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Locating influential nodes via
dynamics-sensitive centrality

Jian-Guo Liu'?, Jian-Hong Lin?, Qiang Guo? & Tao Zhou?

With great theoretical and practical significance, locating influential nodes of complex networks
. isa promising issue. In this paper, we present a dynamics-sensitive (DS) centrality by integrating
Accepted: 22 January 2016 topological features and dynamical properties. The DS centrality can be directly applied in locating
Published: 24 February 2016 : influential spreaders. According to the empirical results on four real networks for both susceptible-
. infected-recovered (SIR) and susceptible-infected (SI) spreading models, the DS centrality is more
accurate than degree, k-shell index and eigenvector centrality.
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Spreading dynamics represents many important processes in nature and society'?, such as the propagation of
computer viruses® and traffic congestion®, reaction diffusion®, spreading of infectious diseases® and cascading fail-
ures’. The estimation of nodes’ spreading influences can help in hindering epidemics or accelerating innovation®,
and similar methods can be further applied in identifying influential spreaders in social networks’, quantifying
the influence of scientists and their publications!?, evaluating the impacts of injection points in the diffusion
of microfinance®, finding drug targets in directed pathway networks'?, predicting essential proteins in protein
interaction networks!?, and so on.

The significance of this issue triggers a variety of novel approaches in identifying influential spreaders in net-
works, which can be roughly categorized into three classes. Firstly, some scientists argued that the location of a
node is more important than its immediate neighbors, and thus proposed k-shell index!*!> and its variants'®-'? as
indicators of spreading influences. Secondly, some scientists quantified a node’s influence only accounting for its
local surroundings®®-?2. Thirdly, some scientists evaluated nodes’ influences according to the steady states of some
introduced dynamical processes, such as random walk?*?* and iterative refinement®.

The above-mentioned approaches only take into account the topological features, while recent experiments
indicate that the performance of structural indices is very sensitive to the specific dynamics on networks?-?. For
example, when the spreading rate is very small, the degree usually performs better than the eigenvector central-
ity?® and k-shell index'#, while when the infectivity is very high, the eigenvector centrality is the best one among
the three (see Figs 1 and 2, with details shown later). To the best of our knowledge, there are few works taking into
account the properties of the underlying spreading dynamics**-32. Encoding the interplay between topology and
dynamics, Klemm et al.*® suggested that the eigenvector centrality can be used in estimating nodes’ dynamical
influences in the susceptible-infected-recovered (SIR) spreading model (also called susceptible-infected-removed
model)®. Li et al.*! provided complementary explanation of the suitability of eigenvector centrality based on
perturbation around the equilibrium of the epidemic dynamics and discussed the limitations of eigenvector cen-
trality for homogeneous community networks. Both the above two works did not pay enough attention to the
specific parameters in the spreading models, and thus their suggested index only works well in a limited range
of the parameter space. Bauer and Lizier*? proposed an approach based on counting the number of possible
infection walks with different lengths to approximate the number of infected nodes generated by a given initially
infected node. Their method is an effective one to predict the outbreak size over a wide range of spreading rate but
less efficient due to the considerable computational cost. In addition, for the fundamental complexity in counting
the number of paths connecting two nodes, their method could not be formulated in a compact analytical form.

In this paper, we describe the infectious probabilities of nodes by a matrix differential function that accounts
both topological features and dynamical properties. Accordingly, we propose a dynamics-sensitive (DS) cen-
trality to predict the outbreak size at given time step, which can be directly applied in quantifying the spreading
influences of nodes. According to the empirical results on four real networks, for both the SIR model** and
the susceptible-infected (SI) model***, the DS centrality can locate influential nodes accurately and performs
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Figure 1. The accuracy of four centrality measures in evaluating nodes’ spreading influences according to
the SIR model (£ =1) in the four real networks, quantified by the Kendall’s Tau. The spreading rate 3 varies
from 0.01 to 0.10, and the time step is set as = 5. Each data point is obtained by averaging over 10* independent
runs.

particularly well in the early stage of spreading. The method proposed in this paper can be extended to other
Markov processes on networks.

