, 1157, 1292).

Iontophoretic application of 5-HT to trigeminal motoneurons during cortically induced 

masticatory-like activity facilitates trigeminal discharge, suggesting an excitatory action of 

5-HT (608). A detailed analysis of the underlying ionic mechanism in trigeminal 

motoneurons from juvenile guinea pigs under in vitro conditions shows that 5-HT reduces a 

resting K+ current (IK leak), enhances the hyperpolarization-activated cationic current (Ih, via 

activation of 5-HT2 receptors), and induces a Na+-dependent inward current (Iinw) (526). 

Furthermore, the medium-duration spike AHP is reduced by 5-HT (526), and, as found in 

spinal motoneurons, 5-HT can induce bistable membrane behavior (527). The bistable 

membrane behavior and plateau potentials are due to L-type Ca2+ channel activation with a 

contribution of the Na+-dependent inward current, but it is unclear whether 5-HT acts 

directly on L-type Ca2+ and Na+ channels, or indirectly by reducing opposing outward 

currents (527). In addition to these effects on the intrinsic properties of trigeminal 

motoneurons, 5-HT enhances the response to EAA (endogenous or exogenous) via 5-HT2 

receptors (679, 1273). The facilitation could be a simple result of the increased input 

resistance, but may also involve direct actions of 5-HT on NMDA and AMPA channels 

(1273).
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3. Signal transduction—Manipulations of intracellular signal transduction pathways 

suggest that 5-HT actions are mediated by receptors coupled to G proteins (except for the 

ionotropic 5-HT3 receptors), and a phosphorylation-independent action of cAMP (6, 702, 

704). Intracellularly applied cAMP or forskolin mimics the action of 5-HT on Ih in neonatal 

spinal motoneurons, and a broad range of protein kinase inhibitors fail to block the action of 

5-HT (702, 704), suggesting that activation of 5-HT receptors stimulate cAMP production, 

which in turn induces an inward current, perhaps by a phosphorylation-independent direct 

action on Ih (702, 704). Mechanisms that account for inhibition of leak K+ currents by 5-HT 

have not been determined but do not appear to involve PKC, at least in facial motoneurons 

(6).

4. Functional role of 5-HT in modulating motoneuronal excitability—
Serotonergic neurons in the raphe nuclei are spontaneously active (1–5 spikes/s) during the 

normal waking state (552, 555). The discharge frequency changes during different motor 

behaviors, i.e., an increase in firing frequency is seen in raphe neurons in cats during 

treadmill locomotion compared with undisturbed waking and during oral activities such as 

chewing, biting, and licking (480, 1308). Conversely, a decrease in firing frequency is seen 

during REM sleep, when motor output is inhibited, and the release of 5-HT (measured by a 

microdialysis probe placed in the ventral horn) is reduced after exercise (421, 480, 556, 

820). 5-HT exerts tonic facilitatory effects on spinal hindlimb motoneurons (635); after 

depletion of spinal monoamines in rats (using neurotoxins), there is a reduction in the total 

EMG activity of the soleus muscle and the duration and number of long-lasting gross-EMG 

episodes (635). Thus raphe neurons, projecting to spinal and cranial motoneurons, provide a 

tonic release of 5-HT during the normal waking state and increased cyclic release of 5-HT 

during gross repetitive types of motor behavior (552).

Local stimulation of the raphe nuclei with concurrent recordings from spinal motoneurons 

confirms the excitatory nature of the raphe-spinal 5-HT projection. Electrical stimulation of 

the nucleus raphe obscurus (for 1 min) induces a small depolarization in rat spinal lumbar 

motoneurons that is blocked by a systemic 5-HT1,2 receptor antagonist (1048). Brief 

stimulation (0.1– 0.7 ms) of the raphe pallidus induces subthreshold EPSP in cat spinal 

motoneurons (394). Stimulation of different raphe nuclei either facilitates or inhibits the 

activity of phrenic motoneurons (511, 512, 692, 693). The inhibitory effect is likely 

mediated by presynaptic 5-HT modulation of bulbospinal neurons transmitting inspiratory 

drive to these motoneurons, through activation of 5-HT1B receptors (295, 744). Laryngeal 

motoneurons are excited by stimulation of the raphe pallidus, an effect blocked by 

pretreatment with a 5-HT2 antagonist (37). Stimulation of the raphe pallidus-obscurus 

complex induces monosynaptic sub- or suprathreshold EPSP in trigeminal motoneurons 

(masseter and mylohyoid), and these potentials are reduced by a nonselective 5-HT 

antagonist (883).

In addition to these postsynaptic effects on spinal and cranial motoneurons, spinal and 

cranial reflex pathways are also affected by raphe stimulation. Stimulation of the raphe 

nuclei depress transmission from group II muscle afferents in the midlumbar spinal cord in 

cats (564), suggesting that release of 5-HT depresses transmission between spinal 

interneurons and motoneurons, or between the interneurons themselves (138). Crossed 
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group II inhibitory reflex pathways (generating IPSP in contralateral extensor motoneurons) 

are under tonic control by descending serotonergic pathways, since the IPSP are abolished 

by lesions of descending pathways and restored by systemic administration of 5-HT1A 

agonists (4). In spinalized rats, monosynaptic transmission is inhibited or facilitated by 

activation of 5-HT1A and 5-HT2A/2C receptors, respectively (465). Under in vitro conditions, 

excitatory synaptic transmission induced by local electrical or dorsal root stimulation is 

facilitated via activation of 5-HT2A and/or 5-HT2C receptors (1400, 1434). Finally, 5-

HT2A/2C agonists applied topically to the spinal cord of spinalized cats restore extensor 

reflex excitability, suggesting a facilitatory effect of 5-HT on the lumbar stretch reflex (839).

In conclusion, the dominant effect of the serotonergic raphe system is the enhancement of 

spinal and cranial motoneuron excitability. This action is mediated postsynaptically by 

activation of Ih, reduction of specific K+ conductances, uncovering of L-type Ca2+ currents, 

reduction of spike AHP amplitudes, and an increase in membrane input resistance. Because 

raphe serotonergic neurons have a slow and regular firing pattern in the normal waking state, 

a constant release of 5-HT may set the overall level of excitability of motoneurons, in 

particular in motoneuron pools innervating axial and postural muscles (552, 555). Upon 

changes in motor activity, such as initiation of locomotion, mastication, and other rhythmic 

motor behaviors, the activity of the serotonergic raphe system is increased, and 

consequently, there is an increase in the responsiveness and ease of recruitment in 

motoneurons. In addition, the serotonergic raphe system may regulate or gate afferent inputs 

to motoneurons pools by modulating synaptic transmission in specific reflex pathways and 

by direct actions on presynaptic terminals (355, 552). In this fashion, the raphe serotonergic 

system controls the excitability of motoneurons through direct actions on the motoneurons 

and through control of afferent input. These actions may be different in various motoneuron 

pools, especially those responsible for breathing movements (355).

F. Norepinephrine and Epinephrine

1. Ligands, receptors, and sources of NE input to motoneurons—
Norepinephrine was initially established as a neurotransmitter in the periphery (490, 1320), 

and subsequently proposed to act centrally (1319). A large amount of work, 

neuroanatomical and neurophysiological, has since confirmed a prominent role for NE in 

controlling motoneuronal excitability.

All catecholamines, including dopamine, NE, and epinephrine, are synthesized in discrete 

populations of neurons by a series of enzymatic steps, beginning with the rate-limiting 

hydroxylation of the precursor amino acid tyrosine. The specific catecholaminergic neuronal 

phenotype is determined by the presence or absence of additional enzymes in the 

biosynthetic pathway: dopaminergic neurons express tyrosine hydroxylase (TH), but not 

dopamine β-hydroxylase (DBH); NE cells express TH and DBH, but not 

phenylethanolamine N-methyltransferase (PNMT); epinephrine-synthesizing neurons 

express all three (TH, DBH, and PNMT) (490). A brief discussion of dopamine and 

motoneuronal function will follow this section. Epinephrine and NE can both interact with 

adrenergic receptors at physiological concentrations. However, we limit our discussion to 
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NE because neurons that make epinephrine have a more restricted brain distribution and 

provide little, if any, innervation of motoneurons (490).

The initial classification of adrenergic receptors into α- and β-subtypes (9) has expanded 

(173, 174, 909) to include three major classes of adrenoceptor (α1, α2, and β), each 

comprising at least three subtypes. These receptors are members of the rhodopsin family of 

G protein-coupled receptors. Members of each class of adrenoceptor share ~70–75% 

sequence homology, whereas sequence homology drops to ~40% between members of 

different classes (842). Pharmacological and molecular classifications of receptor subtypes 

do not, however, extend to clear functional differences among members of a given class, 

each of which utilizes similar transduction mechanisms (173, 174, 842).

Members of all three classes of adrenergic receptor are expressed in the CNS, with distinct 

and differential distributions for each receptor subtype. α1-Adrenoceptors are highly 

expressed on cranial and spinal motoneurons, as assayed by ligand-binding autoradiography 

(587); in situ hybridization experiments indicate that this binding is probably 

somatodendritic and could reflect α1A, α1B, and/or α1D expression, since transcripts for all 

three α1-receptor subtypes are present in motoneurons at high levels (298, 986). Radioligand 

binding to α1-receptors in motoneurons is detectable as early as postnatal days 1–5, and high 

levels of binding are maintained throughout development (588).

All three α2-adrenoceptor subtypes are present in rat brain, with the α2B-subtype expressed 

only in thalamic neurons (909, 910, 1095). Radioligand binding for α2-receptors, both α2A 

and α2C, are found on motoneurons, albeit at low levels, and transcripts representing these 

α2-subtypes are present in various motoneuronal populations (910, 1095, 1295). 

Immunohistochemical studies utilizing subtype-specific antibodies find somewhat different 

patterns of staining in motor nuclei; α2A-immunoreactivity is diffuse, perhaps reflecting 

staining on terminals (1227), whereas α2C-immunoreactivity is clearly somatic (1060). 

Furthermore, although α2A- and α2C-receptors are present at low levels in adult 

motoneurons, developmental studies suggest opposite developmental patterns of expression 

(1372, 1373). Thus α2A-receptors are transiently expressed in rat motoneurons at high levels 

during embryonic and early postnatal periods, reaching sustained low levels by 

approximately postnatal day 14 (1372); in contrast, α2C-expression increases from 

undetectable levels in the embryo and neonate to reach somewhat higher levels in the adult 

(1373).

The β1- and β2- but not the β3-adrenoceptors are expressed in brain (909, 911). However, 

there is little evidence for expression of β-adrenoceptors by motoneurons. Binding of β1- and 

β2-adrenoceptor ligands in motor nuclei is unremarkable (953, 1020), and neither β1- nor β2-

adrenoceptor mRNA is found in motoneurons (909).

