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Abstract

Pulmonary alveolar microlithiasis (PAM) is a rare, autosomal recessive lung disorder associated 

with progressive accumulation of calcium phosphate microliths. Inactivating mutations in 

SLC34A2, which encodes the NPT2b sodium-dependent phosphate cotransporter, has been 

proposed as a cause of PAM. We show that epithelial deletion of Npt2b in mice results in a 

progressive pulmonary process characterized by diffuse alveolar microlith accumulation, radio-

graphic opacification, restrictive physiology, inflammation, fibrosis, and an unexpected alveolar 

phospholipidosis. Cytokine and surfactant protein elevations in the alveolar lavage and serum of 

PAM mice and confirmed in serum from PAM patients identify serum MCP-1 (monocyte 

chemotactic protein 1) and SP-D (surfactant protein D) as potential biomarkers. Microliths 

introduced by adoptive transfer into the lungs of wild-type mice produce marked macrophagerich 

inflammation and elevation of serum MCP-1 that peaks at 1 week and resolves at 1 month, 

concomitant with clearance of stones. Microliths isolated by bronchoalveolar lavage readily 

dissolve in EDTA, and therapeutic whole-lung EDTA lavage reduces the burden of stones in the 

lungs. A low-phosphate diet prevents microlith formation in young animals and reduces lung 

injury on the basis of reduction in serum SP-D. The burden of pulmonary calcium deposits in 

established PAM is also diminished within 4 weeks by a low-phosphate diet challenge. These data 

support a causative role for Npt2b in the pathogenesis of PAM and the use of the PAM mouse 

model as a preclinical platform for the development of biomarkers and therapeutic strategies.

INTRODUCTION

Pulmonary alveolar microlithiasis (PAM) is a rare, autosomal recessive lung disease in 

which calcium phosphate crystal formation in the alveolar space results in progressive 

radiographic opacification, pulmonary fibrosis, and respiratory failure (1–10). PAM is 

associated with consanguinity and is most common in Japan, Turkey, and Italy, with about 

700 cases reported in the medical literature to date. Homozygosity mapping in patients with 

PAM was used to identify mutations in the SLC34A2 gene, which encodes the type II 

sodium-dependent phosphate cotransporter NPT2b (11–14). SLC34A2 was noted by in situ 

hybridization to be expressed in alveolar epithelial type II cells (AECII), and sodium-

dependent phosphate transport was conferred upon oocytes by injection of wild-type RNA 

encoding Npt2b but not RNA containing Npt2b with naturally occurring mutations found in 

study subjects (15). These data provided strong circumstantial evidence that Npt2b 

expressed on AECII plays an important role in the regulation of phosphate homeostasis in 

the alveolar space (16). Other candidate sodium phosphate cotransporters that may be 

involved in alveolar phosphate transport include NPT2a, NPT2c, PIT1, and PIT2, encoded 

by the SLC34A1, SLC34A3, SLC20A1, and SLC20A2 genes, respectively (17–19). In 

extrapulmonary organs, Npt2a and Npt2c are expressed mainly in the kidney and function to 

regulate urinary phosphate excretion (20, 21), whereas Npt2b is expressed primarily in the 

intestinal tract, where it plays an important role in the absorption of nutritional phosphate 

(22–27). In addition to the lung and gut, Npt2b is also expressed in the mammary gland, the 
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kidney, skin, prostate, and testes. Pit1 and Pit2 are ubiquitously expressed and play a key 

role in regulating intracellular phosphate levels (28). The goal of this study was to validate 

the role of Npt2b in the pathogenesis of PAM and to develop a tractable preclinical PAM 

model that could be interrogated for insights into disease mechanisms and used as a platform 

for development of biomarkers and treatment strategies.

RESULTS

Lung epithelium–specific deletion of Npt2b results in loss of sodium-dependent 
phosphate transport in isolated AECII

An epithelium-targeted Npt2b−/− mouse model was developed by breeding mice 

homozygous for floxed Slc34a2 (22) with mice expressing Cre recombinase under the 

influence of the sonic hedgehog (Shh) promoter. The Shh promoter is active during 

development in epithelial tissues and has been used extensively as a tool to drive gene 

expression and deletion in the pulmonary epithelium (29, 30). Litter size was normal, gender 

distribution of the progeny was balanced, and pups appeared healthy with the expected 

Mendelian patterns of gene transmission of Cre and Npt2b floxed genes. Analysis of RNA 

from whole lung and isolated AECII from the Npt2b−/− mice by real-time polymerase chain 

reaction (rtPCR) revealed a marked decrease in Slc34a2 message expression compared to 

Npt2b+/+ mice and absence of compensatory up-regulation of sodium phosphate 

cotransporters Slc34a1, Slc34a3, Slc20a1, or Slc20a2 (Fig. 1A). Immunostaining of lung 

sections revealed that Npt2b expression was restricted to AECII (identified by co-staining 

with anti-pro SP-C) in Npt2b+/+ mice and was absent in lung tissues from the Npt2b−/− mice 

(Fig. 1B). The whisker-like pattern of staining on the luminal AECII surface was consistent 

with localization of Npt2b to the apical plasma membrane (Fig. 1B, arrows). 

Immunocytochemistry and immunoblotting of isolated AECII with anti-Npt2b confirmed 

expression of Npt2b exclusively in the pneumocytes derived from the Npt2b+/+ mice but not 

Npt2b−/− littermates (Fig. 1, B to D). Sodium-dependent [32P] phosphate transport was 

readily demonstrated in AECII isolated from Npt2b+/+ mice but was absent in the AECII 

from Npt2b−/− mice (Fig. 1E) (31, 32).

To determine the effects of Npt2b deletion on the expression of sodium phosphate 

cotransporters in other organs, a gene expression survey of Slc34a1, Slc34a2, Slc34a3, 

Slc20a1, or Slc20a2 in the lung, kidney, and ileum was performed in Npt2b−/− and Npt2b+/+ 

mice (Fig. 1A and fig. S1). Npt2b was the major transporter expressed in the lung and ileum, 

whereas Npt2a and Npt2c predominated in the kidney. Pit1 and Pit2 were expressed in all 

tissues tested. In the Npt2b−/− mouse, Npt2b expression was very low to absent in the lung, 

and there was no obvious evidence of compensatory up-regulation of other sodium 

phosphate cotransporters.