Dynamics-Sensitive Centrality
A simple undirected connected network G= (V, E) withn = |V|nodes ande = |E|links could be described by an
adjacency matrix A = {a;;} where a;;= 1if node i is connected with node j, and a;;= 0 otherwise. A is binary and
symmetric with zeros along the main diagonal, and thus its eigenvalues are real and can be arrayed in a descend-
ing order as A\, > A\, > ... > \,. Since A is a symmetric and real-valued matrix, it can be factorized as
A = QAQ", where A = diag(\}, \,, ..., 1), Q = lq,, q,; ---» q,]and g; is the eigenvector of the eigenvalue A;.
We consider a discrete-time spreading model where an infected node would infect its neighbors with spread-
ing rate 3 and recover with recovering rate . (see Materials and Methods for details). Denote x(t) (¢ > 0) as
an approximation of the cumulative probabilities that nodes are excited between time step 1 and ¢, and then
x(f) — x(t— 1) (t> 1) is approximated as the probabilities of nodes to be infected at time step ¢. If i is the only
initially infected node, then x(0) = 1 and x;,,(0) = 0. In the first time step, x(1) = 3Ax(0), and for t > 1, we have
(see the derivation in Materials and Methods)

x(f) — x(t — 1) = BA[BA + (1 — 1" 'x(0), (1)

where I is the identity matrix. Denoting H = 3A + (1 — p)L then SAH'~'x(0) represents the probabilities of
nodes to be infected at time step ¢, and thus the cumulative probabilities of nodes to have been infected between
time step 1 and t can be approximated as

t

x(t) = Z[x(r) —x(r— 1] +x(1) = iBAH'x(O).
r=0

r=2

(2)

We define Si(t) to be the spreading influence of node i at time step ¢, which can be quantified by the sum of
infected probabilities of all nodes, given i the initially infected seed. According to Eq. (2), the infected probabili-
ties can be written as
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Figure 2. The accuracy of four centrality measures in evaluating nodes’ spreading influences according to
the SI model (1 =0) in the four real networks, quantified by the Kendall’s Tau. The spreading rate 3 varies
from 0.01 to 0.10, and the time step is set as = 5. Each data point is obtained by averaging over 10* independent
runs.

t—1
x(t) = Y BAH'e;,

r=0 l (3)
wheree;= (0, ...,0, 1,0, ...,0)Tisan n x 1 vector with only the ith element being 1. As all elements other than the
ith one of e; are zero, x(t) is indeed the sum of all the ith columns of 3A, SAH, ---, BAH'"'. Given x(0) = e,, S/(1)
is defined as the sum of all elements of x(¢), which is equal to the sum of all elements in the ith columns of
BA, BAH, ---, BAH "} as

$,(t) = [(BA + BAH + - + BAH" L], (4)

where L=(1, 1, ..., 1)Tis an n X 1 vector whose components are all 1. Obviously, A= A, H'=H and AH=HA,
so the spreading influence of all nodes can be described by the vector

S(t) = Z%BAH L. )

Notice that, >/_1 BAH'L = S!ZL BAH' (X0 ;) = S, Y125 BAH'e;, and 3-!_) BAH'e; is the infected
probabilities of all nodes given node i the only initially infected seed according to Eq. (2), so S(¢) can also be
roughly explained as the sum of infected probabilities over the n cases with every node being the infected seed
once. This relationship shows an underlying symmetry, that is, in an undirected network, the node having higher
influence is also the one apt to be infected. The readers are warned that such conclusion is not mathematically
rigorous since we have ignored the complicated entanglement by allowing the elements of x(¢) being larger
than 1.

The eigenvectors of H are the same to the ones of A and 8\;+ 1 — p is the ith eigenvalue of H, corresponding
to q;. When B\, + 1 — p<1,ie B/p< 1/ (for the case pe#0), H'L could converge to null vector when t— oo and
S(t) could be written by the following way
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S(t) = BA — H) 'L = [(8/u)A + (B/ ) A + -+ + (8/p) A]L. (6)

For simplicity, in the SIR model, we set ;2= 1, and then
S(t) = (BA + F°A + - + AL, (7)