Motoneurons receive a relatively dense catecholaminergic input, the overwhelming majority 

of which represents NE (16, 863). NE fibers are present in spinal motor nuclei early in 

development (by embryonic day 16 in rat), but they increase in density over the early 

postnatal period (1021, 1234). The NE input to motoneurons derives primarily from the A5–

A7 cell groups in the dorsolateral pontine tegmentum, particularly from the nucleus 
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coeruleus (A6) and subcoeruleus (A6v) (14, 451, 768, 925; see sect. III and Table 2). The 

relative inputs from these different NE-synthesizing cell groups to individual motor pools 

vary; trigeminal and spinal motoneurons receive most of their NE input from A5 and A7 cell 

groups, whereas the NE innervation of hypoglossal motoneurons emanates mostly from A6v 

cells (14, 451, 768). In addition, although NE fiber density is consistent in motor areas 

throughout most levels of the spinal cord and brain stem (863), a somatotopic distribution of 

innervation within individual motor nuclei is present. For example, fiber density is higher in 

the lateral part of the ventral horn at cervical and lumbar enlargements, where motoneurons 

that innervate primarily distal limb musculature are located (863); it is also higher in the 

ventral aspects of the hypoglossal nucleus, where tongue protrusor motoneurons are located 

(15, 16, 297). Thus NE projections may be preferentially directed from different pontine 

nuclei to specific motor pools, suggesting the potential for a signaling specificity affecting 

motor control. It is important to point out, however, that the majority of NE-containing 

profiles in motor nuclei are nonsynaptic (17, 185, 1021, 1022), and therefore, extrasynaptic 

(i.e., volume) transmission may abrogate some of the specificity coded in the differential 

somatotopic distribution of fibers (1022). Nevertheless, some synaptic profiles, 

predominantly axodendritic, are observed between catecholaminergic terminals and 

motoneurons (17, 185, 1021, 1022).

2. Pre- and postsynaptic actions of NE on motoneurons—Early work 

investigating the postsynaptic effects of NE on cat spinal motoneurons reported depressed 

excitability and/or membrane hyperpolarization, associated with a decrease in a mixed 

cationic current (334, 798, 983). In contrast, all recent work indicates that the predominant 

postsynaptic effects of NE are excitatory, suggesting that the initial findings resulted from a 

methodological artifact (1362). Thus, in cranial and spinal motoneurons, NE causes a slow 

membrane depolarization associated with a decrease in input conductance (332, 701, 958, 

1303, 1360) and enhances firing responses to glutamatergic inputs, whether applied 

exogenously or released endogenously (395, 608, 609, 1360–1362). These effects of NE are 

postsynaptic, since they are preserved in the presence of TTX or a high-Mg2+, low-Ca2+ 

synaptic blockade medium.

The cellular mechanisms that mediate excitatory effects of NE have been investigated. An 

α1-adrenoceptor is involved since effects of NE are 1) blocked by α-adrenoceptor 

antagonists, prazosin and phentolamine, but not by the β-adrenoceptor antagonists 

propranolol or sotalol, and 2) mimicked by the α1-adrenoceptor agonist phenylephrine but 

not by either the α2-adrenoceptor agonist UK-14,304 or the β-adrenoceptor agonist 

isoproterenol (332, 608, 609, 958, 1323). On the basis of relative agonist/antagonist 

potencies and insensitivity of the response to chloroethylclonidine, the facilitation of spinal 

motoneuronal activity by NE may be mediated primarily by the α1A-adrenoceptor subtype 

(1323). If the excitatory effects of NE on motoneurons are indeed mediated by α1A-

adrenoceptors, what is the role of the other α1-subtypes expressed by motoneurons? Perhaps 

individual subtypes are directed to different membrane locations, such as the motoneuronal 

terminals where α1-adrenoceptors mediate facilitation of acetylcholine release by NE 

(1171).
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As suggested by its association with an increased input resistance (332, 958, 1303, 1360), 

the ionic mechanism that underlies motoneuronal depolarization by NE includes a decrease 

in a K+ current; the NE-modulated K+ current is relatively voltage insensitive and blocked 

by Ba2+ (701, 958), not unlike the leak K+ channel targeted by 5-HT, TRH, and substance P 

in motoneurons and by NE in other central neurons (e.g., Refs. 815, 1337). Furthermore, NE 

also activates a Ba2+-insensitive current component in motoneurons that is carried, at least in 

part, by Na+ (958) and that is also reminiscent of effects of 5-HT, TRH, and substance P in 

motoneurons (75, 91, 366, 367, 921). Indeed, the effects of TRH and NE occlude each other, 

suggesting a shared mechanism of action (958).

Two additional effects of NE influence firing responses (958): 1) NE induces a decrease in 

AHP amplitude in a subset of adult hypoglossal motoneurons, which is associated with an 

enhanced firing response to current injection (958); 2) NE causes an apparent enhancement 

of a transient K+ current in hypoglossal motoneurons that delays the firing response to 

intracellular current injection (958). Interestingly, NE acting via α1-adrenoceptors has the 

opposite effect on the transient K+ current (IA) in dorsal raphe neurons (5).

The possibility that NE mediates an endogenous excitatory effect on spinal motoneurons has 

been tested in rats and cats in vivo (204, 396). Electrical stimulation in the locus coeruleus 

increases excitability and generates a multicomponent postsynaptic potential in motoneurons 

(395). Similar to effects of exogenously applied NE on motoneurons, the increased 

excitability is associated with a lower current threshold to induce repetitive firing and a 

decreased spike AHP (393). Moreover, the motoneuronal excitation and the slow component 

of the electrically evoked EPSP are inhibited by α1-adrenoceptor antagonists (395). These 

results suggest that increased activity in locus coeruleus neurons will excite motoneurons via 

mechanisms similar to those induced in vitro by α1-adrenoceptor activation. The activity of 

locus coeruleus neurons in vivo is highly state dependent; these neurons also respond with 

increased activity to a variety of stress-inducing stimuli (553, 554). For example, firing of 

locus coeruleus neurons in cats increases dramatically in the presence of a dog (553, 554). 

This suggests that effects of noradrenergic systems may be important in facilitating motor 

activity during waking states, in general, and in providing additional support for motor 

activities that accompany physiological responses to stressors.

Although the predominant effect of NE on motoneurons is excitatory, resulting from 

activation of α1-adrenoceptors, there is some evidence for inhibitory effects mediated by α2-

adrenoceptors. For example, muscle EMG activity and the flexor response to afferent nerve 

volleys in spinal rats are inhibited by the α2-adrenoceptor agonist clonidine (1074, 1265); in 

a subpopulation of trigeminal motoneurons, clonidine suppresses motoneuronal discharge 

induced by oral stimulation, an effect blocked by the α2-antagonist yohimbine (609). This 

effect of α2-adrenoceptor activation could be mediated by direct actions on premotor 

interneurons, or by pre- or postsynaptic actions at the level of the motoneurons. Certainly, 

presynaptic effects of α2-adrenoceptors are well described in other systems (e.g., see Ref. 

1066), although α2-inhibition of synaptic inputs to motoneurons has not been directly 

demonstrated. On the other hand, clonidine causes a membrane hyperpolarization associated 

with a decreased conductance in rat spinal and hypoglossal motoneurons (237, 959). This 

direct inhibitory postsynaptic effect of clonidine in rat hypoglossal motoneurons is due to 
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decreases in both the peak amplitude and activation kinetics of Ih attributed, in part, to α2-

adrenoceptor activation (959).

3. Signal transduction—The α1-adrenoceptor signals primarily through pertussis toxin 

(PTX)-insensitive G proteins (Gαq/11 family) to activate PLC and cognate downstream 

signaling cascades, e.g., production of IP3, liberation of Ca2+ from intracellular stores, and 

activation of PKC (422, 423, 842, 1067). As with most other receptors, the signaling 

mechanisms are context dependent, and stimulation by α1-receptors of various additional 

phospholipases (e.g., PLA2, PLD) as well as adenylyl cyclase has also been reported (842). 

The relevance of any of these pathways to the direct α1-mediated effects on motoneurons 

remains to be determined, although a similar effect of α1-adrenoceptor activation on 

thalamic relay neurons (i.e., decreased leak K+ current) involves PTX-insensitive G proteins 

(814).

Activation of α2-adrenoceptors leads to PTX-sensitive inhibition of adenylyl cyclase and 

decreases in cAMP and PKA activity (1067), as well as direct activation of neuronal 

inwardly rectifying K+ current by α2-adrenoceptors (922). The latter mechanism is unlikely 

to account for the α2-mediated hyperpolarization in hypoglossal motoneurons because that 

effect is associated with a decrease, rather than an increase, in conductance (959). Because 

Ih is activated by increases in cAMP (537, 702), the inhibition of Ih reported to underlie the 

clonidine-induced hyperpolarization could have resulted from decreased cAMP. However, 

this does not seem to be the case, at least inasmuch as the effects on Ih are unaffected by the 

adenylyl cyclase inhibitor SQ-22536 (959).

4. Functional role in synaptic integration and rate control—There have been no 

direct tests of NE effects on synaptic inputs to motoneurons. An increase in synaptic activity 

often accompanies the depolarizing effects of NE in vitro, which could be due to enhanced 

synaptic activity resulting from effects on presynaptic terminals or on local premotor 

neurons. Some α2-adrenoceptors in motor nuclei, perhaps the diffusely staining α2A-subtype 

(1227), may be on presynaptic terminals, where they could modulate fast transmitter release. 

The postsynaptic effect of NE to decrease input conductance would, by analogy with effects 

of TRH, be expected to enhance postsynaptic potential amplitude summation during 

repetitive synaptic stimulation (1039).

The effects of NE on the generation of action potentials have been studied in adult rat 

hypoglossal motoneurons (958). Without exception, NE decreases the current necessary to 

induce repetitive firing, even after compensating for the NE-induced depolarization; this is 

due to the decreased input conductance that follows from inhibition of a leak K+ current. 

This effect is similar to that induced by TRH or 5-HT (75, 1228). In a subset of 

motoneurons, a decrease in the spike AHP is observed, and in these cells, there is also an 

increased slope of the firing frequency response to current inputs (958). These two 

mechanisms together predict more effective transduction of synaptic inputs into firing 

output. The superposition of an increased delay to firing suggests that spike patterning could 

be modified by NE (958); if this is due to enhanced IA, then this altered patterning would be 

more pronounced after a period of membrane hyperpolarization. Thus, although generally 
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excitatory, NE may induce complex and state-dependent changes in motoneuronal input-

output properties.