There were no significant differences in serum electrolytes, hemoglobin, carbon dioxide, or 

glucose levels between Npt2b+/+ and Npt2b−/− mice (table S1). No extrapulmonary 

manifestations or enhanced mortality was noted in the Npt2b−/− mice, although ruffled fur 

and immobility suggesting respiratory distress occasionally occurred in aged animals.
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Deletion of the Npt2b transporter in lung epithelium alters alveolar homeostasis

There was marked elevation of both calcium and phosphate in the bronchoalveolar lavage 

(BAL) fluid (BALF) of the Npt2b−/− mice relative to the Npt2b+/+ mice, but serum levels of 

both ions were nearly identical between the groups (Fig. 2A) (21). Early fractions from 

serial BAL of the Npt2b-deficient mouse revealed an opalescent and foamy appearance, 

consistent with the presence of surfactant material, and examination of total protein and 

surfactant protein D (SP-D) revealed elevated levels in the BALF (Fig. 2B). Saturated 

phosphatidylcholine (Sat PC) was also markedly increased in both BALF and homogenized 

lung tissue (LH) of the Npt2b−/− animals (Fig. 2C). Cytokine profiling of inflammatory 

mediators in BALF including MCP-1, MIP1β (macrophage inflammatory protein 1β), M-

CSF (macrophage colony-stimulating factor), IP10 (interferon-γ–induced protein 10), VEGF 

(vascular endothelial growth factor), TNFα (tumor necrosis factor–α), and KC was used to 

select candidates for further testing in serum (Fig. 2D) (33). Serum SP-D and MCP-1 were 

elevated in Npt2b−/− animals compared to controls and increased with age in a manner that 

correlated with progressive microlith deposition (Fig. 2, E and F). Serum obtained from 

patients with PAM also revealed elevation of serum SP-D and MCP-1 compared to healthy 

volunteers (Fig. 2, G and H).

Dysregulation of phosphate transport in the lung results in progressive pulmonary 
alveolar microlith accumulation, marked inflammation, mild fibrosis, and restrictive lung 
physiology

Diffuse, hyperdense opacification was apparent on plain radiographs of the Npt2b−/− mice 

compared to Npt2b+/+ littermates (Fig. 3, A and B). Micro–computed tomography 

(microCT) images of the chest showed dense ground-glass infiltrates, reticular and 

micronodular calcific opacities, and high density consolidation with air bronchograms (Fig. 

3C). Although profusion of radiographic opacities on chest radiographs and CTs varied 

somewhat between Npt2b−/− mice of the same litter, longitudinal analysis of radiographic 

opacities by radiograph and CT revealed a consistent and progressive increase in infiltrates 

(Fig. 3D and fig. S2). Wet lung and ashed lung weights normalized to body weights of 

Npt2b−/− mice were consistently greater than those of Npt2b+/+ mice starting as early as 4 

weeks of age and progressively increased through time, as assessed at ages 4, 13, and 20 

weeks (Fig. 3, E and F). Gender-associated differences in age-dependent radiographic 

opacification were not appreciated. von Kossa staining revealed accumulation of microliths 

in the alveolar spaces (Fig. 3G). Macrophage-rich inflammation and alveolar septal 

expansion were apparent in the lungs of Npt2b−/− mice, and in some regions was associated 

mild fibrotic change on trichrome staining (Fig. 3G). Foamy macrophages were abundant 

within inflammatory lesions, and macrophages isolated by BAL revealed punctate 

cytoplasmic Oil Red O staining consistent with accumulation of neutral triglycerides and 

lipids (Fig. 3H). The pressure volume curve of intubated and anesthetized Npt2b−/− mice 

was shifted down and to the right relative to Npt2b+/+ animals, consistent with a restrictive 

physiologic defect, and the mean specific static compliance of 17-week-old Npt2b−/− mice 

was less than 50% of age-matched Npt2b+/+ controls (Fig. 3I).
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Adoptive transfer of alveolar microliths into Npt2b+/+ lung results in transient macrophage-
rich inflammation

To explore the direct inflammatory effects of microliths in the lung, and the potential for 

reversibility of lung lesions, we instilled calcium phosphate crystals isolated from Npt2b−/− 

mice into the lungs of Npt2b+/+ mice by the intratracheal route. At 1 day after instillation, 

microliths were readily demonstrated in peribronchiolar air spaces by von Kossa staining of 

lung sections and by microCT, and although little or no inflammation was apparent by H&E 

staining, the microCT demonstrated areas of airspace opacity and consolidation consistent 

with edema or atelectasis (Fig. 4, A and B). By 7 days after instillation, intense macrophage-

rich inflammation was present in peribronchiolar areas where stones were abundant, areas of 

consolidation persisted on microCT (Fig. 4A), and foci of collagen deposition and fibrosis 

were apparent by trichrome staining (Fig. 4B). One month after microliths were instilled, 

inflammation, fibrosis, and radiographic airspace opacities had largely resolved, and 

microliths were not detected by von Kossa staining (Fig. 4, A and B). Changes in serum 

MCP-1 levels closely paralleled the radiographic and histologic course after adoptive 

microlith transfer, more than tripling from baseline to peak inflammation at 7 days, and 

returning to near baseline at 1 month (Fig. 4C). The mean serum MCP-1 level of 16-week-

old Npt2b−/− mice is shown for comparison.

Therapeutic lavage reduces pulmonary opacities and microlith burden

Infrared spectroscopy revealed that alveolar microliths isolated from Npt2b−/− mice were 

composed of calcium phosphate, predominantly hydroxyapatite. Microliths were observed to 

readily dissolve in buffers containing concentrations of EDTA or EGTA of 20 mM or 

greater (Fig. 5A). Lesser degrees of dissolution also occurred upon exposure to solutions 

with lower EDTA or EGTA levels, low-pH buffers, citrate, or high concentrations of 

etidronate (a bisphosphonate that inhibits calcium phosphate crystal formation). To explore 

the potential for therapeutic EDTA lavage to reduce the burden of microliths in the lung, we 

performed serial therapeutic alveolar lavage of euthanized Npt2b−/− mice with 1-ml aliquots 

of 20 mM Hepes-buffered saline alone or containing variable concentrations of EDTA (Fig. 