where (A'L); counts the total number of walks of length f from node i to all nodes in the network, weighted
by (' that decays as the increase of the length t. As S(#) quantifies nodes’ spreading influences, we call it
dynamics-sensitive (DS) centrality, where the term dynamics-sensitive emphasizes the fact that S(¢) is deter-
mined not only by the network structure (i.e., A), but also the dynamical parameters (i.e., 3 and #). In particular,
when t= 1, the initially infected node only has the chance to infect its neighbors and S(1) = (SAL); with (AL);
being exactly the degree of node i. When p = 0 (corresponding to the SI model) or 3> 1/, S(¢) would be
infinite when f— oo, which could not reflect the spreading influences. In fact, there are two underlying assump-
tions. Firstly, the DS centrality calculates the probabilities of the nodes to be infected at time step ¢ by linear
coupling instead of nonlinear coupling. For example, if a susceptible node has m infected neighbors, the prob-
ability of the node to be infected is approximated as m 3 by the DS centrality, instead of 1 — (1 — )™, which is
the exact probability of the node to be infected. Secondly, the DS centrality calculates the probabilities of nodes
to be infected under the assumption that the nodes are susceptible at time steps t. Notice that, our main goal is
to find out the ranking of spreading influences of nodes, namely to identify influential nodes. As every node’s
infected probability is overestimated, the ranking may be less affected. Thus far, we are still not aware of the
impacts on the ranking, while fortunately, as later indicated by the extensive numerical results, the DS centrality
performs much better than other well-known indices for a very broad ranges of 3 and ¢ that cover most practical
scenarios.

Results

We test the performance of DS centrality in evaluating the nodes’ spreading influences according to the SIR model
and SI model, with varying spreading rate (3. Four real networks, including a scientific collaboration network, an
email communication network, the Internet at the router level and a protein-protein interaction network, are
used for the empirical analysis (see data description in Materials and Methods), and three well-known indices,
including degree, k-shell index and eigenvector centrality, are used as benchmark methods for comparison (see
Materials and Methods for the definitions of those indices). Given the time step ¢, the spreading influence of
an arbitrary node i is quantified by the number of infected nodes (for SI model) or the number of infected and
recovered nodes (for SIR model) at f, where the spreading process starts with only node i being initially infected.
Here we use Kendall’s Tau 7°¢ to measure the correlation between nodes’ spreading influences and the considered
centrality measure, where 7 is in the range [—1, 1] and the larger 7 corresponds to the better performance (see
Materials and Methods for the definition of 7).

As shown in Fig. 1, the Kendall’s Tau 7 for the DS centrality is between 0.968 and 0.995 for 5 € [0.01, 0.1],
indicating that the ranking lists generated by the DS centrality and the real SIR spreading process are highly iden-
tical to each other. In comparison, the DS centrality performs better than degree, k-shell index and eigenvector
centrality since the DS centrality takes into account one more parameter 5. As shown in Fig. 2, similar results are
also observed for the ST model where the DS centrality performs better than others. The results for larger Gand ¢
are respectively shown in Figs S1 and S2 of Supplementary Information, where the DS centrality still could locate
influential nodes accurately. Meanwhile, Fig. S3 shows that the DS centrality also performs much better than
other compared indices in evaluating the nodes’ spreading influences for ;1= 0.3 and 0.7 in the SIR model.

Since A is a symmetric, real-valued matrix, the DS centrality S(¢) can be written in the following way by
decomposing A

S;(t) = mq,; > a; + > M, ) 9>
j=1 r=2 j=1

(8)
wherem, = B\, [1 — (BX\, + 1 — p)']1(u — BA,) " for 1 <r< n. Rewriting Eq. (8) into
S(t) n n m n
: :qzzq+z_rqrzzqr
m; ! =1 vooom j=1 ! )

With the increase of t and 3, ™ will converge to 0, and thus the ranking lists generated by S(#) will be identical

m
to q,, which is exactly the same to the eigenvector centrality. This relationship is in accordance with the results
presented in Figs S1 and S2, where the difference between the eigenvector centrality and DS centrality gets smaller
as the increase of Jand t.

Conclusion and Discussions

Estimating the spreading influences and then identifying influential nodes are fundamental task before any regu-
lation on the spreading process. For such task, most known works only took into account the topological informa-
tion®. Recently, Aral and Walker®” showed that the attributes of nodes are highly correlated with nodes’ influences
and tendencies to be influenced. In this paper, in addition to the topological information, we get down to the
underlying spreading dynamics and propose a dynamics-sensitive (DS) centrality, which is a kind of weighted
sum of walks ending at the target node, where both the spreading rate and spreading time are accounted in the
weighting function. The DS centrality can be directly applied in quantifying the spreading influences of nodes.
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Network n e (k) 1\
Erdos 454 1313 5.784 0.079
Email 1133 5451 9.622 0.048
Router 2114 6632 6.274 0.036
Protein 2783 6007 4.317 0.063

Table 1. Basic statistical features of Erdés, Email, Router and Protein networks, including the number of
nodes 1, the number of the edges e, the average degree (k) and the reciprocal of the largest eigenvalue 1/ .