The effects of NE have been examined in the context of complex behaviors. For example, 

NE enhances inspiratory-related hypoglossal nerve burst discharge in a brain stem slice 

preparation that maintains a respiratory rhythm. These effects of NE are developmentally 

regulated, since the potentiation of hypoglossal activity increases dramatically during the 

early postnatal period (400, 404). These postnatal changes are largely due to effects 

mediated by α1-adrenoceptors, since phenylephrine mimics developmental changes 

observed with NE. Additional effects mediated by α2- and β-adrenoceptors, perhaps indirect, 

cause inhibition and excitation of hypoglossal nerve discharge, respectively; the α2-

mediated effect decreases postnatally whereas the β-mediated effect increases (400, 1127). 

In cat spinal motoneurons, the α1-agonist methoxamine enhances motoneuronal excitability 

and facilitates a bistable behavior reminiscent of that seen in other vertebrate motoneurons 

in the presence of monoamines (520, 722). A bistablelike behavior can also be generated in 

mouse nucleus ambiguus motoneurons in the absence of NE or other monoamines (1041).

G. Dopamine

In contrast to the situation in lower vertebrates and invertebrates, where dopamine effects on 

motoneurons have been studied extensively (447, 464), effects of dopamine on mammalian 

motoneurons have received little attention. Traditionally, there has been little reason to 

suspect a major role for dopamine in the function of mammalian motoneurons, since they 

reportedly receive an extremely sparse dopaminergic innervation and show little, if any, 

dopamine receptor binding (110, 952). However, recent immunohistochemical work with 

new dopamine antibodies reveals a substantial dopaminergic innervation of spinal 

motoneurons (509, 1409). Motoneurons express D1 and D2 dopamine receptors (306, 1305, 

1330, 1408), which are coupled, respectively, to activation and inhibition of adenylyl 

cyclase (844). Interestingly, the sexually dimorphic motor nuclei of the lumbar spinal cord 

(Onuf’s nucleus) receive a more dense dopaminergic input and express higher levels of D2 

dopamine receptor than other motor pools (509, 1305); the physiological significance of this 

observation has not been determined.

Physiological investigations of dopamine effects on mammalian motoneurons have been 

limited. Dopamine enhances ventral horn field potentials during antidromic activation of 

motoneurons in rat lumbar spinal cord (53) but decreases the synaptic response to dorsal 

root stimulation in rat and cat motoneurons (189, 777). In addition, dopamine modulates 

Renshaw cell-mediated feedback inhibition of rat motoneurons via effects of both D1- and 

D2-type dopamine receptors (778, 1129). Intracellular studies on mammalian motoneurons 

are required to determine if mechanisms identified in lower vertebrates and invertebrates are 

retained in mammals. For example, dopamine inhibits Ca2+ currents and the spike AHP in 

lamprey motoneurons (447) and modulates IA and Ih in lobster motoneurons (464); in chick 

motoneurons, D1 receptor activation increases kainate-receptor currents via effects that 

involve increases in cAMP and PKA (1165). Clearly, much work will need to be done to 

clarify any role for dopamine in the control of motoneuronal excitability.
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H. ACh

Motoneurons use ACh as their (primary) transmitter, but also receive cholinergic synaptic 

input, which in the spinal cord stems partly from axon collaterals from nearby homonymous 

motoneurons (248, 249), and in the brain stem from neurons in reticular formation and 

vestibular nuclei (191, 375, 1427). Cholinergic boutons on spinal and some cranial 

motoneurons are present (40, 532, 884, 1093); some are large varicosities forming en 

passant type contacts (884). Spinal and some cranial motoneurons have mRNA coding for 

the m2 subtype of muscarinic cholinergic receptors (1315), binding sites for muscarinic 

agonists (1092, 1316), and show labeling using m2-receptor antibodies (1345). Thus 

anatomical and molecular data suggest actions of ACh on both spinal and cranial 

motoneurons. However, studies demonstrating effects of cholinergic agonists on 

motoneurons are scarce. Spinal motoneurons in the adult cat and neonatal rat are depolarized 

by ACh or muscarinic agonists (680, 1431). Brain stem laryngeal motoneurons are 

depolarized by iontophoretically applied ACh (460), and motoneurons in the compact 

division of the nucleus ambiguus (swallowing motoneurons) are depolarized by cholinergic 

agonists acting at nicotinic receptors (1427). Finally, activation of presynaptic m2 receptors 

reduces the release of excitatory transmitters to hypoglossal motoneurons (86). Signal 

transduction pathways and effectors involved in these actions are presently unknown.

I. ATP

ATP has only recently been established as a transmitter within the CNS; its actions are 

mediated by two major types of P2 receptor families (1, 2, 169–171, 320, 345, 384, 923, 

1077, 1432). P2x receptors, comprising seven receptor subtypes P2x1 to P2x7 and a variety of 

isoforms, are ligand-gated ion channels that mediate fast excitatory responses (344, 1198). 

P2y receptors, comprising at least 11 major subtypes P2y1 to P2y11, mediate slower responses 

via G proteins (61, 169, 170, 307). Purinergic synaptic signaling in the CNS is of growing 

interest because 1) P2 receptors are widely distributed (46, 113, 231, 605, 630, 1125, 1281, 

1322), 2) P2x receptors mediate fast synaptic transmission and have a large Ca2+ 

conductance, and 3) extracellular hydrolysis of ATP produces adenosine, which modulates 

synaptic transmission through activation of adenosine receptors, e.g., in phrenic 

motoneurons (303).

An important role for ATP in motor control is implicated by the ubiquitous presence of ATP 

binding sites (1281) and mRNA for several P2x receptor subunits within cranial and spinal 

motor nuclei (231). Differential distribution of receptor subtypes between cranial and spinal 

motor nuclei is apparent from in situ hybridization data showing the following: P2x4 and 

P2x6 in EW, trochlear, motor trigeminal, and facial nuclei; P2x2, P2x4, and P2x6 in 

oculomotor, DMV, and hypoglossal nuclei; but P2x2,4–6 in spinal motoneuron pools. 

Immunohistochemical analysis of brain stem P2x receptor distribution using recently 

developed antibodies reveals even more extensive expression. Hypoglossal motoneurons, for 

example, express protein for P2x1–6 subunits (713). The functional significance of any 

differential distribution has not been established. P2 receptor-mediated excitation has only 

been demonstrated for inspiratory-modulated hypoglossal motoneurons in neonatal mouse 

(in vitro), and adult rat (in vivo) (403), motoneurons of the dorsal motor nucleus of vagus 
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(1284) and phrenic motoneurons in vitro (M. A. Parkis and G. D. Funk, unpublished 

observations).

With the consideration that ATP acts as the principal fast excitatory transmitter at some 

central synapses (320, 345), ATP may directly mediate specific behavioral inputs. 

Alternatively, ATP may modulate glutamatergic synaptic transmission (736, 872) to 

motoneurons (403). P2y receptors are present in the CNS (61); however, their role in motor 

control remains to be established. Understanding the role that P2 receptors play in 

modulation of neuronal (and motoneuronal) excitability will be greatly facilitated by 

development of agonists and especially antagonists with greater specificity for the P2x and 

P2y receptor subtypes. Suramin, the most commonly used general P2 antagonist, and to a 

lesser degree pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS), the most 

selective P2x receptor antagonist, also antagonize glutamatergic transmission and inhibit 

ecto-ATPase activity (45, 872, 894, 933; see also Ref. 530). Thus, although the actions of 

exogenous ATP on central neurons are under investigation, assessing the physiological 

significance of endogenously released ATP is more difficult. Pharmacological tools for 

selective manipulation of ecto-ATPases that rapidly degrade extracellular ATP will also be 

useful.

J. Adenosine

Adenosine, a constituent of brain extracellular fluid, is an important modulator of neuronal 

excitability, including motoneurons. Adenosine can be formed extracellularly following 

rapid hydrolysis of ATP released from axon terminals (250, 310) or formed intracellularly 

and released into extracellular space via specific transporters. Intracellular formation is 

believed to be the major source of adenosine (383). Four distinct subtypes of adenosine 

receptors, belonging to the superfamily of G protein-coupled receptors (384, 955), have been 

cloned and characterized: A1, A2A, A2B, and A3 (230, 269, 274, 358, 382, 384, 742, 743, 

754, 934, 955, 1299, 1321). In brief, A1 receptors are coupled to PTX-sensitive G proteins 

(385, 882, 1274, 1423), inhibition of adenylyl cyclase and decreased production of cAMP. 

A1 receptors are the most abundant adenosine receptors and widely distributed in the brain. 

The effects of A1 receptors are primarily inhibitory, including decreasing neuronal 

excitability by altering postsynaptic membrane properties (311, 418, 1097, 1122, 1153, 

1245, 1430) and inhibiting release of a wide variety of neurotransmitters (137, 360, 550, 

589, 851, 879, 1050, 1090, 1289, 1294, 1385). The two adenosine A2 receptor subtypes (A2a 

and A2b) are both coupled to Gs proteins to stimulate adenylyl cyclase and consequently 

increase the formation of cAMP (268, 754). The physiological effects of A2 receptors are 

less clear than those of the A1 receptors. The function of A2b receptors in the brain has not 

been thoroughly investigated, and their physiological roles remain unclear. On the other 

hand, considerable evidence favors an excitatory role of A2a receptors in the CNS (149, 

1116, 1422; cf. Ref. 708). Adenosine A3 receptors have very low affinity to adenosine. A3 

receptors are coupled to Gαi-2, Gαi-3, and Gq-like proteins. Unlike other subtypes, A3 

receptors are linked to two second messenger systems: decreasing cAMP through inhibition 

of adenylyl cyclase or increasing intracellular Ca2+ through stimulation of IP3 (see reviews 

in Refs. 155, 194, 1321). The physiological role of A3 receptors is unclear at present.
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Adenosine effects on motoneurons are mainly mediated by A1 receptors. High levels of 

mRNA for A1 receptors are present in rat cranial and spinal motoneuron pools (1043) and in 

the areas containing hypoglossal premotoneurons (297), such as the reticular formation 

lateral to the hypoglossal nuclei, and in the ventrolateral medulla (1043). A1 receptors 

inhibit synaptic transmission to motoneurons via a presynaptic action. Activation of A1 

receptors by exogenous agonists decreases evoked EPSP in hypoglossal motoneurons (85) 

and endogenous inspiratory-modulated EPSC in phrenic motoneurons (300); there is 

appreciable endogenous activity of A1 receptors, since A1 antagonists increase EPSP (85) or 

EPSC (300) amplitudes. The agonist significantly decreases mEPSC frequency (300), an 

event dependent on transmitter release probability (348, 1035), but has no effect on mEPSC 

amplitude, an event associated with postsynaptic responsiveness to the endogenously 

released transmitter (348, 1035; see also Ref. 678). Thus a presynaptic mechanism is likely 

for the inhibitory effect of A1 receptors on synaptic transmission to these motoneurons.