5B). MicroCT and histologic analysis of the lungs before and after serial lavage revealed a 

reduction in calcific opacities when the chelating agent was present but not with saline 

alone. Clearance of stones appeared to be more effective with lavage fluid containing 500 

mM EDTA than with 50 mM EDTA. The diameter of residual crystals on post-lavage lung 

histology also decreased in an EDTA concentration-dependent manner (Fig. 5, C to E, and 

fig. S3). The recovered lavage fluid was foamy and opalescent in the first seven or eight 

tubes, consistent with excess surfactant content, but became clearer with subsequent cycles 

(Fig. 5F). Pelleted microliths were present in tubes 1 to 7, indicating that the abundance of 

stones exceeded the chelating capacity of the EDTA solution early in the lavage series.

A low-phosphate diet attenuates the accumulation of microliths in the alveolar space

To determine the effect of reducing dietary phosphate intake on microlith formation, we fed 

4-week-old Npt2b−/− mice a regular diet (RD) or a low-phosphate diet (LPD) for a total of 8 

weeks. The pre- and postintervention microCT and von Kossa staining of lung sections 

revealed that LPD reduced the burden of microliths in the alveolar spaces (Fig. 6, A and B). 
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Wet lung weight normalized to body weight from the LPD group was also less than that of 

RD group (Fig. 6C). Although serum phosphate concentration and MCP-1 from the RD 

group were not different from LPD group, there was a trend toward lower values for each in 

the LPD mice (Fig. 6, D and F). Serum SP-D was lower in the LPD than in the RD group, 

consistent with improved maintenance of pulmonary epithelial barrier integrity in the LPD 

group (Fig. 6E). Fibroblast growth factor 23 (FGF-23), a cytokine that regulates the 

expression of sodium phosphate cotransporters Npt2a and Npt2c (22) to maintain phosphate 

homeostasis, was predictably decreased in LPD-treated Npt2b+/+ and Npt2b−/− mice (Fig. 

6G). Parathyroid hormone (PTH) was also lower in LPD than in the RD group for both 

mouse genotypes (Fig. 6G). rtPCR analysis of AECll from LPD-treated Npt2b−/− mice 

revealed a minor increase in Slc20a1 message expression compared to Npt2b−/− mice fed 

with RD. (Fig. 6I). To evaluate the potential for a dietary intervention to affect the microlith 

burden in aged Npt2b−/− mice with well-established pathological changes in the lung, we 

also treated 25- to 28-week-old mice with LPD for a period of 4 weeks. MicroCT before and 

after LPD challenge revealed a reduction in the burden of stones (Fig. 6J), which contrasted 

with the radiographic progression that occurred in Npt2b−/− mice challenged with RD.

DISCUSSION

Human genetic studies strongly implicated mutations in the SLC34A2 gene in the 

pathogenesis of PAM (11, 12), but a direct causal role for the encoded sodium phosphate 

cotransporter, Npt2b, in alveolar phosphate homeostasis and microlith formation has not 

been demonstrated. To analyze the role of inactivation of Npt2b as an essential driver of 

PAM pathology, we crossed mice expressing a floxed allele for Npt2b with transgenic mice 

expressing Cre recombinase under the control of the sonic hedgehog promoter to enforce 

deletion of the transporter in the epithelial tissues (29, 30). Pathologic analyses revealed 

abnormalities only in the lungs. By 4 weeks of age, lamellar concretions were found in the 

alveolar spaces of all Npt2b−/− animals examined, but not in the control littermates. Infrared 

spectroscopy and von Kossa staining demonstrated that the microliths were composed of 

calcium phosphate. Macrophage-rich alveolar inflammation was also present, with 

elevations in a number of alveolar and serum cytokines, including MCP-1 (Figs. 2, D and F, 

and 3G). The accumulation of microliths in lung tissues progressed with time and became 

more widespread, chest radiographs and microCTs revealed progressive hyperdense 

opacification, and early, mild fibrosis and a restrictive physiologic defect developed (Fig. 3 

and fig. S2). An unexpected alveolar phospholipidosis was present, including elevation in 

Sat PC and SP-D in BALF (Fig. 2, B and C). Adoptive transfer of microliths isolated from 

Npt2b−/− mice into the lungs of naïve wild-type mice resulted in intense acute 

peribronchiolar inflammation, dense radiographic opacities, and elevation of serum MCP-1, 

all of which peaked in 1 week and resolved in 28 days, in association with near-complete 

disappearance of microliths (Fig. 4, A to C). This result demonstrating the capacity of the 

normal lung to clear calcium phosphate microliths bodes well for therapeutic strategies 

targeting restoration of phosphate homeostasis, including gene correction approaches. The 

observation that microliths dissolved in EDTA suggested that therapeutic lavage with 

chelating agents might be an effective treatment strategy, and exhaustive intrapulmonary 

instillation and aspiration of a buffer containing 50 or 500 mM EDTA reduced the burden of 
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alveolar microliths postmortem (Fig. 5, A to F, and fig. S3). Finally, an LPD had a marked 

effect of calcium deposition and inflammation in the lung, in both young mice with nascent 

microlith formation and aged animals with established pathological changes. Collectively, 

these data demonstrate that loss of Npt2b function in the lung is necessary and sufficient for 

the development of PAM, that SP-D and MCP-1 are promising biomarkers of lung injury 

and disease progression, and that therapeutic lavage and dietary interventions are plausible 

therapeutic interventions for the treatment of PAM.

Our results demonstrate that the expression of Npt2b in the murine lung is restricted to the 

apical membrane of AECII and that targeted deletion of the transporter abolishes AECII 

sodium-dependent phosphate import (Fig. 1, B and E). Phosphate transporters Pit1 and/or 

Pit2 are also expressed in the pulmonary epithelium (fig. S1), but their subcellular 

localization and orientation in the plasma membrane are unknown, and they are clearly not 

able to compensate for loss of Npt2b under normal dietary conditions. The data are 

consistent with a model in which Npt2b−/− is the primary channel responsible for sodium-

dependent transport of phosphate from the alveolar lumen across the apical plasma 

membrane into AECII (34). The transporters responsible for export of phosphate from 

AECII into serum have not been explored, but Pit1 and/or Pit2 are good candidates based on 

their localization to the basolateral cell membrane in other organs. We found no evidence for 

compensatory up-regulation of other sodium phosphate co-transporters, including Npt2a, 

Npt2c, Pit1, or Pit2 in the Npt2b−/− mice on a diet with normal levels of dietary phosphate 

(Fig. 1A and fig. S1), but type l sodium phosphate transporters (Slc17 family) (35) and other 

phosphate channels have not yet been examined. On an LPD, Slc20a1 expression was 

slightly elevated in AECll (Fig. 6I), suggesting the possibility that up-regulation of Slc20a1 

played a role in the reduction of the burden of microliths.