According to the empirical analyses of the SIR model and SI model at given time step on four real networks, the
DS centrality can locate influential nodes much more accurately than degree, k-shell index and eigenvector cen-
trality. In fact, it is unfair to directly compare the DS centrality with the above structure-based indices since the
DS centrality takes into account one more parameter (3, while the present result is still significant as it gives an
elegant way to account the specific dynamics and shows the remarkable improvement by introducing the param-
eter (3, which may be expected but not yet well demonstrated before this paper.

The DS centrality performs particularly well in the early stage of spreading, which provides a powerful tool
in early detection of potential super-spreaders for epidemic control. Notice that, we did not consider the asymp-
totical case with t— oo, since after sufficiently long spreading time, all nodes in the network would be infected
under large spreading rate, especially in the SI model. In such case, different nodes spreading influences are not
distinguishable.

The DS centrality tells us an often ignored fact that the most influential nodes are dependent not only on the
network topology but also on the spreading dynamics. Given different models and parameters, the relative influ-
ences of nodes are also different. Roughly speaking, if the spreading rate is small, we can focus on the close neigh-
borhood of a node since it is not easy to form a long spreading pathway (i.e., 5 decays very fast as the increase of
t when 3 is small) while if the spreading rate is high, the global topology should be considered. A clear limitation
of this work is that before calculating the DS centrality, we have to know the spreading rate that is usually a hidden
parameter. This parameter can be effectively estimated according to the early spreading process®® and then we
can calculate the DS centralities by varying the spreading rates over the estimated range and see which nodes are
the most influential ones in average. In addition to the identification of the most influential node, a related but
more challenging problem is to find the most influential sets of nodes®. The DS centrality could not be directly
extended to solve this problem, however, similar to the present idea, the dynamical information is very necessary
in dealing with this problem*.

Some other centralities related to specific dynamical processes have also been proposed recently, including
routing centrality*!, epidemic centrality*?, diffusion centrality®, percolation centrality** and game centrality®.
Comparing with these centralities, similar to the works by Klemm et al.3*4#7, this paper provides a more general
framework that could deal with other Markov processes and thus can be extended and applied in many other
important dynamics, such as the Ising model*, Boolean dynamics*, voter model®, synchronization®!, and so on.
For example, Zhou et al.* considered a variant SIR spreading model where an infected node can only contact
one neighbor in one time step. In this case, the adjacency matrix A in the DS centrality could be replaced by
D' A, where D is an n X n matrix where ith main diagonal element is the degree of node i and other elements
are 0. Then the DS centrality can be extended to this spreading model. Furthermore, the DS centrality can also
be directly extended to asymmetrical networks and weighted networks. We hope this work could highlight the
significant role of underlying dynamics in quantifying the individual nodes’ importance, and then the differ-
ence between lists of critical nodes for different dynamical processes could be considered as their distinguished
properties.

Materials and Methods
Derivation of Eq. (1). The probabilities of nodes to be infected at time step £ = 2 can be approximated as

x(2) — x(1) = BA[x(1) + (1 — u)x(0)] = BA[BA + (1 — w)I]x(0), (10)

where x(1) 4 (1 — p)x(0) is the probabilities that nodes still have the ability to infect the susceptible nodes at time
step 2. We assume that when t < p,x(p) — x(p — 1) = BA[BA + (1 — p)1}P~'x(0), then for t=p+ 1, we have

p—2

x(p+ 1) — x(p) = ﬁA{Zu — W x(p )~ x(p—r = D]+ (1 - ) x(1)

r=0

+ (- u)"X(O)}, an

where P 2(1 — p) [x(p — 1) —x(p — r — 1)] + (1 — )? 'x(1) + (1 — p)?x(0) is the probabilities that
nodes still have the ability to infect the susceptible nodes at time step p + 1. Therefore, we can get that
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x(p+1) —x(p) = BA{PZ_:Z(I — pyBABA + (1 — 1Pt

+ (1= P BA+ (1 — )] }x(O)
p—3

= BA{Z(I — u)BA[BA + (1 — 1P !

r=0
+ (1 — )P ?BA[BA + (1 — )]

+ (1 - BA+ (1 - u)I]}x(O)
= 5A{Pf(1 — u)BA[BA + (1 — 1Pt

+ (1= ) BA + (1 - M)Ilz}X(O)
(12)

BA{BAIBA + (1 — I + (1 = w)[BA + (1 — wIIP}x(0)
= PBAIBA + (1 — w)1Px(0).