Activation of A1 receptors decreases both spontaneous and evoked firing of vagal 

motoneurons (796, 1262). Although the mechanism for the inhibition of spontaneous firing 

is unclear, the increase in AHP amplitude by postsynaptic A1 receptors, affecting IK Ca, is 

likely responsible for the decrease in evoked firing (796). Adenosine is reported to cause 

hyperpolarization in hypoglossal motoneurons (987), which is not observed with an A1 

receptor agonist (85). However, the receptor subtype(s) mediating this hyperpolarization 

was not identified. In cultured motoneurons, activation of A1 receptors inhibits HVA Ca2+ 

current (mainly N type) (882); the functional role of this effect remains unclear.

At present, our understanding of the physiological role of the other adenosine receptor 

subtypes in modulating motoneurons is poor, primarily due to the lack of selective ligands 

and the diffuse distribution of these receptors.

K. TRH

1. Ligands, receptors, and sources of TRH input to motoneurons—The 

tripeptide TRH (pyroGlu-His-Pro-NH2) was the first hypophysiotropic hormone to be 

purified from hypothalamic extracts and characterized (1037). TRH is the product of 

posttranslational processing of a TRH precursor (preproTRH) mRNA that contains five 

copies of the TRH progenitor sequences (718). A number of other peptides in addition to 

TRH are derived from the same preproTRH (717, 718, 1386). These other peptides are 

synthesized and released from some neurons in a depolarization- and Ca2+-dependent 

manner and, in some systems, they affect target tissues with actions that are synergistic with 

TRH (160, 690). Effects of these additional preproTRH-derived peptides have not been 

reported on motoneurons.

Two mammalian TRH receptor genes, TRHR1 and TRHR2, have been identified (184, 423); 

they share ~50% sequence homology and are both members of the rhodopsin family of G 

protein-coupled receptors. The more recently identified TRHR2 has so far only been found 

in rat, where it is expressed in a pattern distinct from TRHR1; of particular relevance to this 

review, it appears that TRHR1, but not TRHR2, receptors are expressed in motoneurons 

(177, 184, 1416). TRHR1 receptors from rat, mouse, and human are nearly identical (~95% 

identity through residue 375) except for the COOH-terminal region where there is 
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substantial variability (423). In the rat and mouse (but not human), two TRHR1 mRNA 

species have been identified. These arise by alternative mRNA splicing and differ in the 

COOH terminus, predicting a long and short isoform of the receptor. The significance of 

these TRHR1 receptor isoforms is unclear, since their expression in native tissue has not 

been demonstrated and the two isoforms appear functionally identical in heterologous 

expression systems (423).

Rat cranial and spinal motoneurons display dense TRH binding sites and express TRHR1 

receptor mRNA at high levels (177, 1131, 1371, 1416). Expression of the TRH receptor is 

developmentally regulated, at least in some motoneuron pools. Thus TRH binding sites are 

at low levels in hypoglossal motoneurons of neonatal rat and increase in density over the 

early postnatal period to reach adult levels by approximately postnatal day 14 (78).

There is a relatively dense TRH input to brain stem and spinal cord motoneurons (489), and 

TRH fibers make axodendritic and, to a lesser degree, axosomatic contacts with 

motoneurons (1000). The TRH innervation appears to arise primarily from medullary raphe 

neurons rather than from hypothalamic cells (see sect. III and Table 2). The medullary raphe 

nuclei and the hypothalamic paraventricular nuclei (PVN) are the two major areas in the 

brain in which TRH-containing somata are located (489, 576); these neurons send 

descending projections to regions of the brain stem and spinal cord that contain motoneurons 

(1202). However, combined histochemistry and retrograde tract tracing demonstrate that 1) 

TRH-expressing medullary raphe neurons project to spinal cord and the dorsal medulla (484, 

767, 1080), 2) TRH-expressing PVN neurons are not retrogradely labeled from spinal cord 

or brain stem, and 3) spinally projecting PVN neurons do not express TRH (72). 

Furthermore, cutting the projection path to the dorsal medulla decreases the number of 

TRH-immunoreactive fibers in the hypoglossal nucleus (954), and electrical or chemical 

lesion of medullary raphe nuclei (471, 576) decreases TRH concentrations and TRH-IR 

fibers in spinal cord. On the other hand, disruption of descending pathways from the 

hypothalamus (151, 551, 954) or electrolytic lesion of the PVN (716) does not decrease 

TRH concentrations in the brain stem or spinal cord. Some differences in the density of 

TRH-immunoreactive fibers are noted among motoneuron pools and throughout postnatal 

development. For example, a greater number of TRH-immunoreactive fibers form close 

appositions to respiratory-related motoneurons of the nucleus ambiguus than to either 

nonrespiratory ambigual motoneurons or to hypoglossal or facial motoneurons (1196). In 

addition, there are developmental increases in the density of TRH-immunoreactive fibers in 

brain stem and spinal cord motor pools (78, 999); in the hypoglossal nucleus, the increased 

TRH innervation coincides temporally with the increased expression of TRH receptors by 

hypoglossal motoneurons (78).

2. Pre- and postsynaptic actions of TRH on motoneurons—TRH has direct 

excitatory effects on spinal and cranial motoneurons (75, 76, 913, 1039, 1212, 1333, 1357). 

In mammalian motoneurons, TRH causes a depolarization associated with a decrease in 

membrane conductance. At least two ionic mechanisms contribute to the depolarization: 

TRH inhibits a relatively voltage-insensitive resting leak K+ current and activates a mixed 

cationic current (75, 366, 921). This leak K+ current is insensitive to TEA, Cs+, 4-AP, or 

apamin and blocked by Ba2+ (75, 366, 921); the cationic current is partially inhibited by 
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Cd2+, Mn2+, and Co2+, suggesting that it may be Ca2+ dependent (366). This combination of 

effects is common to a number of transmitters that act directly on motoneurons, i.e., 

qualitatively similar effects are seen with NE, substance P, and 5-HT. The effects of TRH 

occlude those of NE and substance P (367, 958), further suggesting a common mechanism.

Associated with its postsynaptic actions, exogenous TRH application to in vitro preparations 

often induces an increase in synaptic potentials recorded from motoneurons (75, 1039, 

1333). The mechanism of this effect of TRH remains to be determined; it could reflect 

excitation and increased activity-dependent transmitter release from local premotor neurons, 

or a presynaptic effect on terminals that impinge on motoneurons (689, 1333).

TRH acts directly on motoneurons to cause a slow membrane depolarization when applied 

in vitro, suggesting that if it were released synaptically it might mediate a slow EPSP. In 

fact, electrical stimulation of the ventral funiculus in a neonatal spinal cord in vitro 

preparation to activate a descending TRH pathway evokes a slow EPSP in spinal 

motoneurons that is sensitive to TRH antibodies (1212). Identifying the role that such a 

TRH-mediated slow synaptic excitation plays in normal motor system function awaits the 

development of specific and selective TRH receptor antagonists (1358).

3. Signal transduction—The TRH receptor, like the α1-adrenoceptor, signals primarily 

through PTX-insensitive G proteins (Gαq/11 family) to activate PLC and cognate 

downstream signaling cascades, e.g., production of IP3, liberation of Ca2+ from intracellular 

stores, and activation of PKC (422, 423, 842, 1067). However, under some circumstances 

and in some cells, the TRH receptor may also couple to a variety of other G proteins, 

including Gαi, Gαo, and a Gαs-like protein to bring about additional effects (423). For 

example, antisense knockout studies indicate that Ca2+ channel activation by TRH in GH3 

pituitary cells is mediated by the PTX-sensitive G proteins, Gαi-2 and Gαi-3 (430, 431). 

Interestingly, this effect is blocked by Gαq/11 antisense treatment and PKC inhibitors, 

suggesting that coordinate activation of both Gαq and Gαi signaling pathways may be 

necessary for Ca2+ channel activation by TRH (431). The intracellular mechanisms by 

which TRH modulates motoneuronal excitability have not been exhaustively studied but, 

insofar as they have been tested, there has been no evidence to support involvement of any 

of these pathways in mediating its direct postsynaptic effects. Thus, although TRH-induced 

depolarization of hypoglossal motoneurons involves G proteins, the TRH effect is 

independent of changes in intracellular Ca2+ or IP3 and unaffected by activation of PKC or 

PKA (77). Indeed, it is noteworthy that despite its widespread presence in many other 

neurons, the mechanism by which transmitters that act via Gαq-coupled receptors signal to 

cause inhibition of leak K+ channels and/or activation of cationic channels remains 

enigmatic.

4. Functional role of TRH in modulating motoneuronal excitability—TRH 

increases the duration and amplitude of trains of electrically evoked postsynaptic potentials 

in guinea pig hypoglossal motoneurons, presumably via postsynaptic effects on membrane 

input conductance and time constant (1039). Although not directly tested, the altered 

membrane properties induced by TRH would also be expected to enhance inhibitory 

synaptic inputs; interestingly, TRH also potentiates NMDA-induced depolarization and 
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NMDA-mediated EPSP (1040). This is not due to a direct effect of TRH on the NMDA 

channels, since under voltage-clamp the NMDA current is unchanged; rather, the combined 

action of TRH and NMDA on the motoneuronal membrane leads to a region of negative 

slope conductance, potentiating NMDA-induced depolarizations (1040).

The input-output relationship of motoneurons is also enhanced by TRH; the curve relating 

depolarizing current input and firing frequency output in rat hypoglossal motoneurons is 

shifted to the left in the presence of TRH, i.e., previously subthreshold current inputs induce 

repetitive firing with the frequency of discharge increased at each suprathreshold current 

input (75). This is due to the combined effects of TRH-induced depolarization and decreased 

conductance; membrane depolarization brings the neuron closer to action potential threshold 

while the decreased input conductance allows more effective transformation of current 

inputs to voltage responses. The shift in the input-output relationship caused by TRH is not 

associated with a change in slope (i.e., gain) (75). This is consistent with the finding that 

TRH has no effect on the spike AHP, which largely determines interspike interval, and 

distinctly different from effects of the presumptive cotransmitter, 5-HT, which decreases the 

spike AHP and increases input-output gain in neonatal hypoglossal motoneurons (75, 91).