The loss of Npt2b resulted in an increase in the levels of phosphate in the alveolar lining 

fluid, accompanied by an increase in alveolar calcium concentration (Fig. 2A). The latter is 

unexplained but may be a mechanism to maintain electroneutrality. Elevations in the 

calcium phosphate index are associated with hydroxyapatite crystal formation (36). We 

propose that the phosphate in the alveolar space of Npt2b−/− mice is liberated by alveolar 

macrophages in theprocess of surfactant catabolism and accumulates because transport into 

AECII and subsequent passive or active transport across the basolateral membrane into the 

serum are defective (37).

We were surprised to find that deletion of the Npt2b transporter resulted in an alveolar 

phospholipidosis, including a marked elevation in Sat PC and SP-D in BAL (Fig. 2, B and 

C). Disruption in surfactant homeostasis has not been reported in patients with PAM, 

although lipid-laden macrophages that stain with Oil Red O have been described (38), as 

have elevations in serum surfactant proteins (39). At this time, it is not clear whether the 

mechanism of surfactant accumulation in the Npt2b−/− mice is related to an increase in 

surfactant synthesis or altered catabolism, although it seems likely that decreased surfactant 

degradation by dysfunctional alveolar macrophages engorged with microliths may play a 

role (40). It is also possible that alveolar phosphate levels or the Npt2b transporter directly 

influences surfactant synthesis or catabolism. The elevation in serum SP-D in PAM mice 

could reflect increased translocation across the alveolar basement membrane driven by 

Saito et al. Page 7

Sci Transl Med. Author manuscript; available in PMC 2016 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



higher alveolar SP-D levels or compromised barrier integrity or both. We confirmed that SP-

D was elevated in the serum of patients with PAM, as originally described in two patients by 

Takahashi et al. (39), but did not find significant elevations of serum SP-A as reported by 

that group. Small patient numbers and variation in disease severity certainly contribute to 

these differences between groups.

Intense macrophage predominant alveolar inflammation developed in the Npt2b−/− mice, 

associated with multifocal consolidated lesions, giant cells containing intracytoplasmic 

inclusions (Fig. 3G), and marked elevations in alveolar cytokines and chemokines that 

influence macrophage function. Scattered areas of collagen deposition and a restrictive 

physiologic defect developed. The reduced lung compliance was almost certainly 

attributable to inflammation because the fibrosis seen on the lung sections was quite mild. 

Several cytokines were also increased in the serum of Npt2b−/− mice, including MCP-1, 

suggesting possible utility as biomarkers (Fig. 2F). Consistent with this notion, elevated 

serum MCP-1 was also identified in serum obtained from patients with PAM (Fig. 2H), 

which has not been reported previously. Adoptive transfer of microliths into the lungs of 

wild-type mice produced a transient, intense peribronchiolar inflammation and serum 

MCP-1 elevation peaking at 1 week, demonstrating that microliths are sufficient to 

reproduce the inflammatory phenotype of the Npt2b−/− mice in the absence of dysregulated 

alveolar phosphate homeostasis (Fig. 4, A to C). The observation that the lesions were also 

completely resolved within 1 month after instillation indicates that alveolar macrophages 

have the potential to degrade microliths and that therapies targeted at restoring phosphate 

homeostasis have the potential to reverse some of the pathological manifestations of PAM. 

In addition, the finding that serum MCP-1 level tracks with the development and resolution 

of alveolar inflammation suggests the possibility that MCP-1 may be useful as a biomarker 

of disease activity.

Microliths isolated from the Npt2b−/− mice readily dissolved in EDTA and EGTA, 

suggesting a plausible treatment strategy. Serial lavage of the lungs of sacrificed mice 

resulted in a marked reduction in the burden of microliths, based on radiographic and 

histological examination (Fig. 5, A to F, and fig. S3). EDTA is an excipient in many 

respiratory inhalers and has been delivered at 100 mM concentration without an apparent 

safety signal in a nebulized therapy trial to children with cystic fibrosis (41), but the toxicity 

of EDTA or EGTA as a component of therapeutic lavage fluid has not been tested (42, 43). 

We were surprised to find that dietary phosphate restriction produced a marked reduction of 

stone burden and lung weight despite the maintenance of near-normal serum phosphate 

levels (Fig. 6, A to D). Reduction in the level of serum SP-D suggests that LPD preserves 

pulmonary epithelial barrier integrity (Fig. 6E). LPD also reduced the burden of microliths 

in aged Npt2b−/− mice with established PAM pathology, suggesting the possibility that a 

simple dietary intervention in PAM patients may partially reverse lung pathological changes 

in those with advanced disease (Fig. 6J). Although the up-regulation of Slc20a1 is an 

intriguing finding that may play a role in the benefit of LPD on microlith burden, the 

magnitude of this effect is small, and further studies will be required. On the basis of these 

preclinical observations, pilot studies of limited, therapeutic EDTA lavage and/or LPD in 

patients with PAM may be worthy of consideration.
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In summary, deletion of Npt2b from the pulmonary epithelium of mice recapitulates PAM in 

humans, including alveolar microlith formation, diffuse radiographic opacity, macrophage-

rich inflammation, and a restrictive ventilatory defect. The development of alveolar 

phospholipidosis suggests a previously unappreciated role for the Npt2b transepithelial 

phosphate transporter in surfactant homeostasis. The finding that lungs with intact Npt2b-

dependent phosphate transport have the capacity to clear microliths suggests that correction 

of transepithelial phosphate transport may be sufficient to prevent and possibly reverse 

disease progression. Therapeutic EDTA lavage and reduction of dietary phosphate intake are 

promising strategies for human trials. We conclude that the PAM mouse model is an 

excellent platform for exploring PAM disease pathogenesis, identifying novel biomarkers 

and mechanisms regulating alveolar homeostasis, and testing genetic, interventional, and 

pharmaceutical therapeutic approaches.