Therefore, according to the mathematical induction, Eq. (1) is established.

Spreading Model. Here we apply the susceptible-infected-recovered (SIR) model (also called the
susceptible-infected-removed model)®. In the SIR model, there are three kinds of individuals: (i) susceptible
individuals that could be infected, (ii) infected individuals having been infected and being able to infect suscep-
tible individuals, and (iii) recovered individuals that have been recovered and will never be infected again. In
this paper, the spreading process starts with only one seed node being infected initially, and all other nodes are
initially susceptible. At each time step, each infected node makes contact with its neighbors and each susceptible
neighbor is infected with a probability 3. Then each infected node enters the recovered state with a probability
(. In the main text we set = 1, and for other values of 1, the results are very similar (see SI). In the standard SI
model, nodes can only be susceptible or infected, corresponding to the case with y= 0. In this paper, the model,
analysis and simulations are all based on the discrete-time dynamics.

Benchmark Methods. The degree of an arbitrary node i is defined as the number of its neighbors, namely

ki=>"a;,
=t (13)

where a;; is the element of matrix A. Degree centrality is widely applied for its simplicity and low computational
cost, which works especially well in evaluating nodes’ spreading influences when the spreading rate is small.

The main idea of eigenvector centrality is that a node’s importance is not only determined by itself, but also
affected by its neighbors’ importance?. Accordingly, eigenvector centrality of node i, v, is defined as

1 n
v, = " > agv;,
j=1

(14)
where ) is a constant. Obviously, Eq. (13) can be written in a compact form as
Av = )v, (15)

wherev = (v, v,, ---, v,,)". That is to say, v is the eigenvector of the adjacency matrix A and ) is the correspond-
ing eigenvalue. Since the considered network is a simple undirected connected network and thus the adjacency
matrix A is irreducible. According to Perron-Frobenius Theorem®, the elements in the leading eigenvector are
strictly positive. Since the influences of nodes should be strictly positive, v must be the leading eigenvector corre-
sponding to the largest eigenvalue of A, say v=q,.

Kitsak et al.'* argued that k-shell index (i.e., coreness) is a better index than degree to locate the influential
nodes. The k-shell can be obtained by the so-called k-core decomposition®. The k-core decomposition process
is initiated by removing all nodes with degree k= 1. This causes new nodes with degree k < 1 to appear. These
are also removed and the process is continued until all remaining nodes are of degree k > 1. The removed nodes
(together with associated links) form the 1-shell, and their k-shell indices are all one. We next repeat this pruning
process for the nodes of degree k= 2 to extract the 2-shell, that is, in each step the nodes with degree k <2 are
removed. We continue with the process until we have identified all higher-layer shells and all network nodes have
been removed. Then each node i is assigned a k-shell index c;.

SCIENTIFIC REPORTS | 6:21380 | DOI: 10.1038/srep21380 6
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Kendall’s Tau. For each node i, we denote y; as its spreading influence and z; the target centrality measure
(e.g., degree, k-shell index, eigenvector centrality and DS centrality), the accuracy of the target centrality in eval-
uating nodes’ spreading influences can be quantified by the Kendall’s Tau®, as

:; sgn|(y. —y. )z, — z;
! n(n—]);g[(y: )/J)(, Dl -

where sgn(y) is a piecewise function, when y > 0, sgn(y) = +1; y < 0, sgn(y) = —1; when y =0, sgn(y) =0. 7
measures the correlation between two ranking lists, whose value is in the range [—1, 1] and the larger 7 corre-
sponds to the better performance.

Data Description

Four real networks are studied in this paper as follows. (i) Erdos, a scientific collaboration network, where nodes
are scientists and edges represent the co-authorships. The data set can be freely downloaded from the web site
http://wwwp.oakland.edu/enp/thedata/. (ii) Email®, which is the email communication network of University
Rovira i Virgili (URV) of Spain, involving faculty members, researchers, technicians, managers, administrators,
and graduate students. (iii) Router, the Internet at the router level, where each node represents a router and an
edge represents a connection between two routers. (iv) Protein®, an initial version of a proteome-scale map of
human binary protein-protein interaction. Basic statistical properties of the above four networks are presented
in Table 1.
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