A number of changes take place during the early postnatal period that influence TRH effects 

on motoneurons. Expression of the TRH precursor mRNA increases markedly in raphe 

neurons within the first 2 wk after birth (78), as does the density of TRH-immunoreactive 

fibers in motor nuclei receiving input from the raphe nuclei (78, 999). Concomitant with this 

elevated innervation, the levels of TRH binding sites also increase to reach sustained high 

levels in rat hypoglossal motoneurons by postnatal day 14 (78). Thus both the presynaptic 

and postsynaptic elements of the raphe motoneuronal system mature over the first 2 wk via a 

process that is remarkably well matched in timing. Furthermore, the electrophysiological 

effects of TRH on motoneurons also change during this developmental period. An 

increasing fraction of TRHresponsive neurons are found through the early postnatal period, 

roughly paralleling the increase in receptor binding (78). However, a number of other 

changes also contribute to the functional maturation of hypoglossal motoneuron responses to 

TRH. Unlike adult hypoglossal motoneurons (75, 1039), in some responsive neonatal 

neurons TRH causes a depolarization that is not associated with decreased conductance, 

reminiscent of the TRH response after inhibition of the leak K+ current by Ba2+. The reason 

that TRH receptors do not appear to couple to K+ channels in this population of neurons 

remains to be determined. It is noteworthy that 5-HT, which modulates Ba2+-sensitive leak 

K+ channels in adult motoneurons (526, 1228), also fails to target those channels in neonatal 

hypoglossal motoneurons (91, 1228). Finally, there is a progressive increase in TRH current 

density that matches closely the increase in membrane conductance over the early postnatal 

period (78, 92, 1313). This latter effect ensures that the magnitude of the TRH-induced 

membrane depolarization will be comparable in adult and neonatal hypoglossal 

motoneurons, at least in the population of neonatal cells that are capable of responding (78) 

(see Fig. 8). Effects of TRH in the context of a more complex motor system are also 

enhanced with a similar postnatal time course; facilitatory effects of TRH on rhythmic 

inspiratory-related discharge measured on the hypoglossal nerve in vitro are greatly 

enhanced over the first 2 postnatal weeks (400).
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L. Neurokinins

1. Ligands, receptors, and sources of neurokinin input to motoneurons—The 

neurokinins are the mammalian members of the tachykinin family of neuroactive peptides, 

which share a common structure that includes the COOH-terminal sequence Phe-Phe/Val-

Gly Leu-Met-NH2 (453, 472, 889, 948). The undecapeptide substance P was the first 

member of this family to be purified and characterized (208); other mammalian members 

were identified only after some years and include neurokinin A (NKA; also known as 

substance K, neurokinin α, and neuromedin L) and neurokinin B (NKB; also known as 

neurokinin β, neuromedin K), as well as the recently discovered NH2-terminally extended 

versions of NKA, the so-called neuropeptide K (NPK) and neuropeptide γ (NPγ) (453, 472, 

889, 948). In some tissues, fragments of NKA have been identified as well, e.g., NKA-(3—

10) and NKA-(4—10), but it is unclear if these fragments are released or exist in these forms 

due to proteolytic degradation of NKA (1241).

All neurokinins identified to date derive from two closely related genes, preprotachykinin A 

(PPT-A) (615, 665, 897, 898) and preprotachykinin B (PPT-B) (119, 663), that may have 

arisen by duplication of a common ancestral gene (663, 888, 889). The PPT-A gene is 

differentially spliced, leading to three distinct mRNA isoforms: the α-form of PPT-A 

encodes only substance P, whereas the β- and γ-forms encode both substance P and NKA. 

The other neurokinin peptides, NPK and NPγ, are derived from β-PPT-A and γ-PPT-A 

mRNA, respectively (888). Although tissue-specific regulation of splicing has been 

suggested in other species, i.e., bovine (888, 898), in both rat and human CNS the 

preponderance of PPT-A mRNA exists in the γ- and/or the β-forms, with very little 

expressed as α-PPT-A mRNA in either species (195, 665). Thus preferential expression of 

the PPT-A mRNA isoforms that encode both substance P and NKA (as well as NPK or NPγ) 

suggests that individual neurons will usually coexpress multiple neurokinins. Indeed, with 

the use of specific antibodies, immunoreactivity for both substance P and NKA is seen in 

individual medullary raphe neurons that are known to project to motoneurons (907). In 

contrast to the complexity of PPT-A processing, with three splice variants and their multiple 

neurokinin products, the two (α and β) forms of the PPT-B mRNA give rise only to NKB 

among the currently known neurokinins (119, 663, 888).

As predicted from earlier autoradiographic studies (453), three neurokinin receptors that 

preferentially interact with each of the major tachykinins, the NK1 receptor with substance 

P, the NK2 receptor with NKA, and the NK3 receptor with NKB, have been identified by 

molecular cloning (889). All three cloned receptors are members of the rhodopsin family of 

G protein-coupled receptors. It is important to point out that the receptor-ligand associations 

described for the NK receptors are not absolute, since all known neurokinins can bind each 

of the NK receptor subtypes in nanomolar concentration ranges and activate each receptor 

with full potency (although EC50 values are ~1–2 orders higher) (536, 889). Moreover, a 

number of examples of mismatch between localization of NK receptors and preferred 

endogenous ligands have been noted (e.g., Refs. 293, 747, 892, 1149). Together, these 

observations suggest that there may be substantial cross-talk within the mammalian 

tachykininergic system.
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The distribution of neurokinin receptors throughout the CNS, including motor nuclei, has 

been extensively investigated (90, 270–272, 293, 329, 774, 791, 892, 1014, 1149, 1405). 

The results of these studies are concordant with the conclusion that adult rat motoneurons 

predominantly express NK1 receptors and display substance P binding sites. The expression 

of NK1 receptors is not uniform among motoneuronal pools, however, implying that effects 

of substance P may vary depending on the particular motoneuronal pool. For example, some 

motoneuronal populations express very high levels, e.g., phrenic, pudendal motoneurons, 

whereas others express moderate, e.g., hypoglossal motoneurons, or only very low levels of 

NK1 receptor, e.g., facial, trigeminal motoneurons (210, 791, 892, 1405). The NK2 receptor 

is preferentially located in the periphery with only low levels of binding sites in the CNS, 

whereas the NK3 receptor has a widespread CNS distribution; neither NK2 or NK3 

receptors, however, are prominent in motor nuclei (272, 293, 1149, 1405). The 

generalization regarding the predominant expression in motoneurons of the NK1 subtype 

among the NK receptors may not hold in all circumstances. For example, expression of each 

of the NK receptors is developmentally regulated (90, 211, 272, 1014) and, interestingly, 

high levels of NK3 binding sites are present in the ventral horn of the spinal cord up to at 

least postnatal day 10 (90). Whether these ventral horn NK3 binding sites represent transient 

somatodendritic NK3 expression by neonatal motoneurons or are associated with other 

neuronal elements remains to be determined.

The PPT-A and PPT-B genes are differentially expressed with overlapping but distinct 

patterns of expression (797, 1338). There is no significant NKB immunoreactivity in fibers 

innervating motoneurons (797, 833, 1260) and, consistent with this, no evidence for 

expression of its precursor PPT-B in cells that provide major projections to motoneurons, 

e.g., medullary raphe, sensory ganglia (797, 1338). Given that NK3 receptors have only been 

found on neonatal motoneurons (see above), it is unlikely that the endogenous PPT-B/NKB 

system has a major role in regulating motoneuronal function, at least in the adult.

In contrast, there is a dense innervation of all motoneuronal pools by substance P-

immunoreactive fibers that is potentially derived from at least three sources: brain stem 

raphe neurons, primary afferent neurons, or substance P-expressing cells intrinsic to the 

spinal cord (751, see sect. III and Table 2). Caudal raphe neurons, particularly in raphe 

obscurus and pallidus, express high levels of PPT-A mRNA, and individual spinally 

projecting raphe cells are immunoreactive for both substance P and NKA, the neurokinins 

encoded by PPT-A (576, 907, 1338). Descending inputs from medullary raphe neurons 

provide the most prominent neurokininergic innervation of motoneurons since the 

overwhelming majority of substance P and substance P-immunoreactive fibers in the ventral 

horn are lost after high spinal cord transection or chemical destruction of medullary raphe 

neurons (379, 473, 576, 603). Substance P is extensively colocalized with 5-HT and TRH in 

medullary raphe neurons and in fibers surrounding motoneurons (576, 951), and the density 

of substance P and 5-HT-immunoreactive fibers appears to increase during early postnatal 

development (951).

PPT-A is also expressed at high levels in many sensory ganglia neurons (1338), but dorsal 

rhizotomy causes only small decreases in substance P innervation of the ventral horn with 

much larger decreases in the density of dorsal horn substance P-immunoreactive fibers (492, 
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567, 1220). This is consistent with the preferential immunohistochemical localization of 

substance P to capsaicin-sensitive sensory neurons associated with small fibers in the C and 

Aδ range that carry nociceptive inputs and terminate primarily in the dorsal horn, and its 

absence in muscle afferents that project monosynaptically to spinal motoneurons (493, 812). 

A small amount of ventral horn substance P innervation may arise from spinal dorsal horn 

neurons that express PPT-A and substance P (751, 1338), and these may be important in 

conveying polysynaptic sensory inputs to the motoneurons (425).

2. Pre- and postsynaptic actions of neurokinins on motoneurons—Otsuka and 

colleagues (660, 945, 946, 1199, 1217) first demonstrated an excitatory effect of substance P 

on neonatal rat spinal cord motoneurons; they found that substance P causes a slow 

depolarization of the ventral root or the motoneuronal membrane potential. This is due to a 

direct postsynaptic effect on motoneurons because it persists, at least in part, after blockade 

of synaptic transmission in TTX or in a low-Ca2+/high-Mg2+ synaptic blockade medium 

(947, 1199). The depolarization of neonatal rat spinal motoneurons by substance P is 

associated with an apparent decrease in membrane conductance (365, 367), involving two 

ionic mechanisms: inhibition of a relatively voltage-independent resting K+ current and 

activation of a (presumably) mixed cationic current (367). The characteristics of these 

effects of substance P are highly reminiscent of those of TRH (see above), and accordingly, 

the effects of the two transmitters mutually occlude each other (367). Moreover, this 

mechanism of action involving a decrease in a K+ current combined with activation of a 

cationic current has also been described for substance P in locus coeruleus neurons, although 

in those cells the K+ current is inwardly rectifying (1140).

The identity of the neurokinin receptor that mediates the direct depolarizing effects of 

substance P on motoneurons is not yet entirely clear, although the bulk of the 

pharmacological evidence supports the aforementioned histochemical data that predicts 

involvement of NK1 receptors. Thus a number of selective NK1 agonists mimic effects of 

substance P on motoneurons, e.g., substance P methyl ester and [Sar9Met(O2)11]substance 

P, and those effects are blocked by some NK1 receptor antagonists, i.e., SR-140,333 (52, 

365, 726). However, a number of additional NK1 antagonists are without effect on substance 

P responses, i.e., (±)-CP-96,345, RP-67580, and GR-82334, or display pharmacological 

profiles unlike that of the classical NK1 receptor, i.e., spantide (51, 726, 1402). Motoneurons 

may express a distinct isoform of the NK1 receptor that possesses atypical antagonist 

binding characteristics (1402). Alternatively, because most electrophysiological studies 

utilize preparations from neonatal rats in which more than one NK receptor may be 

expressed (especially both NK1 and NK3; see above), the atypical pharmacological results 

could simply reflect a mixed receptor population in those developing neurons.