MATERIALS AND METHODS

Study design

The purpose of this study was to develop a preclinical mouse model to better understand the 

pathogenesis of PAM, discover biomarkers, and develop approaches to treatment. Our initial 

hypothesis was that epithelium-specific deletion of Npt2b defect would recapitulate PAM in 

mice, including microlith accumulation, alveolar inflammation, pulmonary fibrosis, and 

respiratory failure. This hypothesis was proven true for all but the last two features. The 

primary end points were radiographic density, wet and ashed lung weights, qualitative 

histologic and immunohistochemical assessments, lung compliance, and inflammatory 

cytokine levels in lavage fluid, lung tissue, and serum. To identify biomarkers of potential 

relevance to humans, measurement of MCP-1 was conducted in serum of PAM patients. The 

unexpected finding that PAM mice develop a phospholipidosis in the tissue and alveolar 

lining fluid compartments led to a new hypothesis that phosphate homeostasis plays a role in 

surfactant synthesis, secretion, or degradation. The primary end points in these studies were 

phospholipid pool sizes in the tissue and alveolar compartments, and SP-D levels in serum 

and lavage of the Npt2b mice. To assess clinical utility, these serum SP-D studies were 

extended to human samples. Fully testing this hypothesis was beyond the scope of the 

current study and will be the subject of another article. The finding that microliths are 

cleared from the normal lung after adoptive transfer suggested that corrective strategies that 

restore normal Npt2b function have the potential to arrest or reverse microlith-induced 

inflammation. The primary end points for these studies were based on histological and 

inflammatory cytokine assessments. Fully testing this hypothesis was beyond the scope of 

the current study and will be the subject of another article. The observation that isolated 

microliths dissolve in EDTA solutions suggested the hypothesis that therapeutic EDTA 

lavage was a plausible therapeutic strategy for PAM. Secondarily, low dietary phosphate 

intake was shown to reduce the burden of microliths. The primary end point for these studies 

was the histological and radiographic assessment of microlith burden after living and 

postmortem lavage. Sample sizes were predetermined on the basis of statistical 

considerations and on pilot experiments that indicated the number of mice per group needed 

to generate statistical significance. For patients, our sample size was limited by the number 

of samples we were able to collect for this ultrarare disease. Outliers were not excluded from 
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analyses. Because of the markedly different phenotypes of the wild-type and Npt2b−/− 

animals, randomization and blinding were not used for experiments with animals, but mice 

were age- and sex-matched for all studies. Patients with a physician-rendered diagnosis of 

PAM and a compatible radiograph were identified through the Rare Lung Diseases 

Consortium (www.rarediseasesnetwork.org/cms/RLD). The experimental procedures were 

approved by the Institutional Animal Care and Use Committee at the University of 

Cincinnati.

Animals

Mice (129J background) containing flox P sites flanking exon 6 of the Slc34a2 gene 

(Npt2bfl/fl) developed by Genzyme for systemic phosphate homeostasis studies (22) were 

bred with sonic hedgehog Shh-Cre promoter–expressing mice (C57BL/6NTac background, 

The Jackson Laboratory) to drive epithelium-specific deletion of the Npt2b gene. The 

breeding strategy used was to cross Npt2bfl/fl.Cre +/− with Npt2bfl/fl.Cre −/− mice to generate 

equal numbers of Npt2b knockout animals, heterozygous animals (Npt2bfl/fl.Cre +/−), and 

littermate controls (Npt2bfl/fl.Cre −/−). Progeny were genotyped by PCR amplification of 

genomic DNA using PCR primers 5′-CTGGGATCAAA-TGGTCAGAGAG-3′ and 5′-

GAGCACACGAACAAGTAGAGAA-3′. All animals were maintained in a specific 

pathogen–free facility and were handled according to the University of Cincinnati 

Institutional Animal Care and Use Committee–approved protocol and National Institutes of 

Health guidelines.

Antibodies

The anti-Npt2b antibody used was generated in rabbit as previously described (Genzyme) 

(22). Rabbit anti-pro SP-C antibody was purchased from Seven Hills Bioreagents.

MicroCT and x-ray imaging

After animals were anesthetized with isoflurane, two-dimensional (2D) chest x-ray images 

(In-Vivo Multispectral Imaging System FX, Bruker) were obtained, and microCT scans 

(Inveon, Siemens) were performed with respiratory gating applied during image acquisition 

to minimize breathing motion artifacts. The Inveon Research Workplace (Siemens) general 

analysis and 3D Visualization software were used for image review and analysis and to 

produce 3D volume-rendered images. For postmortem CT studies, mice were sacrificed by 

intraperitoneal injection of Fatal-Plus solution (Vortech), intratracheally intubated with a 20-

gauge plastic catheter, and inflated with air to a pressure of 20 cm H2O.

Histology

Mice were sacrificed and tissues were fixed with 10% buffered formalin phosphate, 

embedded in paraffin, and stained with H&E. The von Kossa staining technique was used to 

stain calcium deposits in the lung by application of 3% silver nitrate to the lung sections, 

exposure to strong light for 30 min, and counterstaining with Nuclear Fast Red 5 

(Polysciences Inc.). Masson’s trichrome staining was used to identify collagen deposition 

(Newcomer Supply). Intracellular lipid deposits were identified by Oil Red O staining after 
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fixation with 10% buffered formalin, incubation in propylene glycol (Newcomer Supply), 

and counterstaining with hematoxylin (44).

Immunohistochemistry and immunocytochemistry

Tissue sections were incubated with anti-Npt2b antibodies at the indicated concentrations 

overnight at 4°C. After washing with tris-buffered saline containing 0.1% Tween 20, tissues 

were incubated with horseradish peroxidase (HRP)–labeled anti-rabbit goat secondary 

antibody (BA-1000, Vector Laboratories) for 1 hour at room temperature. The DAB 

substrate kit (Thermo Fisher) was used for color development, and samples were 

counterstained with hematoxylin. For immunocytochemistry, cells were cytospun onto glass 

slides, dried overnight, and stained with anti-Npt2b antibodies at various dilutions for 1 hour 

at 37°C. After incubation with HRP-labeled DyLight 488 affinity-purified donkey anti-

rabbit immunoglobulin G (IgG) (Jackson ImmunoResearch) for 1 hour at 37°C, color 

development with DAB and counterstaining with DAPI were performed.

Isolation of AECII

Mice were sacrificed by intraperitoneal injection of Fatal-Plus solution (Vortech), and lungs 

were perfused with 10 ml of sterile normal saline via the pulmonary artery. The airway was 

cannulated via tracheostomy with a 20-gauge metallic angiocatheter, and 3 ml of dispase (50 

caseinolytic units/ml, Corning) was instilled, followed by 0.5 ml of 1% low-melt agarose 

(warmed to 45°C). Lungs were rapidly cooled on ice for 2 min, incubated in 1 ml of dispase 

for 45 min at room temperature, and transferred to a culture dish containing 

deoxyribonuclease I (100 U/ml) (Worthington). The parenchymal lung tissue was gently 

teased from the bronchi and homogenized. Cell suspensions were filtered, collected by 

centrifugation, and placed on prewashed 100-mm tissue culture plates coated with CD45 and 

CD32/16 antibodies (BD Biosciences). After incubation for 60 min at 37°C in a 5% CO2 

atmosphere to promote adherence of contaminating macrophages and fibroblasts, the AECII 

were gently panned from the plate, collected by centrifugation, and counted. For the 

Npt2b−/− animals, differential centrifugation was used to separate microliths from the cells. 

Cell viability determined with trypan blue staining was routinely >90%, and cell purity 

determined by SP-C staining ranged from 75 to 90%.

Immunoblotting analysis

Isolated AECII were lysed in radioimmunoprecipitation assay buffer (Santa Cruz 

Biotechnology) with protease inhibitor cocktail (P8340, Sigma) on ice for 30 min, 

solubilized in reducing buffer, loaded into SDS-PAGE wells at equal protein concentrations, 

transferred to PVDF membrane (Immobilon-P, Millipore), and immunoblotted with anti-

Npt2b antibody (1:1000 dilution). LI-COR IRDye goat anti-rabbit IgG was used as the 

secondary antibody. Protein species were visualized using the Odyssey Infrared Imaging 

System (LI-COR).

Serum and alveolar lining fluid collection and measurements

Mice were sacrificed using Fatal-Plus solution (Vortech) and lavaged with 1 ml of normal 

saline through a 20-gauge angiocatheter inserted into trachea. Phosphate was measured by 
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using Phosphate Colorimetric Assay Kit (BioVision) per the manufacturer’s directions. 

Calcium levels were determined after dehydration of BALF and reconstitution in distilled 

H2O using colorimetric methods according to the manufacturer’s directions (BioVision). 

Total protein in BALF was measured by BCA Protein Assay Kit (Pierce), and mouse SP-A 

and mouse SP-D in the BALF were measured by ELISA according to previously published 

methods (45). Mouse SP-D in the serum was measured by a rat/mouse ELISA kit 

(YAMASA), and human SP-D was measured by Quantikine ELISA Kit (R&D Systems 

Inc.). MCP-1 in mouse serum was measured using the mouse CCL2 [chemokine (C-C motif) 

ligand]/JE/MCP-1 ELISA kit, and human CCL2/MCP-1 was measured with the ELISA kit, 

both from R&D Systems Inc. Luminex multiplex technology was used for cytokine array 

profiling on BALF as described previously (33). Sat PC in BALF and lung homogenates 

were quantified as previously described (46). Human sample collection and laboratory 

analysis were approved by the Institutional Review Board at The University of Cincinnati 

College of Medicine. Phosphate homeostasis hormones were measured in mouse serum 

using the FGF-23 ELISA Kit (Kainos Laboratories Inc.) and the Mouse PTH 1-84 ELISA 

Kit (Immutopics).

Phosphate transport measurement using [32P] phosphate flux

Isolated AECII were washed twice by centrifugation (1 min, 50g, 4°C) and incubated for 10 

min at 37°C in HCO3
−- and Na+-free solution containing 140 mM TMA chloride, 5 mM 

KCl, 1 mM MgCl2, 0.1 mM K2HPO4, 1 mM CaCl2, 10 mM Hepes, and 5 mM glucose 

adjusted to pH 7.40 with tris base. Cells were then exposed to either 140 mM TMA or 140 

mM NaCl and 3 μCi of 32P-labeled phosphoric acid (PerkinElmer) for 10 min at 37°C. 

Phosphate uptake was stopped by addition of 1 ml of ice-cold stop solution containing 140 

mM NaCl, 1 mM CaCl2, 10 mM Hepes, and 10 mM Na-arsenate (pH 7.40). The cell 

suspension was washed three times with the same ice-cold solution before adding lysis 

buffer (0.1 mM NaOH + 0.5% Triton X-100). The samples were then normalized on the 

basis of protein concentration determined using the Bio-Rad Protein Assay Kit before 

loading into a scintillation counter for counting.

Quantitative rtPCR

RNA from tissues of Npt2b−/− and Npt2b+/+ mice was isolated using the RNeasy Micro Kit 

(Qiagen). After first-strand complementary DNA synthesis using SuperScript III Reverse 

Transcriptase (Invitrogen), quantitative rtPCR was performed with a SYBR Green Master 

Mix (Applied Biosystems) and primer pairs for sodium phosphate cotransporters, as well as 

β-actin as an internal control. The nucleotide sequences of the primer pairs were 5′-

CACTACCACTACAGCCATCC-3′ and 5′-GATGCCCGAGATGTTGAAGA-3′ for 

Slc34a1, 5′-CTGGGAT-CAAATGGTCAGAGAG-3′ and 5′-

GAGCACACGAACAAGTAGA-GAA-3′ for Slc34a2, 5′-

CCTACTCTGGATGCCTTTGAC-3′ and 5′-CCATGCCAACCTCTTTCAGT-3′ for 

Slc34a3, 5′-GTGTCCCTTCTCTTCCAGTTC-3′ and 5′- TGTTGCCGCTTTTGTAGAG-3′ 

for Slc20a1, 5′-CCTGCTCTTCCACTTCCTG-3′ and 5′-TCTTGTGTAACTCCGCCTTG-3′ 

for Slc20a2, and 5′-ACCTTCTA-CAATGAGCTGCG-3′ and 5′-

CTGGATGGCTACGTACATGG-3′ for β-actin.
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Composition and solubility of crystals

Crystals isolated by BAL of Npt2b−/− mice were extensively washed with normal saline and 

analyzed by infrared spectroscopy to determine elemental composition (Gerald V. Ling 

Urinary Stone Analysis Laboratory). Solubility of isolated microliths was determined by 

suspension in 100 μl of 20 mM Hepes saline at varying pH and with varying concentrations 

of the chelating agent EDTA, EGTA, etidronate, or citrate. After vortexing for 30 s, the 

microlith mixtures were loaded into round-bottom plates (BD), centrifuged at 400g for 5 

min, and visually inspected for evidence of dissolution.