The effects of the other neurokinins, NKA and NKB (and/or agonists selective for their 

cognate receptors), have also been studied on spinal motoneurons. In neonatal rat spinal 

motoneurons, NK2 and NK3 agonists cause a slow membrane depolarization that is reduced, 

although not completely, by TTX (365, 727, 807), suggesting these effects are mediated by 

premotor neurons. This is consistent with histochemical studies suggesting that ventral horn 

motoneurons do not express the NK2 or NK3 receptor subtypes, which are more prevalent in 

the dorsal horn. The small residual current occasionally seen in the presence of TTX may 
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reflect effects mediated by NK2 or NK3 receptors expressed transiently on some neonatal 

motoneurons, or could be due to small crossover effects of the agonists onto NK1 receptors. 

The nature of the transmitter released onto motoneurons from spinal presynaptic neurons 

following NKA or NKB stimulation has not been determined, but it is notable that it causes 

a depolarization associated with an apparent decrease in input conductance, not unlike that 

produced directly by NK1 receptor activation (365). Of further interest, NK3-selective 

agonists (MePhe7)NKB and Senktide often induce a burst-firing behavior that is 

superimposed on the depolarization; the nature of this burst mechanism remains to be 

explored (365).

The effects of exogenously applied NK receptor agonists suggest that neurokinins, 

particularly substance P and other NK1 agonists, cause a slow membrane depolarization by 

acting directly on the motoneuron. Therefore, synaptically released substance P might be 

expected to mediate a slow EPSP in motoneurons. Indeed, electrical stimulation of upper 

cervical segments designed to activate descending substance P pathways to lumbar 

motoneurons in an isolated neonatal rat spinal cord induces a slow EPSP that is blocked by 

NK1 receptor antagonists and enhanced by a peptidase inhibitor (681). Moreover, a 

component of the slow EPSP is also sensitive to ketanserin, a 5-HT2 antagonist and the SP-

dependent EPSP is virtually absent after treatment of the spinal cord with a chemical 

neurotoxin for 5-HT, suggesting that the substance P is released from fibers that also 

contained 5-HT (681). Thus this descending pathway from medullary serotonergic neurons 

that contain substance P probably represents the principal direct mechanism for substance P 

modulation of motoneuronal function. The release of substance P is apparently frequency 

dependent so that it may only be released at times of increased activity in raphe neurons 

(378), e.g., during increased locomotor or respiratory activity (1308). It is important to point 

out that reflex activation of motoneurons after stimulation of dorsal roots at intensities 

sufficient to activate small fibers can also induce a slow NK1-dependent EPSP in 

motoneurons (52, 457, 949). However, this effect is probably polysynaptic, since it is 

blocked by glutamate receptor antagonists and only the long-latency responses are sensitive 

to NK receptor antagonists (52).

3. Signal transduction—There is good evidence that all three NK receptors couple via 

PTX-insensitive G proteins to activation of PLC and production of IP3 and diacylglycerol as 

the major, although not only, signaling pathway (889, 948). In this respect, the NK1 receptor 

is similar to other receptors, e.g., 5-HT2, α1-adrenergic, TRH, that also mediate direct 

motoneuronal depolarization via inhibition of a resting K+ current and activation of a 

cationic current (75, 77, 526, 958). However, as in those other cases, the involvement of 

PLC and/or its downstream mediators in these effects remains to be demonstrated.

4. Functional role of neurokinins in modulating motoneuronal excitability—
The effects of substance P on synaptic inputs to motoneurons have not been directly studied. 

There is currently no information as to whether substance P can modulate fast excitatory or 

inhibitory inputs onto motoneurons at a presynaptic site. Substance P may act 

presynaptically to enhance 5-HT release (846), perhaps by blocking a 5-HT autoreceptor on 

its own terminals (491, 496). The postsynaptic mechanisms of action of substance P, which 
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are similar to those of TRH, suggest some additional possibilities. For example, the 

substance P-induced decrease in membrane conductance would be expected to increase the 

amplitude and duration of postsynaptic potentials by altering membrane characteristics, i.e., 

length and time constants, as shown for TRH (1039). This would be the case for both 

inhibitory and excitatory synaptic inputs. Furthermore, the firing response to current inputs 

is shifted to the left in the presence of substance P, presumably by virtue of the combined 

effects of substance P to depolarize and decrease the motoneuronal input conductance (726).

M. Arginine Vasopressin and Oxytocin

1. Ligands, receptors, and sources of arginine vasopressin and oxytocin input 
to motoneurons—Arginine vasopressin (AVP; also called antidiuretic hormone) and 

oxytocin are nine-amino acid posterior pituitary peptide hormones arranged in a six-amino 

acid disulfide ring with a three-amino acid side chain; they differ by only two amino acids 

(1038). AVP and oxytocin are cleaved from precursor hormones encoded by separate but 

closely linked genes that are likely derived from a common ancestral gene (546). The 

discovery of an extrahypothalamic distribution of AVP and oxytocin suggested CNS 

functions in addition to their well-known roles in regulating plasma osmolarity and 

increasing intramamallary pressure leading to milk ejection (1175).

Three receptors for AVP are suggested based on its distinct actions and pharmacology in 

different tissues: in vascular smooth muscle, the V1a (or V1) receptor causes 

vasoconstriction; in the anterior pituitary, the V1b (or V3) receptor induces ACTH release; 

and in the kidney, the V2 receptor enhances water reabsorption. To date, only a single 

oxytocin receptor has been identified. The existence of pharmacologically defined AVP 

receptor subtypes, as well as the oxytocin receptor, have now been verified by molecular 

cloning, and all are members of the rhodopsin family of G protein-coupled receptors (56, 57, 

974).

The predominant AVP receptor in the CNS is the V1a subtype, and it is this isoform that 

appears to be expressed transiently on cranial motoneurons as identified by ligand binding 

autoradiography with either [3H]AVP or 125I-VPA (a selective V1a radioligand) (956, 1269). 

High levels of binding are detected in rat facial motoneurons from embryonic day 20 

through the second postnatal week, whereupon AVP binding sites progressively diminish in 

density to reach low levels by postnatal day 19 and barely detectable levels in adulthood 

(1269). Likewise, V1a receptor binding is very low in most spinal cord motor nuclei of adult 

rats, although there are some exceptions; dorsolateral ventral horn motoneurons at the 

cervicothalamic spinal cord junction and medially located motoneurons throughout the 

lumbar cord show higher levels of V1a binding (1267). Most notable, however, are the 

sexually dimorphic pudendal motoneurons. In adult male rats, these motoneurons have much 

higher levels of V1a binding than any other spinal motoneurons. Moreover, the elevated 

levels of binding in pudendal motoneurons are apparently dependent on sex steroid 

hormones since binding is reduced by castration and is not elevated in the same 

motoneurons of female rats (1267). Interestingly, after axotomy of brain stem (facial, 

hypoglossal) and spinal motoneurons in the adult rat, receptor expression increases 
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markedly, suggesting that those motoneurons revert to an immature neonatal-like phenotype 

after axotomy (1266).

Oxytocin receptors have not been studied as extensively as V1a receptors in the context of 

motoneurons. Nevertheless, oxytocin binding sites are not generally associated with adult 

motoneurons, although they are detected on hypoglossal motoneurons in the neonatal rat 

(956, 1268). Thus the expression of oxytocin receptors by motoneurons, at least by 

hypoglossal motoneurons, may be developmentally regulated in a manner somewhat 

analogous to V1a receptors.

AVP and oxytocin are synthesized in hypothalamic neurons, primarily but not exclusively in 

the paraventricular and supraoptic nuclei (1038). Descending projections from AVP- and 

oxytocin-containing hypothalamic neurons to the brain stem and spinal cord arise from the 

lateral parvicellular division of PVN (203, 1086). However, AVP- and oxytocin-

immunoreactive fibers are localized to the dorsal horn of the spinal cord and to regions 

involved in sympathetic and parasympathetic autonomic regulation, e.g., intermediolateral 

cell column and dorsal motor nucleus of the vagus nerve, and are actually only sparsely 

represented in somatic motor nuclei (1175, 1203). Thus, if AVP and oxytocin elaborated 

from these fibers activate motoneurons, they may have to act at some distance from their 

release site. To our knowledge, a study of the motoneuronal innervation by these peptides 

throughout early postnatal development has not been reported. Therefore, it remains to be 

determined if the AVP and/or oxytocin inputs are more substantial in neonates when the 

cognate receptors are expressed at higher levels by motoneurons.

2. Pre- and postsynaptic actions of AVP and oxytocin on motoneurons—A 

direct, largely TTX-resistant postsynaptic depolarization of motoneurons by AVP was first 

demonstrated in a neonatal rat spinal cord preparation (1199); a depolarization in response to 

oxytocin was also noted, although that effect was somewhat more sensitive to TTX (1199). 

Subsequently, excitatory effects of both AVP and oxytocin have been documented in other 

neonatal motoneurons (956, 1019, 1269). Although the receptor and ionic mechanisms for 

effects of AVP have been studied most extensively, oxytocin and AVP each invokes inward 

currents that are similar in magnitude and time course in the same neonatal hypoglossal 

motoneurons, suggesting that they may share a common mechanism (956). Presynaptic 

effects of these peptides have not been demonstrated in motoneurons except insofar as 

showing that a component of their effects is inhibited by TTX or a low-Ca2+, high-Mg2+ 

synaptic blockade medium (956, 1199).

In neonatal rat brain stem slice preparations, AVP increases the firing rate of facial 

motoneurons and induces the development of an inward current in both facial and 

hypoglossal motoneurons (956, 1019, 1269). These effects are blocked by an AVP receptor 

antagonist and mimicked by a V1 but not a V2 receptor agonist (956, 1019, 1269). Together 

with the receptor binding data presented above (956, 1269), these results indicate that AVP 

acts via a V1a receptor to depolarize and increase the excitability of neonatal motoneurons. 

We are unaware of published reports of effects of either AVP or oxytocin on adult 

motoneurons, but effects on those older motoneurons are unlikely given the ephemeral 

nature of V1a and oxytocin receptor expression on those cells (1268, 1269).
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The mechanism by which AVP modulates neonatal cranial motoneurons has been studied in 

vitro under voltage-clamp conditions. The AVP-induced current is voltage dependent, TTX 

insensitive, and carried, in part, by Na+ (10, 1019); the current in facial motoneurons is 

enhanced in low extracellular Ca2+, suggesting that it is partially inhibited at normal Ca2+ 

concentrations, i.e., 2 mM (10). This AVP-induced cationic current shares some features 

with the current induced by 5-HT in neonatal rat hypoglossal motoneurons (91) as well as 

with a Ba2+-resistant cationic current component induced by a number of transmitters in 

various adult motoneuronal preparations, e.g., 5-HT, TRH, and NE, although those other 

transmitter-induced currents are not noticeably voltage dependent, and their inhibition by 

extracellular Ca2+ has not been reported (526, 958). The voltage-dependent and kinetic 

characteristics of the AVP-sensitive current are distinctly different from those of Ih, a 

voltage-dependent cationic current that is modulated by 5-HT in some motoneurons (526, 

701, 1216).