Lung physiological measurements using Scireq flexiVent system

Mice were anesthetized with isoflurane or ketamine and intubated through a tracheotomy 

with a metallic angiocatheter. Lung compliance and pressure volume characteristics were 

measured using oscillatory impedance (flexiVent, version 5.1, Scireq Inc.) and plotted using 

GraphPad Prism (version 5.03, GraphPad Software Inc.) as previously reported (47).

Lung and ash weight

Wet and ashed lung weights were measured in mice of various ages and normalized to body 

weight. For ashing, lungs were cremated at 600°C in an oven for 10 min.

Adoptive transfer of microliths

Microliths were recovered from Npt2b−/− mice lungs during AECII isolation. Microliths 

were incubated with 1% Triton X-100 in normal saline and extensively washed and 

resuspended in Hepes-buffered saline. Equal quantities of isolated microliths (amounting to 

about 50% of the typical microlith burden of an 8-week-old Npt2b−/− mouse) in 100 μl of 

Hepes-buffered saline were intratracheally instilled into each Npt2b+/+ mouse, followed by 

histologic and radiographic analyses at various time points.

Postmortem lavage with EDTA

Sacrificed Npt2b−/− mice were intubated via tracheostomy with a 20-gauge metallic 

angiocatheter, and after inflation of the lung to 20–cm H2O pressure, scanned by microCT. 

Serial BALs (1 ml, 15 cycles) were performed with 20 mM Hepes saline containing the 

indicated concentrations of EDTA (pH 7.4). After the lavage, lung inflation and microCT of 

the chest were again performed. Recovered BALF from each instillation/aspiration cycle 

was centrifuged at 400g for 3 min and visually inspected.

Low-phosphate diet

Regular phosphate content chow and low-phosphate chow containing, respectively, 

22.5%/16% protein, 42.7%/70% carbohydrate, 5.2%/5% fat, 1.2%/0.6% calcium, 1.0%/

0.02% phosphate, and vitamin D (5100 IU kg−1/2200 IU kg−1) were purchased from Harlan. 

Recently weaned mice (3 or 4 weeks) were fed with RD or LPD for the indicated time 

intervals. MicroCT images were taken at the beginning and at the end of the study, together 

with wet lung and body weight measurement, and serum collection for biomarkers. Wet lung 

weight normalized to body weight was compared for mice fed with RD and LPD. In the 

rtPCR study, 4-week-old mice were fed with RD or LPD for 2 weeks. For experiments to 
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determine whether microlith accumulation can be reversed, 25- to 28-week-old mice were 

fed with LPD for 4 weeks, and pre- and post-microCT was performed.

Statistical analysis

All data are presented as means ± SD. Data from each experiment were confirmed by one or 

more replicate experiments. Most of our data did not meet the equality of variance 

assumption for the Student’s t test, so an unpaired t test with the Welch correction was used 

for all statistical comparisons of two groups. In experiments where more than two groups 

were compared, an ANOVA and Bonferroni posttest comparing selected groups were used, 

and a P < 0.05 was considered to indicate statistical significance. These data were analyzed 

with GraphPad Prism (version 5.03, GraphPad software Inc.). All raw data and P values can 

be found in table S2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Deletion of exon 6 of Slc34a2 results in markedly decreased AECII Slc34a2 mRNA 
expression, Npt2b protein expression, and phosphate transport
(A) Relative expression of Slc34 and Slc20 family phosphate transporters in the whole lung 

and AECII from 13-week-old Npt2b+/+ and Npt2b−/− mice was determined by rtPCR (n = 4 

mice per group). The right y axis applies to Slc34a2, and the left y axis applies to all others. 

(B) Paraffin-embedded lung sections from 13-week-old mice were stained with anti-pro SP-

C antibody or anti-Npt2b antibody and observed under light microscopy. Representative 

images are shown. Arrows demonstrate enhanced Npt2b staining in the apical membrane of 

AECII. Bold scale bar represents 200, 200, 20, and 200 μm, respectively, from left to right. 

(C) AECII isolated and purified from 13-week-old Npt2b+/+ and Npt2b−/− mice were 

cytospun onto glass slides, reacted with anti-Npt2b antibodies, and stained with 

diaminobenzidine (DAB) and 4′,6-diamidino-2-phenylindole (DAPI). Representative images 

are shown. Bold scale bar, 10 μm. (D) Immunoblot of Npt2b. Isolated AECII were lysed and 

loaded at 10 μg of protein per lane onto SDS–polyacrylamide gel electrophoresis (SDS-

PAGE) gels. After transfer to polyvinylidene difluoride (PVDF) membrane, a 108-kD band 

was detected with anti-Npt2b antibody. Anti–glyceraldehyde phosphate dehydrogenase 

(GAPDH) antibody was used as a loading control. (E) 32P uptake into AECII isolated from 

Npt2b+/+ and Npt2b−/− mice was measured in the presence and absence of 

tetramethylammonium (TMA+) and Na+ (n = 3 to 6 mice per group). Data are expressed as 
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means ± SD. *P < 0.05, ***P < 0.001; exact P values can be found in table S2 (unpaired t 

test with Welch correction).
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Fig. 2. Deletion of Npt2b in the lung epithelium results in altered alveolar homeostasis
(A to H) Alveolar and serum concentrations of markers of alveolar homeostasis from 

Npt2b+/+ (closed circles) (A to F) and Npt2b−/− mice (open circles) (A to F), healthy 

volunteers (HV) (closed circles) (G and H), and PAM patients (open circles) (G and H). (A) 

The phosphate and calcium concentrations in BALF and serum were measured by 

colorimetric assay (n = 3 to 6 mice per group). (B) Total protein in BALF was measured 

using bicinchoninic acid (n = 5 to 6 mice per group), and mouse SP-D and SP-A in BALF 

were quantified by enzyme-linked immunosorbent assay (ELISA) (n = 3 to 5 mice per 

group). (C) Sat PC was measured in lung homogenates (LH) and BALF of 12- to 14-week-

old Npt2b+/+ and Npt2b−/− mice (n = 4 mice per group). (D) Luminex cytokine array of 