3. Signal transduction—The V1 and oxytocin receptors interact via Gαq/11 to activate 

PLC and downstream signaling cascades in vascular smooth muscle, corticotropes, and 

neurons (56, 57, 974); whether this signaling pathway contributes to effects of AVP and 

oxytocin on motoneurons remains to be determined. This same pathway is putatively 

activated by a host of other motoneuronal excitatory neurotransmitter receptors (e.g., see 

sect. IV, E, F, and K). Whereas these other transmitters inhibit resting K+ channels in addition 

to activating a cationic current, V1 receptors apparently target only the cationic channels (75, 

526, 958). This may reflect the fact that effects of AVP and oxytocin were tested on 

neonatal motoneurons, since other transmitters that modulate both channels in adult 

motoneurons apparently activate only the cationic channel in neonatal motoneurons, e.g., 5-

HT and TRH (78, 91, 1228). Thus it may be a general finding that ion channels modulated 

by Gαq/11-coupled receptors, and/or the transduction pathway from the receptor to those 

channels, are developmentally regulated in motoneurons (79).

4. Functional role of AVP and oxytocin in modulating motoneuronal 
excitability—The effects of both AVP and oxytocin on motoneurons are excitatory, 

although their precise role in control of motoneuronal function remains speculative. The 

high levels of V1a receptor binding in sexually dimorphic nuclei of adult male rats suggest a 

role for AVP in sexual reflexes (1267). The transient developmental pattern of AVP and 

oxytocin receptor expression in most other motoneuron pools suggests that effects of these 

neuropeptides may be important early in the motoneuronal maturation process (1269). 

Clearly, a number of important developmental changes occur in motoneurons and their 

targets during the early preweaning postnatal period when those receptors are strongly 

expressed (92, 95, 760, 1329). As mentioned, there does not appear to be a dense 

innervation of motor nuclei directly by either AVP or oxytocin (1175, 1203), and the source 

of endogenous peptides to interact with those transiently expressed motoneuronal receptors 

is unclear. In this regard, it would be interesting to know if a more dense plexus of AVP and 

oxytocin fibers surrounds motoneurons during this early period. Perhaps the early 

development of an excitatory AVP and/or oxytocin input to motoneurons serves to 

compensate for the delayed development of other excitatory neurotransmitter systems in the 

neonate (e.g., TRH, NE; Refs. 78, 400).
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N. Other Neuropeptides

Numerous neuropeptides have been identified in fibers near motoneurons (330 and Table 2), 

but for the most part, their electrophysiological effects on motoneurons have not been 

systematically characterized. For example, an extensive enkephalin innervation of brain 

stem and spinal motoneurons suggests that they may be modulated by this peptide (13, 330, 

477). Consistent with this, electrical stimulation in the region of enkephalin-synthesizing 

locus coeruleus neurons evokes a naloxone-sensitive IPSP (395). However, nothing is 

known of the mechanism by which enkephalin mediates this inhibition. Likewise, there has 

been little, if any, information regarding pre- or postsynaptic effects of other peptides. 

Almost 20 years ago, Suzue et al. (1199) showed that a number of peptides caused 

membrane depolarization in neonatal rat spinal motoneurons (e.g., bombesin, 

cholecystokinin, angiotensin II, neurotensin), but the receptor and ionic basis for effects of 

many of those transmitters still have not been elucidated.

V. CONCLUSIONS AND PERSPECTIVES

Motoneurons are specialized neurons, genetically programmed to form specific motor pools, 

which have a clearly defined and important role in brain function and behavior, i.e., control 

of skeletal muscle contraction and relaxation that underlies all movements. As such, the 

principles and mechanisms that determine their performance, especially the transformation 

of their inputs into action potentials to innervated motor units, are of interest. Moreover, 

insofar as motoneurons process signals like all other neurons, insights into their function 

may illuminate basic processes of brain function.

We have reviewed the basic properties of motoneurons and their synaptic inputs. Their 

common biophysical properties, e.g., voltage-dependent ion channels, and synaptic 

properties, e.g., amino acid, amine and peptide transmitters and associated receptors, are 

sufficiently rich that the combinatorial possibilities for different states of excitability are 

legion. The majority of these properties have been measured in highly reduced or 

constrained conditions that are amenable to experimental manipulation. Although these 

conditions may be distinctly different from those occurring during natural behaviors in 

unrestrained, undrugged mammals, a few transcendent principles and mechanisms have 

been revealed that are worth emphasizing.

1. The anatomical organization of inputs to cranial and spinal motoneurons follows 

several common features. Afferent input is conveyed via sensory nuclei in the brain 

stem and spinal gray. Premotor neurons are mostly located close to the motoneuron 

groups in the reticular formation or spinal gray. Long projections from brain stem 

and pontine nuclei converge on brain stem and spinal premotor/interneurons as well 

as motoneurons. The distributed innervation of motoneuron pools by supraspinal 

modulatory systems and local premotor/interneurons may be part of a general 

scheme where the excitability of brain stem and spinal functional units (composed 

of CPG, sensory interneurons, and motoneurons) are changed in a coordinated 

fashion during particular motor acts.
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2. Inputs defining the precise timing of movement are mostly signaled by amino acids 

acting on ionotropic receptors. For example, signals related to voluntary 

movement, originating in the cortex, and relayed through a host of intermediate, 

and occasionally direct, pathways, appear to excite motoneurons via the release of 

glutamate and inhibit motoneurons via the release of GABA and glycine, all acting 

via ionotropic receptors. Similarly, rhythmic movements such as respiration, 

locomotion, and mastication, as well as postural and oligosynaptic reflexes, 

ultimately drive the appropriate movements by signals mediated by amino acid 

neurotransmitters acting via ionotropic receptors. With respect to the signaling of 

inputs related to the precise timing of movement, these neurotransmitters affect 

receptors that have fast onset and relatively fast offset of action. However, under 

certain conditions, e.g., plateau potentials or long-term facilitation, they may also 

trigger long-lasting changes in neuronal excitability. Insofar as functional signals 

transmitting information related to precise timing can be identified in other 

neurons, we propose that these too would be conveyed by amino acids acting at 

ionotropic receptors.

3. Inputs related to more generic aspects of movement, e.g., exercise, or state, such as 

related to or affected by the sleep-wake cycle, autonomic function, attention, or 

emotion (including fear), are conveyed to motoneurons by other neurotransmitters, 

such as the amines or peptides, mostly acting on metabotropic receptors. 

Modulatory inputs alter the excitability of motoneurons over a variety of time 

scales, affecting their responses to those inputs signaling precise timing signals for 

movement, but do not themselves code signals for movement. They play a basic 

role in determining the motoneuronal input-output relationship, which would be 

reflected functionally in the size and shape of bursts of activity that produce muscle 

contraction with timing and magnitude appropriate for performance of any 

coordinated movement.

4. Many modulators of motoneuronal excitability act through common effector 

mechanisms and may even share common second messenger pathways. For 

example, a) glutamate (metabotropic)-, NE-, 5-HT-, TRH-, and substance P-

mediated signaling converge on a resting leak K+ current and/or a cationic inward 

current (Fig. 9). These effector mechanisms change motoneuronal excitability by 

altering two important electrophysiological parameters: membrane potential and 

input resistance. Activation of a steady inward current and reduction of leak 

outward K+ currents lead to depolarization, and the associated increased input 

resistance results in an electrotonically more compact neuron. b) NE and 5-HT 

systems converge on the hyperpolarization-activated inward current Ih, also 

increasing the level of motoneuronal excitability. c) Glutamate (metabotropic), 5-

HT, and adenosine modulate Ca2+ channels. Influx of Ca2+ is a main determinant 

of the spike afterhyperpolarization (IK Ca), and the charge carried by Ca2+ can also 

lead to membrane depolarizations, e.g., plateau potentials, or changes in 

recruitment thresholds. Both of these effects can profoundly alter the input-output 

function of motoneurons. d) Glutamate- (metabotropic), adenosine-, ACh-, 5-HT-, 

and GABA-mediated synaptic transmission can modulate presynaptic transmitter 
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release. At present, only glutamatergic and glycinergic signaling are known to be 

presynaptically modulated, but other transmitter system may be under similar 

control. The change in motoneuronal excitability elicited by these convergent 

transmitter systems has mostly been studied using exogenous application of 

different receptors ligands (iontophoresis, bath application). This represents a 

significant limitation, since very little data exist on endogenous release of any 

particular modulatory transmitter. Thus the duration and amplitude of the change in 

motoneuronal excitability due to activation of these modulatory systems during 

normal motor behavior is unknown.

There are many important and interesting questions for future study. These might include 

the following:

1. What is the particular role of the distributed inputs and conductances on the 

somatatodendritic membrane in ensuring proper signal processing in motoneurons 

for given movements? In principle, motoneurons have complex geometry and many 

highly nonlinear properties, but under some conditions, they appear to behave like 

spheres receiving inputs that are summed (nearly) linearly. Under what conditions 

do motoneurons exploit or minimize nonlinearities?

2. What are the actions of the multitude of peptide transmitter systems (Table 2) in 

ensuring the proper functioning of motoneurons? Under what conditions are 

peptides released, and what are their effects? Their actions may go beyond short-

term regulation of excitability and may be related to longer term adaptation 

associated with learning, or to changes in motor unit or muscles properties with 

development, exercise, aging, or disease.

3. Are motoneuronal properties and/or synaptic processes modified on a short time 

scale during different motor behaviors? Motor networks in the brain stem and 

spinal cord are likely reorganizing, and not dedicated, networks, i.e., they probably 

undergo functional reorganization to generate different motor tasks. For example, 

respiratory motoneurons involved in normal quiet breathing also take part in 

producing numerous other motor acts such as phonation, coughing, emesis, and 

sneezing. Rapid changes in channel properties and synaptic functions may be 

involved in these transient reorganizations.

4. What are the cellular and molecular bases for intrinsic properties of motoneurons 

and their modulation by transmitters? Intrinsic membrane properties of 

motoneurons influence the manner by which synaptic inputs are transformed into 

the production of action potentials that ultimately dictates behavior. Numerous 

voltage-dependent and -independent currents contribute to motoneuronal 

membrane and transduction properties, and these currents are subject to modulation 

by transmitters. To understand these processes, it will be critical to 1) identify the 

molecular basis for intrinsic motoneuronal ionic currents, i.e., which of the myriad 

cloned channels underlie the measured currents, and 2) determine the cellular and 

molecular mechanisms that contribute to ion channel modulation by transmitters, 

i.e., which specific receptors and ion channels are involved, and what transduction 

pathways are interposed between receptor and channel. Finally, motoneuronal 
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membrane properties and their modulation are not static during postnatal 

development. Thus it will also be important to characterize molecular and cellular 

mechanisms underlying motoneuronal membrane properties and their modulation 

at different developmental stages.