BALF (n = 4 mice per group). The right y axis applies to MCP-1, and the left y axis applies 

to all other cytokines. (E and F) Serum SP-D and MCP-1 from mice were measured by 

ELISA at the indicated ages [in weeks (w)] (n = 4 mice per group). (G and H) Human SP-D 

and MCP-1 in the serum from healthy volunteers and PAM patients were examined by 

ELISA (n = 7 to 8 per group). Data are expressed as means ± SD. *P < 0.05, **P < 0.01; 

exact P values can be found in table S2 (unpaired t test with Welch correction).
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Fig. 3. Radiographic, histologic, and physiologic consequences of Npt2b deletion in mice
(A and B) Radiograph of Npt2b+/+ (A) and Npt2b−/− (B) mice, revealing dense opacities, 

consistent with extensive calcium deposition. (C) Coronal and cross-sectional CTs of 

Npt2b−/− mice demonstrating diffuse opacities, with areas of focal hyperdense calcium 

deposition containing air bronchograms. Window level, −150 HU; window width, 1500 HU. 

(D) Representative coronal CT cuts of a single Npt2b−/− mouse serially imaged at 5, 9, and 

11 weeks. (E and F) Wet (E) and ashed (F) lung weights of Npt2b+/+ and Npt2b−/− mice 

normalized to body weight at the indicated ages (n = 3 to 5 mice per group). (G) Paraffin-

embedded lung sections from 16-week-old Npt2b−/− mice were stained with hematoxylin 
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and eosin (H&E), von Kossa reagent, and Masson’s trichrome reagent. BAL cells from 

Npt2b−/− mice were cytospun onto glass slides and stained with Oil Red O reagent. 

Representative images are shown. Bold scale bars on low- and high-power images, 

respectively, are 100 and 50 μm for H&E, 200 and 20 μm for von Kossa, and 50 and 20 μm 

for Masson’s trichrome. (H) On the cytospun specimen, the bold scale bar is 20 μm. (I) The 

pressure/volume and compliance measurements were made using the forced oscillation 

method. Pcyl refers to “pressure in the cylinder.” Data are plotted as described in Materials 

and Methods (mean, 26 versus 37 μl/cm H2O/ml total lung capacity from Npt2b+/+ and 

Npt2b−/− mice, respectively; n = 3 mice per group). Data are expressed as means ± SD. *P < 

0.05, **P < 0.01, and ***P < 0.001; exact P values can be found in table S2 (unpaired t test 

with Welch correction).
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Fig. 4. Adoptive transfer of microliths induces transient alveolar inflammation
(A) Microliths isolated from the lungs of Npt2b−/− mice were instilled into the lungs of 

Npt2b+/+ mice. Serial radiographs and microCT images were taken. (B) Mice were 

sacrificed at the indicated times in days (d) after instillation, and the lungs were fixed and 

stained with H&E, von Kossa reagent, and Masson’s trichrome reagent as indicated. 

Representative images are shown. Bold scale bar, 200 μm (low magnification) and 20 μm 

(high magnification). (C) Serum MCP-1 from Npt2b+/+ mice after adoptive microlith 

transfer (closed circles) and 16-week-old Npt2b−/− mice (open circles, for comparison) were 

measured by ELISA (n = 3 mice per group). Data are expressed as means ± SD. **P < 0.01, 

***P < 0.001; ns, not significant; statistical analysis can be found in table S2 [analysis of 

variance (ANOVA)].
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Fig. 5. Postmortem therapeutic EDTA lavage reduce microlith burden
(A) Microliths were isolated from Npt2b−/− mice by lavage and incubated with solutions 

containing various chelating agents or levels of acidity. The mixtures were plated in round-

bottom plates and centrifuged. (B) MicroCT imaging before and after repeated BAL (1 ml, 

15 cycles) of postmortem Npt2b−/− mice with 0, 50, or 500 mM EDTA. (C and D) Lung 

sections from lavaged mice were stained with von Kossa reagent and viewed under low (C) 

and high magnifications (D). Bold bar represents 2 (C) and 200 mm (D). (E) The diameter 

of residual crystals on post-lavage lung histology was measured under the microscope. Data 

are expressed as means ± SD from at least 50 stones per high-powered field. ***P < 0.001; 

statistical analysis can be found in table S2 (ANOVA). (F) Recovered BALF from 
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sequential instillation/aspiration cycles of 500 mM EDTA is shown (left to right, cycles 1 to 

15, respectively). Note the foamy appearance of the first five tubes consistent with excess 

surfactant material, as well as pelleted microliths in the first six to seven tubes.
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Fig. 6. LPD prevents and improves microlith accumulation
(A) MicroCT imaging before and after challenging 3-week-old mice with RD or LPD for 2 

months. (B) von Kossa staining was performed after dietary challenge. Representative 

specimens are shown. Bold scale bars, 100 μm. (C) Wet lung weights of mice normalized to 

the body weight from RD and LPD groups (n = 3 mice per group). (D to F) Phosphate, 

calcium (D), SP-D (E), and MCP-1 (F) in serum from RD and LPD group mice were 

measured as indicated in Materials and Methods (n = 3 mice per group). (G and H) FGF-23 

(G) and PTH (H) in serum from mice fed with RD or LPD for 2 weeks were measured as 

indicated in Materials and Methods. The serum from pretreated mice were used for the 

comparison (Pre) (n = 3 to 4 mice per group). (I) Relative expression of Slc34 and Slc20 

family phosphate transporters in the AECII from Npt2b+/+ mice treated with RD (closed 

bar) and Npt2b−/− mice treated with RD (ash color bar) or LPD (open bar) for 2 weeks were 

determined by rtPCR (n = 4 to 6 mice per group). The right axis applies to Slc34a2, and the 

left y axis applies to all others. (J) Mice (25 to 28 weeks old) were fed with LPD for 4 

weeks and evaluated by pre- and post-microCT. Data are expressed as means ± SD. *P < 

0.05, **P < 0.01; exact P values can be found in table S2 (unpaired t test with Welch 

correction).
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