5. Do motoneurons exploit the molecular diversity of receptors to fine tune their 

phenotypic properties, especially because they may be useful in the control of 

particular muscles during particular (classes of) movements? Although many 

different receptors can be assembled, we do not know the significance of the 

combinatorial possibilities and if motoneurons exploit this potential. Differences in 

expression of glutamate receptor subtypes among different motoneuron groups (and 

within motor pools), together with the possibility of molecular modulation, e.g., 

phosphorylation of these subunits, would permit motoneuronal excitability to be 

regulated by differential expression patterns and posttranscriptional modification of 

receptor subunits or associated synaptic proteins. These mechanisms could 

contribute to the regulation of motoneuronal properties during development, aging, 

or disease.

6. Does phosphorylation of ionotropic amino acid receptors affect excitability to 

precisely control given movements or adapt motoneuronal function over longer 

time scales? The precise timing signals for movement are mediated by amino acid 

receptors. Specific regulation of their properties by phosphorylation of the 

receptors or associated synaptic proteins would provide a mechanism for 

controlling the underlying currents specifically, without generic alteration in 

motoneuronal properties.

In summary, control of motoneuronal excitability is an essential feature of all behavior. We 

are beginning to understand the grammar that underlies motoneuronal properties, but 

ultimately we need to understand their language as they act during behavior. This will 

require intense efforts and probably novel approaches.
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FIG. 1. 
Overview of control of motoneuronal excitability. Precise timing of voluntary movements, 

rhythmic movements, afferent reflexes, and other motor acts is mediated primarily by 

excitatory and inhibitory synaptic drive to motoneurons using glutamate, GABA, and 

glycine. These transmitters activate ionotropic receptors generating synaptic current in 

motoneurons, which is convolved with intrinsic membrane properties to produce action 

potentials, which trigger muscle contraction. Modulatory systems, using amines, peptides, 

and other transmitters, act (mostly) through metabotropic receptors to modify excitability 

via changes in postsynaptic ion channel function and presynaptic release processes. These 

various modulatory systems produce changes in excitability related to the sleep-wake cycle, 

motivation, and exercise.
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FIG. 2. 
Attenuation of synaptic potentials along a dendrite of a motoneuron in culture. Top traces: 

simultaneous recordings from 2 electrodes of spontaneous excitatory postsynaptic potentials 

(EPSP) from the soma and a dendrite. Bottom trace: difference of the 2 recordings. Note that 

early and late parts of the trace are dominated by somatic and dendritic EPSP, respectively. 

[Adapted from Larkum et al. (706).]
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FIG. 3. 
Supra- and subthreshold membrane behavior of motoneurons. A: ionic currents underlying 

the action potential waveform. B: ionic currents underlying subthreshold membrane 

behavior, in this case, elicited by a short-lasting depolarizing/hyperpolarizing square current 

pulse. C: different phases of adaptation during repetitive firing and postdischarge 

hyperpolarization after a long-lasting current pulse. Unless noted, currents are activated at 

times indicated. For definitions, see Table 1 and section IIC.
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FIG. 4. 
Anatomical organization of synaptic input to motoneurons. Main synaptic input to both 

cranial and spinal motoneurons comes from premotor and interneurons located close to the 

brain stem and spinal motoneuron pools; the few notable exceptions include direct 

corticospinal and rubrospinal inputs to motoneurons controlling the distal musculature, 

especially the digits, vestibulospinal projections to postural muscles, and bulbospinal 

projections transmitting inspiratory drive to phrenic motoneurons. Several cranial and spinal 

central pattern generators (CPG) are embedded in these premotor systems. The local 
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premotor and interneurons also form the main gateway for relaying and integrating 

multisensorial afferent input from muscle, joints, skin, and descending synaptic information 

from forebrain, cerebellum, some brain stem nuclei, and the raphe, locus coeruleus, and 

other pontine/brain stem regions. Long projections from brain stem and pontine nuclei, both 

from diffusely projecting premotor groups, e.g., raphe and locus coeruleus, and from 

premotor groups involved in specialized motor tasks, e.g., respiration, equilibrium, posture, 

project directly to motoneurons, and to the local premotor and interneurons. Glutamate, 

GABA, and glycine are the principal transmitters of local premotor and interneurons but are 

also used in certain brain stem/pontine projections. 5-Hydroxytryptamine (5-HT), 

norepinephrine (NE), thyrotropin-releasing hormone (TRH), substance P (SP), and a host of 

other peptides are the main transmitters in the projections originating in brain stem/pontine 

nuclei, subserving modulatory functions in control of motoneuronal excitability. Symbols 

(solid circle, small open circle, large open circle, and fork shape) indicate different 

anatomical projection systems. Mns, motoneurons.
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FIG. 5. 
DL-α-Amino-3-hydroxy-5-methylisoxazole-propionic acid (AMPA) and N-methyl-D-aspartate 

(NMDA) receptor components of monosynaptic EPSP, elicited by stimulation of dorsal root 

filaments, in a L5 motoneuron in a hemisected spinal cord from neonatal rat. A: EPSP are 

shortened by bath application of 20 µM DL-2-amino-5-phosphonovaleric acid (APV; an 

NMDA antagonist). The remaining fast rising EPSP is blocked by addition of 10 µM 6-

cyano-7-nitroquinoxaline-2,3-dione (CNQX; a non-NMDA antagonist) to the bath. B: 

addition of CNQX (10 µM) to the bathing medium eliminates a predominant non-NMDA 
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receptor-mediated component of the monosynaptic EPSP, revealing a slow-rising EPSP, 

which is blocked by 20 mM APV. Bathing media contained 1 mM mephenesin (to reduce 

polysynaptic transmission), 5 µM strychnine, and 10 µM bicuculline. [Adapted from Pinco 

and Lev-Tov (991).]
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FIG. 6. 
Corelease of glycine and GABA. Simultaneous whole cell patch-clamp recordings from a 

spinal interneuron and a (putative) motoneuron in a spinal cord slice. A: unitary inhibitory 

postsynaptic currents (IPSC) in this neuron pair before antagonist application. B: IPSC is 

partially blocked by 400 nM strychnine (glycine antagonist). C: remaining inhibitory 

synaptic current is blocked by adding 5 µM bicuculline (GABAA antagonist), demonstrating 

corelease of glycine and GABA in this motoneuronal synapse. Bottom traces in B and C are 
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shown at an expanded amplitude scale. [From Jonas et al. (582). Copyright 1998 American 

Association for the Advancement of Science.]
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FIG. 7. 
5-HT depolarizes neonatal rat phrenic motoneurons (postsynaptic effect) and reduces 

inspiratory synaptic drive (presynaptic effect). Current and voltage-clamp recording from a 

phrenic motoneuron in a brain stem-spinal cord in vitro preparation, which generates 

spontaneous respiratory-like motor activity. One burst of inspiratory synaptic drive is 

captured in each trace. Traces show the following, left to right: control condition, after 

exposure to 20 µM DOI (5-HT2A,1C agonist), and after addition of 20 µM 5-HT (25 min 

after DOI). Note that DOI depolarizes the membrane and induces an inward current, and 

addition of 5-HT reduces the amplitude of the inspiratory synaptic drive. Inspiratory drive is 

transmitted by glutamate. This dual action of 5-HT may play a role in ensuring transmission 

of inspiratory drive regardless of variations in 5-HT release as part of the sleep-wake cycle 

(355). Vm, membrane potential; Im, membrane current. [Adapted from Lindsay and Feldman 

(744).]
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FIG. 8. 
Different neuromodulators can affect motoneuronal excitability via similar mechanisms. 

These records show the response of hypoglossal motoneurons to phenylephrine (PE), an α1-

adrenoceptor agonist [top trace; from Parkis et al. (958)]; thyrotropin-releasing hormone 

[TRH; middle trace, from Bayliss et al. (75)]; and substance P (SP; bottom trace). All 3 

transmitters induce a membrane depolarization, which can reach threshold for repetitive 

firing, e.g., see middle trace, spikes at the peak of the TRH response are truncated. The 

negative deflections in the sample traces, which represent responses to constant-amplitude 
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current pulses, are enhanced by the transmitters, reflecting the transmitter-induced decrease 

in a resting K+ current. A second component, involving activation of a cationic current, also 

contributes to membrane depolarization by all 3 transmitters (data not shown). −d.c. 

indicates negative bias current used to bring the membrane potential back to control level.
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FIG. 9. 
Major transmitters (labeled in presynaptic terminals), presynaptic (red boxes) and 

postsynaptic (yellow boxes) receptors, and ion channel effectors involved in conveying main 

excitatory/inhibitory synaptic drive and modulatory input to motoneurons. Transmitter 

systems converge on 3 major effectors: ICa HVA, Ih, and IK leak-ICAT. Although graphically 

separated, several of the listed transmitters are colocalized in synaptic boutons. (P)?, 

possibility that phosphorylation of receptors or associated synaptic proteins play a role in 
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regulating motoneuronal excitability; Glu, glutamate; Gly, glycine; AVP, arginine 

vasopressin.
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TABLE 1

Membrane currents in motoneurons, their proposed function, and modulation by transmitters

Current (Ions) Proposed Function Transmitter Modulation
Transmitter Reference
No.

INa i (Na+) Action potential

INa p (Na+) Acceleration of membrane potential to spike 
threshold, amplify EPSP, linearize firing with 
increased current input

5-HT 527

IK leak (K+) Resting Vm TRH, SP, NE, 5-HT, Glu 
(metabotropic)

77, 287, 302, 367, 526, 703, 
958, 1039

IKir (K+) Resting Vm, stabilize Vm around rest

IKdr (K+) Action potential repolarization, fAHP

Ih (K+, Na+) Resting Vm, stabilize Vm around rest, rebound 
potentials

5-HT, NE 526, 702, 959

IA (K+) Resting Vm, control onset of firing NE 958

ICl leak (Cl−) Resting Vm

IK Ca(BK) (K+) Action potential repolarization

IK Ca(SK) (K+) AHP

ICa HVA (Ca2+) ADP, AHP, plateau potentials 5-HT Adenosine, Glu 
(metabotropic)

73, 285, 287, 521, 796, 882

ICa LVA (Ca2+) ADP, action potential repolarization 5-HT 93

INa Ca (Na+) Plateau potentials, afterdepolarization in specialized 
motoneurons

IK Na (K+) Postdischarge hyperpolarization

EPSP, excitatory postsynaptic potential; Vm, membrane potential; fAHP, fast afterhyperpolarization; AHP, afterhyperpolarization; ADP, 

afterdepolarization; 5-HT, 5-hydroxytryptamine; TRH, thyrotropin-releasing hormone; SP, substance P; NE, norepinephrine; Glu, glutamate.
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